『壹』 斯特恩-盖拉赫实验的实验证实
实验装置:使银原子在电炉内蒸发射出,通过狭缝S1、S2形成细束,经过一个抽回成真空的不均匀的磁答场区域 (磁场垂直于射束方向),最后到达照相底片上。显像后的底片上出现了两条黑斑,表示银原子经过不均匀磁场区域时分成了两束。 根据实验中的炉温、磁极长度、横向不均匀磁场的梯度和原子束偏离中心的位移,可计算出原子磁矩在磁场方向上分量的大小。当时测得银、铜、金和碱金属的原子磁矩分量的大小都等于一个玻尔磁子,它们的原子束都只分裂为对称的两束。实验结果说明,原子在磁场中不能任意取向,证实了A.索末菲和P.德拜在1916年建立的原子的角动量在空间某特殊方向上取向量子化的理论。

『贰』 国土资源部地球物理电磁法探测技术重点实验室
国土资源部地球物理电磁法探测技术重点实验室依托中国地质科学院地球物理地球化学勘查研究所,充分利用物化探所现有在方法技术、仪器和软件等方面的创新和开发能力,以高科技手段推动以物探技术为核心的现代地质勘察技术进步,为当前的城市立体地质填图和矿产资源调查提供一系列现代地球物理电磁勘查技术,为承担国家地质调查基础性、公益性、战略性研究任务,研创系列勘查地球物理电磁新方法、新技术、新应用。通过开放、交流,逐渐建立一支从事勘查地球物理应用基础创新研究和地质大调查技术创新支撑队伍。
飞机改装及风洞试验
发射系统样机
三分量电磁线圈
发射机场地实验
在承担的国家“863”计划重大项目课题“时间域固定翼航空电磁勘查系统研发”中。截至2009年年底,在关键技术试验成果基础上,开展了地面实验装置、空中样机等的试制、测试、实验,逐步确定空中试验样机的具体技术参数、系统结构等,飞机选型及改装、发射分系统研制、接收分系统研制、实时数据收录监控分系统研制、系统集成及调试实验、数据处理技术研究、二三维正反演研究等子课题的关键技术研究,地面试验装置试制等都取得了实质性的阶段研究成果。已完成Y12IV型飞机1:8.5模型加工及风洞空气动力学测试,根据计算数据及风洞数据完成了Y12IV改装方案。大磁矩发射地面试验实现了550000Am2磁矩、高灵敏度宽带三分量感应线圈传感器、实时宽带高精度数据采集收录等硬件关键技术取得实质进展。各分系统试制了地面试验装置,并利用所测试、试验平台对原理样机的各项电性能指标进行了检测,对三分量传感器的避振特性等进行了测试。各分系统关键技术指标基本达到设计要求,为进一步研制空中样机奠定了坚实基础。
『叁』 北京地质重力磁力电法仪器
北京地质仪器厂北京奥地探测仪器公司
重力仪器
Z400型重力仪
Z400型重力仪是测量重力加速度值相对变化的一种仪器。该仪器的传感器用石英制成,采用零点读数,并设有精密的温度补偿装置。Z400型重力仪可广泛用于地质构造和矿产的重力勘探(包括重力普查、重力详查和区域重力测量)。
主要特点
具有精度高、重量轻、体积小、操作简单、携带方便等特点。
主要技术指标
地球物理仪器汇编及专论
地球物理仪器汇编及专论
磁法仪器
CZM–4型质子磁力仪
CZM–4型质子磁力仪是利用氢质子磁矩在地磁场中自由旋进的原理研制成的高灵敏度弱磁测量装置,其磁场测量精度为±1nT,分辨率高达0.1nT,完全符合原地矿部发布的《地面高精度磁测工作规程》要求。其具有的大存储容量、高分辨率和灵活性使它得以成为便携式、移动式、基站式磁力仪,可以以0.1nT的分辨率进行地磁总场的测量。
主要特点
地磁场总场绝对值测量范围达20000nT~100000nT,可用于全球任一地域;既可全量程自动配谐,也可人工配谐;自动测量地磁场值,对于不清楚当地正常地磁场值的用户,尤为方便。中文操作界面,数据自动记录和存储,并可实时显示磁测剖面曲线,操作简单;随机所配专用软件可对野外实测数据进行平滑去噪、日变改正、绘制剖面曲线等相关预处理,方便用户对当天工作效果进行室内评估;USB2.0通讯接口,使仪器向电脑传输数据更快捷;可用于磁性标本参数测定;可选配1GB或2GB数据存贮器及一组备份电池,实现长时间磁测工作需求;可应用户要求外接GPS接收机,存储测点坐标值;可为用户选配专业磁法数据处理软件绘制等值线图、平面剖面图、作正反演解释等。
主要技术指标
·测程范围:20000nT~100000nT;
·分辨率:0.1nT;
·测程精度:总场绝对强度50000nT时±1nT;
·梯度容限:≤5000nT/m;
·液晶点阵:192×64;
·数据存储量:不小于8000个测点数据(选配大容量存贮器时存贮量超过500万读数);
·工作环境温度:-15℃~50℃;
·工作环境湿度:≤95%(25℃);
·电源:锂离子电池:12.8V~16.8V/5Ah,连续工作不少于17h(日变方式下,典型读数间隔为10s时);
·主机外形尺寸:长×宽×高:220mm×90mm×200mm;
·主机重量:2kg;
