⑴ 减速机等传动设备的精度误差如何调整
减速机等机械设备的调整,首要是在零部件之间经过挑选适宜的合作关系,使设备具有合理的作业精度和正常的作业机能。因此,从总体上来看,机械设备的调整不能只在零部件装配今后才着手进行。有必要从分析设备故障并断定修补有关零件时,就开端考虑这个问题。
减速机等传动设备的精度,首要体现为主轴的反转精度、导轨的导向精度和传动链的传动精度。
一、减速机主轴反转精度的首要差错源
主轴反转精度,是指主轴前端作业部件的径向圆跳动,端面圆跳动和轴向窜动的巨细。主轴反转精度的首要差错源如下。
(1)主轴的加工差错
1)主轴上两个轴颈之间有同轴度差错。
2)主轴锥孔相对轴颈有同轴度差错。
3)轴颈有圆度差错。
4)轴承的轴向定位面与主轴轴线有笔直度差错。
(2)轴承的加工差错
1)翻滚轴承的翻滚体之间有尺度差错及圆度差错;内圆孔相对滚道有偏疼;内圆滚道有圆度差错;前、后轴承之间有同轴度差错等。
2)滑动轴承有内、外圆的圆度差错和同轴度差错;前、后轴承之间有同轴度差错;轴承孔与轴颈之间有尺度差错等。
(3)般配零件的加工差错及其装配质量
1)齿轮减速机箱体上的轴承孔有圆度差错;与轴承处圈相合作时有尺度差错;轴向定位端面与孔的中凡轴线有笔直度差错。
2)减速机主轴上锁紧与调整轴承空隙的螺母有端面平面度差错;螺母端面与螺纹中心轴线之间有笔直度差错;螺纹之间存在联接差错等。
3)轴承衬套隔圈两端面有平行度差错。
4)装配中,轴承空隙调整是否适宜,直接对主轴反转精度有显着影响。
二、导轨导向精度的首要差错源
导轨的导向精度,是指机械设备的运动部件沿导轨运动时,构成运动轨迹的准确性。影响导轨导向精度的因素,除了在设计中所选导轨的类型、组合形式与尺度之外,设备修理中常见的首要因素有:
(1)受导轨几何精度的影响。
(2)受导轨空隙是否适宜的影响。
(3)受导轨本身刚度的影响。
三、减速器传动链传动精度的首要差错源
传动精度,是指传动链中,各环节的精度对终端履行件运动的准确性和均匀性的影响程度。
一般机械设备中的传动链都是由齿轮与齿轮、齿轮与齿条、蜗轮与蜗杆、丝杠与螺母等传动副组成。在整个传动链中,传动差错是由动力输入环节向终端履行件进行传递,而且按照传动比进行累积。传动链的传动精度对车床加工螺纹和滚齿机滚切齿轮的加工差错都有显着的影响。
设备修理过程中,传动精度常见的差错源是:
(1)传动件的差错对设备传动精度有着首要的影响。
(2)般配零件的差错及其装配质量对传动精度有显着影响。
(3)传动件在作业中,因为受热、受力,不可避免地要引起变形,对传动链的传动精度也会有必定影响。
⑵ 减速器轴系各零件(包括轴承)如何定位和固定
轴上零件的轴向定位是以轴肩、套筒、圆螺母、轴端挡圈和轴承端盖等来保证的,具体内容如下:
1、轴肩:分为定位轴肩和非定位轴肩两类,利用轴肩定位是最方便可靠的方法,但采用轴肩就必然会使轴的直径加大,而且轴肩处将因截面突变而引起应力集中。另外,轴肩过多时也不利于加工。因此,轴肩定位多用于轴向力较大的场合。
2、套筒定位:结构简单,定位可靠,轴上不需开槽﹑钻孔和切制螺纹,因而不影响轴的疲劳强度,一般用于轴上两个零件之间的定位。
