A. 什么是pid校正
PID校正装置(又称PID控制器或PID调节器)是一种有源校正装置,它是最早发展起来的控制策略之一,在工业过程控制中有着最广泛的应用,其实现方式有电气式、气动式和液力式。与无源校正装置相比,它具有结构简单、参数易于整定、应用面广等特点,设计的控制对象可以有精确模型,并可以是黑箱或灰箱系统。总体而言,它主要有如下优点: (1)原理简单,应用方便,参数整定灵活。 (2)适用性强。可以广泛应用于电力、机械、化工、热工、冶金、轻工、建材、石油等行业。 (3)鲁棒性强。即其控制的质量对受控对象的变化不太敏感,这是它获广泛应用的最重要的一原因。因为在实际的受控对象,例如由于受外界的扰动时,尤其是外界负荷发生变化时,受控对象特性会发生很大变化,为得到良好的控制品质,必须经常改变控制器的参数,这在实际操作上是非常麻烦的;又如,由于环境的变化或设备的老化,受控对象模型的结构或参数均会发生一些不可知的变化,为保证控制质量,就应对控制器进行重新设计,这在有些过程中是不允许的。因此,如果控制器鲁棒性强,则就无须经常改变控制器的参数或结构。 目前,基于PID控制而发展起来的各类控制策略不下几十种,如经典的Ziegler-Nichols算法和它的精调算法、预测PID算法、最优PID算法、控制PID算法、增益裕量/相位裕量PID设计、极点配置PID算法、鲁棒PID等。
B. 几种PID控制器设计方法的比较
文章针对被控对象模型未知的情况,给系统加入白噪声,测得输出数据,通过输入输出版数据估计模型阶权次与延迟时间,从而得到被控对象模型。仿真结果表明,辨识模型能较好地反映原过程的动态特性。在此基础上,利用内模法、直接综合法及频域法这三种方法进行了PID控制器的设计,同时用随机性能指标和确定性指标对系统性能进行了评价。
C. 怎样设计PID控制器
设计PID控制器是个综合性很强的工作。一般采用凑是法来设计。首先设专计纯比例系统,即确定Kp的值,属即将系统Kp不断增大,直到发生震荡,此时讲Kpm*0.6,即为比较理想的Kp。这时我们还应该测的震荡周期w,Ki=Kp*w/π;Kd=Kp*π/4*w,这只是经验的方法,绝对不是什么真理。所以参数的整定会需要长期的实验和经验才可以做出一个漂亮的系统。
D. PID调节器各部分的作用分别是什么
PID是比例,积分,微分的缩写.
1 比例调节作用:
是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
2 积分调节作用:
是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。
反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
3 微分调节作用:
微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。
微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。

(4)PID矫正装置的设计扩展阅读:
PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:
一是理论计算整定法。
它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。
二是工程整定方法。
它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。
三种方法各有其特点。
其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。
但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
这就是说,在控制器中仅引入 “比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势。
这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。
不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。
PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。
有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。
可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的 PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。
E. pid控制器怎么设计
PID应用实例来网上一搜一大把..实际原理自是对被控对象进行校正改变系统主导极点.从而达到指定的相应速度..校正后系统为一二阶系统..具体各参数对系统相应的影响建议参考《自动控制原理》一书中的二阶系统时域相应特征一章..若用现代控制理论状态空间表达式分析,若是单输入单输出系统其结果与传递函数分析结果一致..其实现方法就是给定量与实际量做差..差值进行比例积分微分运算输出控制量....除PID外..还有MAC控制 DMC控制等等 建议参考 《预测控制》 一书..
F. PID、PD、PI分别属于什么性质的校正各具有什么特点
1、PID是比例、积分和微分三部分作用的叠加的复合控制。
特点:在比例作用的基础上能提高系统的稳定性,加上积分作用能消除余差,又有δ、TI、TD三个可以调整的参数,因而可以使系统获得较高的控制质量。
2、PD是微分控制的性质。
特点:使系统的稳定性增加,最大偏差和余差减小,加快了控制过程,改善了控制质量。
3、PI主要是运用积分控制的性质。
特点:能消除余差,故比例积分控制是使用最多、应用最广的控制规律。

(6)PID矫正装置的设计扩展阅读
经典控制理论在实际控制系统中的典型应用就是PID控制器。在早期的控制系统中,PID控制也是唯一的自动控制方式。伴随着计算机技术的发展,现代控制理论在实用性方面获得了很大进展,解决了许多经典控制理论不能解决的问题。
这一现象使很多人认为,新的理论和技术可以取代PID控制。但后来的发展说明,PID控制并没有让位。目前,PID控制仍然是在工业控制中应用得最为广泛的一种控制方法。其原因是:
(1)其结构简单,鲁棒性和适应性较强;
(2)其调节整定很少依赖于系统的具体模型;
(3)各种高级控制在应用上还不完善;
(4)大多数控制对象使用常规PID控制即可以满足实际的需要;
(5)高级控制难以被企业技术人员掌握。
但由于实际对象通常具有非线性、时变不确定性、强干扰等特性,应用常规PID控制器难以达到理想的控制效果;在生产现场,由于参数整定方法繁杂,常规PID控制器参数往往整定不良、性能欠佳。这些因素使得PID控制在复杂系统和高性能要求系统中的应用受到了限制。