·探头外形尺寸:φ74mm×150mm;
·探头重量:0.8kg。
地球物理仪器汇编及专论
CCM–4型磁力仪
CCM–4型磁力仪是测量地磁场垂直分量的磁通门磁力仪。主要用于寻找磁铁矿、地质普查,同时还可用于寻找地下铁管线,尤其能探测出一般电磁类管线探测仪无法探出的电连通性不佳的铸铁管线和含钢筋的水泥管线。
主要特点
·探头带有自动垂直平衡系统,测量速度快,测量精度高,转向差小;
·可探测磁铁矿及铁磁性地下埋设物;
·观测磁场的垂直分量;
· 液晶数字显示;
·测量精度高。
·主要技术指标
·量程:±19999nT;
·分辨率:1nT±1个字;
·磁场补偿范围:35000~55000nT
·粗调:①35000~40000nT
②40000~45000nT
③45000~50000nT
④50000~55000nT
微调:5000nT,10圈连续可调;
·转向差:<10nT;
·工作环境温度:-10℃~50℃;
·电源:AA型镍氢可充电电池;
·主机尺寸:190mm×65mm×230mm;
·主机重量:2.0kg;
·传感器尺寸:Φ70mm×160mm;
·传感器重量:0.45kg。
·CCM–5型磁力仪
CCM–5型磁力仪是当代新型的数字化磁通门磁力仪,测量的是地磁场垂直分量,主要用于寻找磁铁矿。地质普查同时还可用于寻找地下管线,尤其能探测出一般电磁类管线探测仪无法探出的电连通性不佳的铸铁管线和含钢筋的水泥管线。
地球物理仪器汇编及专论
主要特点
·灵敏度高;
·探头带有自动垂直平衡系统,测量速度快,测量精度高;
·随时观测磁场的垂直分量;
·智能化程度高,可将所测数据自动存储;
·可实时显示测量曲线并可随时查看任一条测线的测量曲线;
·装有先进的GPS定位系统;
·全中文提示菜单;
·串口输出和计算机联机后回放数据和曲线;
·图形式点阵液晶屏,液晶屏有背光,方便夜间观测。
主要技术指标
·量程:高档±2000nT低档±20000nT;
·分辨率:0.1nT(高档);
·磁场补偿范围:35000~55000nT;
·转向差:<40nT;
·定位:装有先进的GPS定位系统;
·工作环境温度:-10℃~50℃;
·电源:机内装专用锂电池组,连续工作时间不少于10h。
CGM–02D型高灵敏度磁通门磁力仪
CGM–02D型高灵敏度磁通门磁力仪可以测量任意方向上的磁场值。三个CGM-02D探头可以组成一台三分量磁力仪,用于测量各种设备及其零部件的磁性。
主要特点
·测量数据由RS485端口实时输出;
·多台仪器的数据输出端口可以连接在一起使用,每台具有唯一的编码;
·多档位测量。
主要技术指标
·量程:①±1KnT,
②±10KnT,
③±100KnT;
·分辨率:0.1nT;
地球物理仪器汇编及专论
·噪音水平:-0.1~0.1nT;
·工作环境温度:-20℃~50℃;
·电源:220V±10%;
·探头电缆长度:5m;
·机箱尺寸:300mm×135mm×380mm。
CZJ–1型井中质子磁力仪
CZJ–1型质子磁力仪是在地面质子磁力仪的基础上研制的一种井中磁测仪器。主要用于深部找矿,特别是用于寻找有色金属矿或贵金属矿等磁异常10~1000nT弱磁性矿体。在找矿过程中,井中质子磁力仪探测结合地面勘探将能发挥重要作用。
主要特点
·分辨率高;
·全自动调谐;
·中文或英文菜单;
·现场实时显示观测曲线;
·RS485实现地面仪器与井下仪器通信;
·数据自动记录和存储;
·与电脑连接实现数据后处理和日变自动校正;
·具有点测功能;
·体积小,重量轻。
主要技术指标
·分辨率:0.1nT;
·测量精度:-5~5nT;
·测量范围:32000~70000nT;
·测区地磁场梯度要求:垂直梯度≤2000nT/m水平梯度≤1500nT/m;
·最大下井深度:1500m;
·井下仪器的工作环境温度:0℃~50℃;
·地面仪器的工作环境温度:-10℃~50℃;
·探管尺寸:Ф45mm×145mm;
·主机尺寸:290mm×200mm×240mm。
地球物理仪器汇编及专论
CTSD–1型便携式三分量磁通门磁力仪
CTSD–1型便携式三分量磁通门磁力仪可测空间任一点磁感应强度的互相垂直的X、Y、Z三个分量。适用于地磁场的监测、各种运动物体(如车辆等)磁性的研究以及磁性物体或磁性矿体的探测。
主要特点
·三分量探头尺寸小巧,便于埋设在地下等特殊场合;
·探头电缆最长可达30m;
·三个分量同时显示,便于观测;
·高分辨率模拟输出,易于连接数据采集装置;
·高能锂电池组供电,可长时间在野外工作。
主要技术指标
·测量范围:-100~100,000nT;
·最高分辨率:1nT(模拟输出端);
·显示分辨率:10nT/字;
·满量程输出:±10V±0.5%;
·频率响应:0~20Hz@±10,000nTp-p;
·剩磁:-1~1nT@±100,000nT;