3、圆螺母:定位可承受大的轴向力,但轴上螺纹处有较大的应力集中,会降低轴的疲劳强度,故一般用于固定轴端的零件,有双圆螺母和圆螺母与止动垫片两种型式。当轴上两零件间距离较大不宜使用套筒定位时,也常采用圆螺母定位。
4、轴端挡圈:适用于固定轴端零件,可以承受较大的轴向力。
5、轴承端盖:用螺钉或榫槽与箱体联接而使滚动轴承的外圈得到轴向定位。
在一般情况下,整个轴的轴向定位也常利用轴承端盖来实现。利用弹性挡圈、紧定螺钉及锁紧挡圈等进行轴向定位,只适用于零件上的轴向力不大之处。紧定螺钉和锁紧挡圈常用于光轴上零件的定位。
(2)减速机轴承孔如何保证圆度扩展阅读
轴系结构设计常见错误整理
1、轴端无倒角,轴上零件不便装拆。
2、轴肩过高,轴承不便拆卸
3、齿轮无周向固定
4、轴头段长度等于齿轮轮毂的长度,套筒顶不住齿轮,齿轮固定不可靠。
5、联轴器没有轴向定位。
6、联轴器没有周向固定。
7、联轴器没有轴向固定。
8、无调整垫片,轴承间隙无法调整。
9、无密封装置,无法防漏油及防尘。
10、精加工面过长而不便装拆轴承。
11、转动的轴与静止轴承端盖相接触,轴不能正常运转。
12、转动的套筒与静止的轴承外圈相接触,轴系不能正常运转。
13、铸造箱体的机加工面与非机加工面未区分开。
14、无砂轮越程槽,轴颈处不便磨削加工。
参考资料来源:网络—减速机
参考资料来源:网络—轴系
参考资料来源:网络—轴承
⑶ 轴承座孔怎么加工好。
一、加工方法:
1.小轴承座在车床用花盘、弯板加工。
2.大轴承座在镗床上加工。
二、轴承座孔的简单介绍:
为轴承提供运转基础、与轴承精密配合的安装位为——轴承座孔。轴承的运转精度高低、寿命的长短的最大影响因素是来自于——轴承座孔的配合精度。轴承座孔要达到轴承的精密配合尺寸要求,并要批量尺寸都具备统一性,在机械加工中很难达到,采用新型加工技术加工是轴承使用者的迫切需求。
三、图示:
⑷ 以减速器的输出轴为例,说明轴上零件的定位与固定方法
以减速机的输出轴为例,其轴承:主要靠与轴承座孔和与轴的配合来完成周向固定,靠套筒,挡油板,轴肩和轴承盖完成轴向固定;齿轮:主要靠键与轴连接完成轴向固定,靠轴肩,套筒,挡油板完成轴向固定。
⑸ 如何测量轴承和轴孔尺寸
(1)轴承孔的测量 轴承孔的测量可以使用内径量表在外径千分尺上核对基准尺寸后测量,同时还需测量承孔的圆度和圆柱度。烧坏轴承常使承孔在开口处直径缩小而圆度超差,对轴承的正常工作极为不利。如果连杆螺栓的定位面的配合松旷,连杆轴承盖会移位使承孔圆度超差。轴承承孔的圆度误差应控制在尺寸公差之内,而圆柱度则应严格控制 (2)轴承主要尺寸的测量①轴承厚度:将外径千分尺固定测头由平面改制成球面,可用来测量轴承厚度。轴承厚度一般应控制在0.005~0.010毫米范围内,否则会使轴承内径超差。轴承在近开口处有微量减薄,测量时应予注意。 ②轴承与承孔的配合紧度 :配合紧度是由轴承的自由弹开量和余面高度来保证的。测量余面高度的方法下:按规定装合轴承,交轴承盖螺栓紧固到规定扭矩后松开其中一个螺栓,用塞尺测量轴承盖接口处的间隙,其值应在0.05~0.15毫米范围之内。③轴承内径:测量前需将轴承按规定装合并按规定扭矩拧紧轴承盖螺栓,用内径量表,在外径千分尺上校对基准尺寸后测量,测量时要避开减薄区。轴承内径和对应轴颈外径尺寸之差值是配合间隙。 ④主轴承内孔的同轴度 :主轴承内孔的同轴度误差主要是其承孔同轴度误差造成的,而承孔同轴度误差产生的原因则是缸体的变形。当主轴颈径向圆跳动在规定公差内时,检查主轴颈和轴承的吃合印痕,如果各道主轴承吃合印痕位置明显不一致,说明同轴度误差大,可采用刮削、镗削轴承或更换缸体等办法解决,否则难以保证发动机正常工作。 轴承的材料一般测量以下几点:外径尺寸,内径尺寸,高度,这是基本三大尺寸得检测。一般用卡尺和千分尺,或夹量块对百分表,能准确点。用仪器可以轴承的内径跳动和外径跳动。用仪器主要是检测轴承的精度等级够不够。
⑹ 减速器中哪些部位需要密封如何保证密封
齿轮传动结构设计
1.齿轮布置应考虑有利于轴和轴承受力
2.人字齿轮的两方向齿结合点(A)应先进入啮合
3.齿轮直径较小时应作成齿轮轴
4.齿轮根圆直径可以小于轴直径
5.小齿轮宽度要大于大齿轮宽度
6.齿轮块要考虑加工齿轮时刀具切出的距离
7.齿轮与轴的联接要减少装配时的加工
8.注意保证沿齿宽齿轮刚度一致
9.利用齿轮的不均匀变形补偿轴的变形
10.剖分式大齿轮应在无轮辐处分开
11.轮齿表面硬化层不应间断
12.锥齿轮轴必须双向固定
13.大小锥齿轮轴都应能作轴向调整
14.组合锥齿轮结构中螺栓要不受拉力
蜗杆传动结构设计
1.蜗杆自锁不可靠
2.冷却用风扇宜装在蜗杆上
3.蜗杆减速器外面散热片的方向与冷却方法有关
4.蜗杆受发热影响比蜗轮严重
5.蜗杆位置与转速有关
6.蜗杆刚度不仅决定于工作时受力
7.蜗杆传动受力复杂影响精密机械精度
8.蜗杆传动的作用力影响转动灵活性
减速器和变速器结构设计
1.传动装置应力求组成一个组件
2.一级传动的传动比不可太大或太小
3.传递大功率宜采用分流传动
4.尽量避免采用立式减速器
5.注意减速箱内外压力平衡
6.箱面不宜用垫片
7.立式箱体应防止剖分面漏油
8.箱中应有足够的油并及时更换
9.行星齿轮减速箱应有均载装置
10.变速箱移动齿轮要有空档位置
11.变速箱齿轮要圆齿
12.摩擦轮和摩擦无级变速器应避免几何滑动
13.主动摩擦轮用软材料
14.圆锥摩擦轮传动,压紧弹簧应装在小圆锥摩擦轮上
15.设计应设法增加传力途径,并把压紧力化作内力
16.无级变速器的机械特性应与工作机和原动机相匹配
17.带无级变速器的带轮工作锥面的母线不是直线
传动系统结构设计
1.避免铰链四杆机构的运动不确定现象
2.注意机构的死点
3.避免导轨受侧推力
4.限位开关应设置在连杆机构中行程较大的构件上
5.注意传动角不得过小
6.摆动从动件圆柱凸轮的摆杆不宜太短
7.正确安排偏置从动件盘形凸轮移动从动件的导轨位置
8.平面连杆机构的平衡
9.设计间歇运动机构应考虑运动系数
10.利用瞬停节分析锁紧装置的可靠性
11.选择齿轮传动类型,首先考虑用圆柱齿轮
12.机械要求反转时,一般可考虑电动机反转
13.必须考虑原动机的起动性能
14.起重机的起重机构中不得采用摩擦传动
15.对于要求慢速移动的机构,螺旋优于齿条
16.采用大传动比的标准减速箱代替散装的传动装置
17.用减速电动机代替原动机和传动装置