·三轴正交度:-1°~1°;
·电缆长度:5~30m任选;
·连续工作时间:≥8h;
·尺寸:探头104mm×83mm×75mm;主机372mm×266mm×135mm;
·重量:不大于7.5kg(含探头、30m电缆及主机)。
地球物理仪器汇编及专论
CTM–DI型磁力仪
CTM–DI型磁力仪是一种具有世界先进水平的地磁测量仪器。它可以精确地测定地磁偏角D和地磁倾角I,并可在地磁台站和野外兼用。CTM–DI型磁力仪是当前世界上D、I观测精度最高的仪器之一。该仪器具有性能稳定、操作简便、用途广泛、易于携带等特点。CTM–DI型磁力仪与质子磁力仪(观测地磁总强度F)配合使用将会是很理想的地磁矢量观测组合。
主要特点
CTM–DI磁力仪是由无磁经纬仪和磁通门检测系统两大部分构成。无磁经纬仪是高度“无磁”的,足以保证D和I的观测精度,这是它与普通经纬仪的本质区别。磁通门检测系统是具有高灵敏度和高稳定度的电子检测系统,其传感器安置在无磁经纬仪的望远镜之上。通过无磁经纬仪高精度的测角系统,按照一定的观测程序就可以精确地测定磁偏角D和地磁倾角I。
主要技术指标
·基线值观测标准偏差:σDB≤|±0.10′|,σIB≤|±0.10′|;
·观测准确度:ΔD≤0.20′,ΔI≤0.20′;
·转向差:ΔD、ΔI^lt;10′;
·三方位基线值与平均值的最大差值:ΔD、ΔI≤0.20′;
·无磁经纬仪一测回水平方向标准偏差(室内):-4″~4″;
·整机磁化率显示(安装探头前);≤2×10–6;
·零场偏移:±1nT;
·零场偏移的温度系数:0.01nT/℃;
·系统噪声:≤0.2nT(pp);
·最大分辨率:0.1nT;
·动态范围:两档×10±1999nT
×1±199.9nT;
·工作温度范围:-10℃~40℃;
·电源:交直流两用,直流12V或交流220V;
·显示器至传感器最小安全距离:2.0m。
CTM/BS–1便携式数字磁通门磁力仪
便携式数字磁通门磁力仪探头由三个相互垂直的磁通门传感器(D、H、Z)组成,其中H、Z两个传感器外加磁补偿线圈,可大范围补偿H、Z方向的磁场,三个磁通门传感器测量的是地磁场以及干扰磁场在其轴线上投影的“向量”值,整套系统用于测量空间任一点磁场强度的变化量。
磁场强度测量值的输出方式有两种,指针式表头指示和数据采集系统采样、贮存、传输。
地球物理仪器汇编及专论
主要特点
·灵敏度高;
·数据存储量大;
·工作时间长。
主要技术指标
·传感器:D、H、Z三分量;
·三分量正交度:≤0′(传感器安装正交度);
·测量动态范围:±2500nT,±2.5%;
·读数分辨力:0.1nT;
·噪声水平:≤0.1nTp-p;
·温度系数:≤1nT/℃;
·频率响应:DC~20Hz;
·工作温度:-10℃~40℃;
·地磁场补偿范围:Z:0~50000nT;
·采样间隔时间:0.1s、1s、10s、60s,可编程控制;
·最大存储量:可存储连续一个月的数据(按1s采样间隔时间);
·电池连续工作时间:不少于1个月;
·时间服务精度:实时钟,能使用USB通讯校时;
·防水要求:主机和传感器均全密封;
·传输电缆:屏蔽式电缆,长度25m;
·通讯接口:USB接口,用于采样时间间隔设置、自校、数据输出等操作;
·整机重量:35k(g包括电池、包装箱);
·包装箱尺寸:435mm×260mm×300mm。
CTM–DT06型多通道磁通门磁力仪
CTM–DT06型多通道磁通门磁力仪主要用于测量磁场的垂直分量或三分量值。该仪器有12个测量通道(最多可以增加到512个通道阵列),可用于测量大型设备如船用发动机、船模等的磁性或消磁后的剩磁测量,也可用于水下移动目标(如潜艇)的监测,是一种在实验室或台站、船坞、海底等场所使用的大型专用磁测量设备。
主要特点
·多通道同时测量;
·宽量程;
·宽地磁补偿范围;
·高分辨率;
地球物理仪器汇编及专论
·高稳定性;
·长探头电缆;
·探头可在水下工作;
·可配备通用的数据采集设备。
主要技术指标
·传感器:带阻尼的自动调平系统(±1°范围内)转向差(旋转360°)-10~10nT;
·量程:①±100nT,②±1000nT,③±10000nT,④±100000nT;
·分辨率:0.1nT;
·输出满度值:±10V;
·探头电缆:50m(按用户要求设计,最长可达500m);
·地磁补偿范围:-100000~100000nT;
·地磁补偿细度:0.001%(0~100000nT范围内任意一点的调节分辨率不劣于1nT);
·探头水下工作深度:30m;
·工作环境温度:0℃~35℃;
·电源:~220V±10%;
·基准电压源的温度稳定性达:1ppm/℃;
·单分量探头尺寸:Φ78mm×115mm;
·三分量探头尺寸:Φ92mm×213mm;