18.采用轴装式减速器
联轴器离合器结构设计
1.合理选择联轴器类型
2.联轴器的平衡
3.有滑动摩擦的联轴器要注意保持良好的润滑条件
4.高速旋转的联轴器不能有突出在外的突起物
5.使用有凸肩和凹槽对中的联轴器,要考虑轴的拆装
6.轴的两端传动件要求同步转动时,不宜使用有弹性元件的挠性联轴器
7.中间轴无轴承支承时,两端不要采用十字滑块联轴器
8.单万向联轴器不能实现两轴间的同步转动
9.不要利用齿轮联轴器的外套做制动轮
10.注意齿轮联轴器的润滑
11.关于尼龙绳联轴器的注意事项
12.关于剪切销式安全离合器的注意事项
13.分离迅速的场合不要采用油润滑的摩擦盘式离合器
14.在高温工作的情况下不宜采用多盘式摩擦离合器
15.离合器操纵环应安装在与从动轴相联的半离合器上
轴结构设计
1.尽量减小轴的截面突变处的应力集中
2.要减小轴在过盈配合处的应力集中
3.要注意轴上键槽引起的应力集中的影响
4.要减小过盈配合零件装拆的困难
5.装配起点不要成尖角,两配合表面起点不要同时装配
6.轴上零件的定位要采用轴肩或轴环
7.盲孔中装入过盈配合轴应考虑排出空气
8.合理布置轴上零件和改进结构以减小轴的受力
9.采用载荷分流以提高轴的强度和刚度
10.采用中央等距离驱动防止两端扭转变形差
11.改善轴的表面品质,提高轴的疲劳强度
12.轴上多键槽位置的设置要合理
13.空心轴的键槽下部壁厚不要太薄
14.轴上键槽要加工方便
15.在轴上钻细长孔很困难
16.在旋转轴上切制螺纹要有利于紧固螺母的防松
17.确保止动垫圈在轴上的正确安装
18.保证轴与安装零件的压紧或预留间隙的尺寸差
19.要避免弹性卡圈承受轴向力
20.空心轴节省材料
21.不要使轴的工作频率与其固有频率相一致或接近
22.高速轴的挠性联轴器要尽量靠近轴承
23.避免轴的支承反力为零
24.不宜在大轴的轴端直接联接小轴
25.轴颈表面要求有足够硬度
滑动轴承结构设计
1.要使润滑油能顺利地进入摩擦表面
2.润滑油应从非承载区引入轴承
3.不要使全环油槽开在轴承中部
4.剖分轴瓦的接缝处宜开油沟
5.要使油环给油充分可靠
6.加油孔不要被堵塞
7.不要形成润滑油的不流动区
8.防止出现切断油膜的锐边或棱角
9.发生阶梯磨损
10.不要使轴瓦的止推端面为线接触
11.止推轴承与轴颈不宜全部接触
12.重载大型机械的高速旋转轴的起动需要高压顶轴系统的轴承
13.承受重载荷或温升较高的轴承不要把轴承座和轴瓦接触表面中间挖空
14.不要发生轴瓦或衬套等不能装拆的情况
15.要减少中间轮和悬臂轴的支承轴承产生的边缘压力
16.在轴承座孔不同心或在受载后轴线发生挠曲变形条件下要选择自动调心滑动轴承
17.轴瓦和轴承座不允许有相对移动
18.要使双金属轴承中两种金属贴附牢靠
19.确保合理的运转间隙
20.保证轴工作时热膨胀所需要的间隙
21.考虑磨损后的间隙调整
22.在高速轻载条件下使用的圆柱形轴瓦要防止失稳
23.高速轻载条件下的轴承要选用抗振性好的轴承
24.含油轴承不宜用于高速或连续旋转的用途
25.滑动轴承不宜和密封圈组合
26.在轴承盖或上半箱体提升过程中不要使轴瓦脱落
滚动轴承轴系结构设计
1.考虑轴承拆卸的设计