·机箱尺寸:600mm×1400mm×550mm(根据通道数量设计)。
电法仪器
DCX–1多功能高密度电法仪(电法层析成像数据采集系统)
北京地质仪器厂生产的DCX–1型电阻率层析成像数据采集系统,既可以做电阻率层析成像探测,亦可做极化率层析成像探测。可用于找矿、找水、工程及水文地质勘探、地下建筑体(古墓、防空洞)以及地下溶洞、地裂缝等勘探。此产品突破传统设计方式,获得多项国家专利。
地球物理仪器汇编及专论
DCX–1型集中式电阻率层析成像数据采集系统的主要特点
·由工控机做主控器,采用大屏幕LCD显示器并附有触摸屏,数据处理能力强,存储数据量大,界面友好,易于操作;
·LCD彩显可实时显示测量数据,如:电流、电压、电阻率、极化率等,工作状态,当前测量层位,A、B、M、N各电极工作位置,电位曲线显示,视电阻率彩色剖面图像,显示内容丰富,测量进程直观;
·集中式多路电极转换器采用复合控制技术,精简了硬件规模,使控制电极道数增多。本系统以120道为基本组态,可以方便地做长剖面的“滚动”测量。为满足特殊用户需求,可以接受240道测量系统的订货;
·采用双向覆盖电缆,使现场布线与分布式仪器的布线速度相当,与以往普通式连接电缆相比,施工简化,降低了劳动强度,提高了工作效率。电缆接头均有防水功能,可在水中作业;
·本系统测量通道数量多,而且易于扩大测量通道数,使之探测有效空间增大,便于增加勘探深度和提高探测分辨率。
主要技术指标
·电压测量范围:±4V;精度优于±0.5%;分辨率1μV;
·电流测量范围:±4A;精度优于±0.5%;分辨率1μA;
·供电电压:最高700V;
·工频抑制:优于80dB;
·输入阻抗:≥20M;
·自电补偿方式及范围:全量程跟踪
·式自动补偿;
·工作环境温度:-10℃~50℃;
·工作环境湿度:90%RH;
·测量装置模式:温纳、偶极–偶极、微分、复合对称四极、三极滚动、二极测深、二极剖面等,可根据用户需求增加各种特殊装置;
·测量参数:供电电流、一次场电位、二次场电位;
·视电阻率、视极化率数据可以同时采集;
·计算参数:电阻率、极化率、装置系数等。
地球物理仪器汇编及专论
DWJ–3B型微机激电仪
DWJ–3B型微机激电仪是时间域激发极化测量系统中的接收机。可使用DXF–1激电发送机(1.5kW)、DZF-3激电发送机(2kW)、DJF-6激电发送机(5kW)或DJF–10激电发送机(10kW)供电,多台接收机同时接收。能直接测量自电、一次电位、极化率。广泛用于金属与非金属矿产资源勘探、寻找地下水及工程地质等领域。
本仪器既可进行地面所有装置的激电测量、电阻率测量,也可进行井中的连续激电测井和井中激电测量。
主要特点
·采用信号增强技术和数字滤波,抗干扰能力强,测量精度高;
·自动进行自然电位、飘移及电极极化补偿;
·接收部分有瞬间过压输入保护能力;
·大屏幕彩色液晶显示:汉字对话,不但能一次显示所有的测量参数,而且可显示观测曲线,使得测量结果直观明了;
·多参数测量:可测量并存储自然电位、一次电位和供电电流(在同步方式下)、视电阻率、视极化率、半衰时、衰减度、偏离度和综合参数等;
·掉电保护:具有掉电数据不掉功能,能存储1MB数据并长期保存;
·全密封结构:具有防水、防尘、寿命长等优点。
主要技术指标
·测量一次电位分辨率为1μV,最大可测20V;
·测量极化率分辨率为0.001%;
·测量电流分辨率为1mA,最大可测20A;
·电压、电流、视极化率测量精度:±1%±1个字;
·输入阻抗:>100MΩ;
·对50Hz工频干扰压制优于80dB;
·工作环境温度:-10℃~50℃;
·工作环境湿度:95%RH;
·尺寸:255mm×120mm×230mm;
·重量:3kg。
DWD–4A微机电阻率仪
该仪器是在多年研制和生产先进电法仪器的基础上,集24位A/D、ARM等当今最新电子技术研制的新一代数字直流电法仪器。仪器的体积和重量显著缩小,主要技术指标及性能相当于当前国外同类仪器,在各种野外复杂环境下能更好地工作。广泛应用于金属与非金属矿产资源勘探、工程地质勘探、环境地质勘探、水文地质勘探、能源勘探,还能用于地热勘探等方面。
地球物理仪器汇编及专论
主要特点
·整机体积小、功耗低;
·采用24位AD转换器及信号增强技术和数字滤波,抗干扰能力强,测量精度高;
·自动进行自然电位、漂移及电极极化补偿;
·不测量时,通道入口短路,防止长时间开路;
·供电电压高(1000V)、电流大(7A);
·接收部分有瞬间过压输入保护能力;
·彩色大屏幕显示:汉字对话,不但能一次显示所有的测量参数,而且可显示观测曲线,使得测量结果直观明了;
·多参数测量:可测量并存储自然电位、一次电位和电流、视电阻率、视极化率、半衰时、衰减度、偏离度和综合参数等;
·具有掉电数据不丢功能,能存储1MB数据并长期保存;
·用单片ARM进行控制与数据处理;
·除RS232接口、网口与计算机通讯传输数据外,增加USB接口可以用U盘拷贝数据文件;
·极距常数表──对所有装置,可预先存储多组不同极距常数,从而避免相同极距常数反复输入可能带来的输入错误。
接收部分技术指标
·电压通道:±5V(24位A/D);
·测量精度:当Vp≥5mV时,±0.2%; 当0.1mV≤Vp<5mV时,±1%±1个字;
·输入阻抗:>20MΩ;
·视极化率测量精度:±1%±1个字;
·Sp补偿范围:±4V;
·电流通道:7A(24位A/D);
·测量精度:当Ip≥5mA时,±0.2%; 当0.1mA≤Ip<5mA时,±1%±1个字;
·对50Hz工频干扰压制优于80dB。
发射部分技术指标
·最大供电电压:±1000V;
·最大供电电流:±7A;
·供电脉冲宽度:1~60(s秒),占空比为1:1。
其他指标
·工作温度:-10℃~50℃,95%RH;
·储存温度:-20℃~60℃;
·仪器电源:内置7.4V4Ah(或外接12V电源),可连续工作>30h;
·重量:4.2kg;
·体积:270mm×150mm×240mm。
其他探测仪器
GTL115型金属探测器
GTL115型金属探测器是一种利用电磁感应原理制造的仪器,可根据不同的探测环境和探测对象选配三种不同型号的探头。JTC115由单人操作,可采用卧姿、跪姿或立姿。主要用于探测各类复杂地形下含微量金属的物体,亦可用于其他小型金属物体的探测。该仪器已被编入“联合国日内瓦国际人道主义扫雷中心”编辑的采购与宣传目录册。
主要特点
灵敏度高,采用自动归零技术,能自动欠压报警,对磁性土壤干扰有一定的抑制能力。此外,它重量轻、结构简单、携带方便、操作简捷、耗电量低、性能稳定可靠,作前沿阵地侦察使用时,极为灵活、方便。
地球物理仪器汇编及专论
地球物理仪器汇编及专论
主要技术指标
·探头类型:Ⅰ型,Ⅱ型,Ⅲ型;
·对各种目标的探测距离见下如表;
对各种目标的探测距离
·工作环境温度:-40℃~50℃;
·全套器材使用重量:配Ⅰ、Ⅲ型探头<1.5kg;配Ⅱ型探头<2.0kg;
电源:普通5号电池(共8节),连续工作时间≥20h。
CCT–3型磁探仪
CCT–3型磁探仪是专门用于探测水下和井中铁磁性物体的探测仪器,可以用于探测沉船、桥墩及建筑物的桩基等。
主要特点
携带方便;
主机与探头之间的连接电缆长达40m;
探测结果由3数字表头和耳机音响两种方式显示。
技术指标
适用地磁场范围:±60000nT(±5%);
磁场梯度量程:高灵敏度档±200.0nT;低灵敏度档±2000nT;
分辨率:高灵敏度档0.1nT,低灵敏度档1nT;
剩磁:≤1nT(±105nT);
温度漂移:≤1nT/℃;
长时间漂移:≤5nT/H;
转向误差:≤10nT;
平行误差:≤10nT;
工作环境温度:-10℃~50℃;
电源:主机内装16节镍氢充电电池。
GJX–1型袖珍罗盘
GJX–1型袖珍罗盘可在地面及矿山作业中作为视准仪、地质罗盘、手持水准仪及倾斜仪等使用。
地球物理仪器汇编及专论
地球物理仪器汇编及专论
主要特点
精度高、磁针转动灵敏、刻度清晰、合叶力矩适中无滑转。
主要技术指标
磁针磁矩:≥40Gaussc.c.;
阻尼时间:30~40s;
·读数误差:磁针摆动后读数差<0.5°;销制前后读数差<1°,磁针在0°~180°位置和90°~270°位置之间的偏心差<0.5°,倾斜误差<1°;
·灵敏度:长水准器灵敏度12′±3′/2mm
圆水准器灵敏度25′±3′/2mm(20℃时);
·合叶寿命:≥100000次;
·支撑轴尖及玛瑙座的寿命:≥500000次;
·尺寸:85mm×73mm×33mm;
·重量:260g。
『肆』 核磁共振实验数据处理怎么求bm
核磁共振是重要的物理现象。核磁共振技术在物理、化学、生物、医学和临床诊断、计量科学、石油分析与勘探等许多领域得到重要应用。
自旋角动量P不为零的原子核具有相应的磁距μ,而且
其中 称为原子核的旋磁比,是表征原子核的重要物理量之一。当存在外磁场B时,核磁矩和外磁场的相互作用使磁能级发生塞曼分裂,相邻能级的能量差为 ,其中h=h/2π,h为普朗克常数。如果在与B垂直的平面内加一个频率为ν的射频场,当
时,就发生共振现象。通常称y/2π为原子核的回旋频率,一些核素的回旋频率数值见附录。
核磁共振实验是理科高等学校近代物理实验课程中的必做实验之一;如今,许多理科院校的非物理类专业和许多工科、医学院校的基础物理实验课程也安排了核磁共振实验或演示实验。
利用本装置和用户自备的通用示波器可以用扫场的方式观察核磁共振现象并测量共振频率,适合于高等学校近代物理实验基础实验教学使用。
二、实验仪器
永久磁铁(含扫场线圈)、可调变阻器、探头两个(样品分别为 、 和 )、数字频率计、示波器。
三、实验原理