2.轴承内圈圆角半径和轴肩圆角半径
3.一对角接触轴承的组合
4.角接触轴承同向串联组合
5.角接触轴承不应与非调整间隙轴承成对组合
6.轴承组合要有利于载荷均匀分担
7.保证由于温度变化时轴的膨胀或收缩的需要
8.考虑内外圈的温度变化和热膨胀时圆锥滚子轴承的组合
9.要求轴向定位精度高的轴宜使用可调轴向间隙的轴承
10.游轮、中间轮不宜用一个滚动轴承支承
11.在两机座孔不同心或在受载后轴线发生挠曲变形条件下使用的轴上要选择具有调心性能的轴承
12.设计等径轴的多支点轴承时要考虑中间轴承安装的困难
13.不适用于高速旋转的滚动轴承
14.要求支承刚性高的轴宜使用刚性高的轴承
15.滚动轴承不宜和滑动轴承联合使用
16.用脂润滑的滚子轴承和防尘、密封轴承容易发热
17.避免填入过量的润滑脂,不要形成润滑脂流动尽头
18.用脂润滑的角接触轴承安装在立轴上时,要防止发生脂从下部脱离轴承
19.用脂润滑时要避免油、脂混合
20.油润滑时应注意的问题
21.轴承箱体形状和刚性的影响
22.轴承座受力方向宜指向支承底面
23.机座上安装轴承的各孔应力求简化膛孔
24.对于内外圈不可分离的轴承在机座孔中的装拆应方便
25.不宜采用轴向紧固的方法来防止轴承配合表面的蠕动
密封装置结构设计
1.静密封垫片之间不能装导线
2.静联接表面应该有一定的粗糙度
3.高压容器密封的接触面宽度应该小
4.用刃口密封时应加垫片
5.O形密封圈用于高压密封时,要有保护圈
6.避免O形密封圈边缘凸出被剪断
7.当与密封接触的轴中心位置经常变化时,不宜采用接触式密封
8.正确使用皮圈密封
9.不宜靠螺纹旋转压盖来压紧密封的填料
10.填料较多时,填料孔深处压紧不够
11.要防止填料发
12.密封件的不同部位应分别供油
13.用油润滑密封装置时,要保持油面有一定高度
14.当密封圈有缺口时,多层密封圈的缺口应错开
油压系统和管道结构设计
1.管道排列要便于拆装和检查
2.大直径管的Y形接头强度很差
3.要避免油压管道中混入空气
4.管道低处应注意排水
5.排出管道应避免因合流而互相干扰
6.管道要通畅,合流时要避免扰动
7.避免因管道伸缩引起的应力
8.管道系统中要求经常操作、观察的部位,应容易操作
9.管道的接头不宜用左右螺纹
10.注意管道支承设计
11.拆装管道时不宜移动设备
12.注意油压、气动设备的滞后现象
13.避免软管受附加应力
14.软管内介质压力为脉冲变化时,软管应固定
15.要考虑起动和停车时的供油
16.油泵的内装溢流阀不应常用
17.冷却水污染会使冷却能力降低
18.防止冷却水管表面结露
在自学的同学可以加下老师的微信:HTJYCreo;免费获取软件,钣金,曲面视频各一套。
(文章来源于网络,仅供学习分享,如侵权,请联系删除)
⑺ 减速机间隙如何调整
以下是对选用几种固定方法的减速机在调整轴承空隙的办法总结。
1 轴系两头固定方法
这种结构常选用端盖固定轴承外圈,结构简略,运用便利。在一般的齿轮减速机及轴承支承点跨距<300㎜的蜗杆减速机中较为常见。
1)外装式端盖的减速机轴承空隙调整
此种方法结构简略,运用便利,在减速机中被广泛选用。