(一)核磁共振的稳态吸收
核磁共振是重要的物理现象,核磁共振实验技术在物理、化学、生物、临床诊断、计量科学和石油分析勘探等许多领域得到重要应用。1945年发现核磁共振现象的美国科学家Purcell和Bloch1952年获诺贝尔物理学奖。在改进核磁共振技术方面作出重要贡献的瑞士科学家Ernst1991年获得诺贝尔化学奖。
大家知道,氢原子中电子的能量不能连续变化,只能取分立的数值,在微观世界中物理量只能取分立数值的现象很普通,本实验涉及到的原子核自旋角动量也不能连续变化,只能取分立值 ,其中I称为自旋量子数,只能取0,1,2,3,…等整数值或1/2,3/2,5/2,…等半整数值,公式中的 =h/2π,而h为普朗克常数,对不同的核素,I分别有不同的确定数值,本实验涉及质子和氟核F19的自旋量子数I都等于1/2,类似地原子核的自旋角动量在空间某一方向,例如z方向的分量也不能连续变化,只能取分立的数值Pz=m 。其中量子数m只能取I,I-1,…,-I+I,-I等2I+1个数值。
自旋角动量不为零的原子核具有与之相联系的核自旋磁矩,其大小为
(1)
其中e为质子的电荷,M为质子的质量,g是一个由原子核结构决定的因子,对不同种类的原子核g的数值不同,g称为原子核的g因子,值得注意的是g可能是正数,也可能是负数,因此,核磁矩的方向可能与核自旋动量方向相同,也可能相反。
由于核自旋角动量在任意给定z方向只能取(2I+1)个分立的数值,因此核磁矩在z方向也只能取(2I+1)个分立的数值。
( 2 )
原子核的磁矩通常用μN=eh/2M作为单位,μN称为核磁子,采用μN作为核磁矩的单位后,μZ可记住μZ =gmμN,与角动量本身的大小为 相对应,核磁矩本身的大小为 g μN,除了用g因子表征核的磁性质外,通常引入另一个可以由实验测量的物理量γ,γ定义原子核的磁矩与自旋角动量之比:
( 3 )
利用γ我们可写成μ=γp,相应地有μz=γpz 。
当不存在磁场时,每一个原子核的能量相同,所有原子处在同一能级,但是,当施加一个外磁场B后,情况发生变化,为了方便起见,通常把B的方向规定为z方向,由于外磁场B与磁矩的相互作用能为
E=-μ·B=-μzB=-γpzB=-γm B (4)
因此量子m取值不同的核磁矩的能量也就不同,从而原来简并的同一能级分裂为(2I+1)个子能级,由于在外磁场中各个子能级的能量与量子数间隔△E=γ B全是一样的,而且,对于质子而言,I=1/2,因此,m只能取m=1/2和m=-1/2两个数值,施加磁场前后的能级分别如图1中的(a)和(b)所示
当施加外磁场B以后,原子核在不同能级上的分布服从玻尔兹曼分布,显然处在下能级的粒子数要比上能级的多, 其数量由△E大小、系统的温度和系统总粒子数决定,这时,若在与B垂直的方向上再施加上一个高频电磁场, 通常为射频场,当射频场的频率满足hν=△E时会引起原子核在上下能级之间跃迁, 但由于一开始处在下能级的核比在上能级的核要多,因此净效果是上跃迁的比下跃迁的多,从而使系统的总能量增加,这相当于系统从射频场中吸收了能量。
,
,
(a) B=0 (b)B 0
图1
我们把hv=△E时引起的上述跃迁称为共振跃迁,简称为共振。显然共振要求hv=△E,从而要求射频场频率满足共振条件:
E=-μ·B=-μzB=-γpzB=-γm B (5)
如果用圆频率 =2πν表示,共振条件可写成:
ω=γB ( 6 )
如果频率的单位用Hz,磁场的单位用T(特斯拉,1特斯拉=10000高斯),对裸露的质子而言经过测量得到 /2π=42.577469 MHz/T;但是对于原子或分子中处于不同的基团的质子,由于不同质子所处的化学环境不同,受到周围电子屏蔽的情况不同, 的数值将略有差别,这种差别称为化学位移,对于温度为25摄式度球形容器中水样品的质子, =42.576375 MHz/T,本实验可采用这个数值作为很好的近似值,通过测量质子在磁场B中的共振频率 可实现对磁场的校准,即
(7)
反之,若B已经校准,通过测量未知原子核的共振频率v便可求出待测原子核 值(通常用 值表征)或g因子;
(8)
(9)
其中 =7.6225914 MHz/T
通过上述讨论,要发生共振必须满足v= ·B,为了观察到共振现象通常有两种方法;一种是固定B,连续改变射场的频率,这种方法称为扫频方法;另一种方法,也就是本实验采用的方法,即固定射场的频率,连续改变磁场的大小,这种方法称为扫场方法,如果磁场的变化不是太快,而是缓慢通过与频率v对应的磁场时,用一定的方法可以检测到系统对射场的吸收信号,如图2(a)所示,称为吸收曲线,这种曲线具有洛伦兹型曲线的特征,但是,如果扫场变化太快,得到的将是如图2(b)所示的带有尾波的衰减振荡曲线,然而,扫场变化的快慢是相对具体样品而言的,例如,本实验采用的扫场的磁场,其吸收信号将如图2(a )所示,而对液态的水样品而言却是变化太快的磁场,其吸收信号将如图2(b)所示,而且磁场越均匀,尾波中振荡的次数越多。
(a) (b)
图2
(二)核磁共振法测量驰豫时间
在共振吸收过程中,低能级的粒子跃迁到高能级,使高、低能级的粒子数分布趋于均等,这时共振吸收信号消失,粒子系统处于饱和状态。但由于物质内部机制存在着恢复平衡状态的逆过程,在适当的实验条件下仍可观测到稳定的共振吸收信号。所谓驰豫过程,就是表征系统由非平衡状态趋向平衡状态的过程,该过程所经历的时间称为驰豫时间。热平衡时,由于每个粒子的磁矩都绕外场 进动,系统的总磁矩 与外场 的方向相同, 的大小可由不同能级上粒子磁矩的大小按玻尔兹曼分布求和得到。假设通过某种途径使系统偏离热平衡态。宏观上表现为系统总磁矩 在实验室坐标系的三个方向上的分量为Mx My Mz 。这时自旋系统恢复到热平衡态。一是通过与晶格交换能量使由上、下能级粒子数分布根据下式
所确定的自旋体系的温度Ts最终与晶格的温度 相等。粒子恢复到玻尔兹曼分布。Mz最终等于 , 即
此过程称为自旋——晶格驰豫。上式中,T1反映了系统纵向磁矩Mz趋向热平衡值时速度的快慢,称为纵向驰豫时间。在自旋系统中,还存在另一种自旋——自旋驰豫过程,称为自旋——自旋相互作用。它不改变自旋粒子体系各能级上粒子数。即不改变自旋系统的总能量。但使系统总磁矩在x、y 方向上的分量Mx 和My逐渐趋向于热平衡值。它遵从下式,
式中T2称为横向驰豫时间。实际上,在核磁共振中,上述的共振吸收与驰豫过程是同时进行。通过共振吸收,粒子数偏离平衡态分布。另一方面又通过驰豫回到热平衡态。当这两个过程达到动态平衡时,出现稳定的吸收信号,称为稳态核磁共振吸收谱。
四、实验内容与步骤
(一)仪器介绍
实验装置的方框图如图3所示:它由永久磁铁、扫场线圈,边限振荡器(包括探头)、数字频率计、示波器等组成。
永久磁铁:对永久磁铁的要求是有极强的磁场、足够大的均匀区和均匀性好,本实验所用的磁铁中心磁场B0≥0.5T,在磁场中心(5mm)3范围内,均匀性优于10-5。
(二)扫场线圈:用来产生一个幅度大小在零点几高斯到十几高斯的可调交变磁场用于观察共振信号,扫场线圈的电流由可调变阻器的输出后提供,扫场的幅度可通过可调变阻器调节
(三)探头,射频场的产生与共振信号的探测
本实验提供两个探头,其中样品为 、 和
图3
(二)校准永久磁铁中心的磁场Bo
把样品为水(掺有HF)的探头下端的样品盒插入到磁铁中心,并使电路盒水平放置在磁铁上方的机座上,左右移动电路盒使它大致处于机座的中间位置,将电路盒背面的“频率测试”和“共振信号”分别与频率计和示波器连接,把示波器的扫描速度旋钮放在5ms/格位置,纵向放大旋钮放在0.1V/格或0.2V/格位置,打开频率计,示波器和边限振荡器的电源开关,这时频率计应有读数,接通可调变阻器电流到中间位置,缓慢调节边限振荡器的频率旋钮,改变振荡频率(由小到大或由大到小)同时监视示波器,搜索共振信号。
(三)估测HF样品中H核的驰豫时间T2。
估测方法如下:示波器改用X-Y输入方法,把底座前方标有“扫场输出”的信号(它与扫场线圈两端电压成正比)输入到X端,“共振信号”信号输入到Y端。把频率调节在氟的共振频率适当增大扫场幅度,从示波器上观察到的将是重叠而又相互错开了两个共振峰(可利用相移调节旋钮改变两个峰的位置)。利用示波器上的网格估测其中一个共振峰的半宽度B与扫场变化范围2 的比值K(即K=ΔB/2 )。然后固定扫场的幅度不变,把示波器改回正常的接法,用与基本要求1.中相同方法,测出共振发生在扫场的峰顶与谷底时的共振频率 和 求出这时扫场的变化范围2 ,进而求出氟核共振峰的半宽度ΔB,然后利用公式
F
或
估算出固态聚四氟乙烯中氟核的驰豫时间T2,上面式中 为氟核的回旋频率(参见附录)。
五、数据表格及数据处理
1.由 计算磁场强度 。
根据公式
其中: 为三峰等间隔时的扫场频率
需要测量三种溶液中H的共振频率。
2.计算驰豫时间 (只测H)
根据公式
其中: , 为三峰等间隔时的扫场频率, 为两峰合一刚消失时的扫场频率;
;
为三峰等间隔半高宽
在计算中注意:
, , ,
所以单位换算: ,
六、注意事项
1.不要随便搬动桌面上仪器的摆放位置,特别是不准移动永久磁场的位置,不准动上面的任何螺丝。
2.接通电源前应把输出电流和电压调到0档,经老师检查后开启电源。
3.实验过程中所有按键旋钮要“轻按慢旋”,没有搞清功能前都不准使用仪器。
4. 边限电流调节会对频率产生影响。因此,在调节边限电流后,再调节频率进行补偿,使每一次测量频率保持一致。
5.样品必需安置再磁场的均匀区内。如果样品安置在均匀区域内,信号会十分明显。所以,样品在磁场中的位置十分重要,必须认真仔细观测信号随样品位置上下、左右的变化,力求取得最佳效果。
七、教学后记