外装式端盖固定的齿轮轴系结构:出厂时大多会在两头留有适量的轴向空隙,以确保轴承的灵敏运转及轴系零件的热伸长。此空隙一般在0.25㎜~0.4㎜范围内,否则会使翻滚体受载不均匀并引起较为严重的轴向窜动。因而要靠调整轴承空隙来确保必定的轴向空隙。在调整此种固定方法的轴系时,首要打开减速机的观察孔,看准齿轮的啮合状况后,再确定轴系是从哪个方向移动空隙。
假如确定高速轴向输入侧调整空隙,就要把高速轴的闷盖拆下,用深度游标卡尺测出轴承距端盖平面的深度记下;然后用撬杠类东西把轴系向输入侧移动,再测出闷盖端轴承距端盖平面的深度,两个深度尺度的差值便是轴承移动的量。把轴系移动好后,就在轴承孔上加上与移动量相等的垫片,最终装上闷盖。
待一切部件装配完后,悄悄盘动减速机,查看各轴滚动是否灵敏。若仍有卡阻,则可对加的垫片厚度适量减薄。直到把减速机各轴的滚动调整到灵敏。根据实际状况,还能够把装置于箱体上的轴承端盖进行切削加工,切削深度为轴承移动量或略大于移动量的0.20㎜。如切削深度大于端盖平面厚度的1/3,则因为端盖太薄,强度减弱,需求从头加工端盖。
对可调整空隙的向心推力轴承,可通过调整轴承由外圈的相对方位得到需求的轴承游隙。这种游隙一般比较小,以确保轴承刚性和削减噪声、振荡。对不行调空隙的轴承(如向心球轴承),可在装配时通过调整,使固定端盖与轴承外圈端面间留有适量的空隙,以容许轴系的热伸长。
在圆锥齿轮减速机中,关于悬臂的小锥齿轮的轴系,要求具有良好的刚性,并且能调整轴系的轴向方位,以达到两齿轮锥顶重合。因而常将整个轴系装于套环内而形成一个独立组件。套杯的肩起固定轴承的效果,凸肩不行过高,以利于轴承的拆开套杯凸缘及轴承端盖处都有垫片用来调整轴承空隙及调理轴系的轴向方位。
圆锥齿轮轴系选用向心推力轴承时,轴承有正装置和反装置两种安置方案。正装置的结构支点跨距较小,刚度较差,但用垫片完成调整比较便利。反装置的结构装置轴承不方便,用圆螺母调整比较麻烦,但支点跨距较大,刚性较好。当要求两轴承安置紧凑而有需求进步轴系的刚性时,常选用此种结构。
2)嵌入式端盖的减速机轴承空隙调整
主要是通过减速机自身的调整端盖来完成轴承空隙的调整,不用拆开减速机的零部件。某矿卷扬机选用的蜗轮蜗杆减速机蜗杆轴承空隙的调整形式。
在生产空隙时停机对减速机轴承空隙进行调整,假如能卸出输出端的负载,调整将更为准确,利用调整端盖上的调整螺栓进行调整,调好后,悄悄盘动减速机,查看各轴滚动是否灵敏。若仍有卡阻,则反复调整,直到把减速机各轴的滚动调整到灵敏、无显着轴向窜动为佳。
因为运用中各零件的彼此效果,使得固定轴承外圈(或内圈)的挡圈和端盖上压轴承外圈的台肩会发生必定量的磨损,这些不起眼的磨损,累加起来也会使轴系有很大空隙,也能导致轴系发生窜动。
值得注意的是与调整螺栓配套的嵌入压盖,与轴承外圈触摸的部分,有的减速机上该压盖触摸面过少,经常导致磨损敏捷,大大缩短了轴承空隙调整周期,解决的办法是:增加内压盖与轴承外圈的触摸面积(从头制造加工,加宽内压盖的轴承外圈压边),也能有用的延伸轴承空隙的调整周期,避免轴承的损坏。
当然,内压盖磨损还有其它的原因,比如轴承支承孔磨损严重,破坏了原有的合作公差,致使轴承走外圆(外圈在摩擦力效果下随轴承滚动)等。