1.本实验由于教材中没有相关内容,因此实验前要求学生在实验室参看学习资料进行预习,并要求学生思考什么使核磁共振和驰豫。
2.在讲解中结合目前核磁共振在医学上和石油勘探等方面的应用,引起学生们的兴趣。
3.讲解中结合示波器显示的吸收信号指出本实验需要测量数据。
4.要求学生在频率调节应参考提供的 频率仔细寻找,缓慢旋转,速度过快,核磁共振信号会瞬间消失。
5.学生计算出磁场后应与仪器给定永久磁铁磁场相比较,并进行误差分析。
『伍』 “ 磁 ”是什么东西
我们的生活每时每刻都和磁性有关。没有它,我们就无法看电视、听收音机、打电话;没有它,连夜晚甚至都是一片漆黑。
人类虽然很早就认识到磁现象,但直到了现代,人们对磁现象的认识才逐渐系统化,发明了不计其数的电磁仪器,象电话、无线电、发电机、电动机等。如今,磁技术已经渗透到了我们的日常生活和工农业技术的各个方面,我们已经越来越离不开磁性材料的广泛应用。
由于物质的磁性既看不到,也摸不着,我们无法通过自己的五种感官(听觉、视觉、味觉、嗅觉、触觉)直接体会磁性的存在,但人们还是在实践中逐步揭开了其神秘面纱。磁铁总有两个磁极,一个是N极,另一个是S极。一块磁铁,如果从中间锯开,它就变成了两块磁铁,它们各有一对磁极。不论把磁铁分割得多么小,它总是有N极和S极,也就是说N极和S极总是成对出现,无法让一块磁铁只有N极或只有S极。
磁极之间有相互作用,即同性相斥、异性相吸。也就是说,N极和S极靠近时回相互吸引,而N极和N极靠近时回互相排斥。知道了这一点,我们就明白了为什么指南针会自动指示方向。原来,地球就是一块巨大的磁铁,它的N极在地理的南极附近,而S极在地理的北极附近。这样,如果把一块长条形的磁铁用细线从中间悬挂起来,让它自由转动,那么,磁铁的N极就会和地球的S极互相吸引,磁铁的S极和地球的N极互相吸引,使得磁铁方向转动,直到磁铁的N极和S极分别指向地球的S极和N极为止。这时,磁铁的N极所指示的方向就是地理的北极附近。
参考资料:http://www.pslsh2f.pudong-e.sh.cn/xsly/hdtd/efx_blog/more.asp?name=sunjianping&id=2048
一、物质磁性的起源
如果磁是电磁以太涡旋,一个磁铁,没看到任何电磁以太的涡旋,为什么会有磁性?我们的回答是:物质的磁性起源于原子中电子的运动,电子的运动会产生一个电磁以太的涡旋。
早在1820年,丹麦科学家奥斯特就发现了电流的磁效应,第一次揭示了磁与电存在着联系,从而把电学和磁学联系起来。
为了解释永磁和磁化现象,安培提出了分子电流假说。安培认为,任何物质的分子中都存在着环形电流,称为分子电流,而分子电流相当一个基元磁体。当物质在宏观上不存在磁性时,这些分子电流做的取向是无规则的,它们对外界所产生的磁效应互相抵消,故使整个物体不显磁性。在外磁场作用下,等效于基元磁体的各个分子电流将倾向于沿外磁场方向取向,而使物体显示磁性。
磁现象和电现象有本质的联系。物质的磁性和电子的运动结构有着密切的关系。乌伦贝克与哥德斯密特最先提出的电子自旋概念,是把电子看成一个带电的小球,他们认为,与地球绕太阳的运动相似,电子一方面绕原子核运转,相应有轨道角动量和轨道磁矩,另一方面又绕本身轴线自转,具有自旋角动量和相应的自旋磁矩。施特恩-盖拉赫从银原子射线实验中所测得的磁矩正是这自旋磁矩。(现在人们认为把电子自旋看成是小球绕本身轴线的转动是不正确的。)
电子绕原子核作圆轨道运转和绕本身的自旋运动都会产生电磁以太的涡旋而形成磁性,人们常用磁矩来描述磁性。因此电子具有磁矩,电子磁矩由电子的轨道磁矩和自旋磁矩组成。在晶体中,电子的轨道磁矩受晶格的作用,其方向是变化的,不能形成一个联合磁矩,对外没有磁性作用。因此,物质的磁性不是由电子的轨道磁矩引起,而是主要由自旋磁矩引起。每个电子自旋磁矩的近似值等于一个波尔磁子 。 是原子磁矩的单位, 。因为原子核比电子重2000倍左右,其运动速度仅为电子速度的几千分之一,故原子核的磁矩仅为电子的千分之几,可以忽略不计。
孤立原子的磁矩决定于原子的结构。原子中如果有未被填满的电子壳层,其电子的自旋磁矩未被抵消,原子就具有“永久磁矩”。例如,铁原子的原子序数为26,共有26个电子,在5个轨道中除了有一条轨道必须填入2个电子(自旋反平行)外,其余4个轨道均只有一个电子,且这些电子的自旋方向平行,由此总的电子自旋磁矩为4 。
二、 物质磁性的分类
1、 抗磁性
当磁化强度M为负时,固体表现为抗磁性。Bi、Cu、Ag、Au等金属具有这种性质。在外磁场中,这类磁化了的介质内部的磁感应强度小于真空中的磁感应强度M。抗磁性物质的原子(离子)的磁矩应为零,即不存在永久磁矩。当抗磁性物质放入外磁场中,外磁场使电子轨道改变,感生一个与外磁场方向相反的磁矩,表现为抗磁性。所以抗磁性来源于原子中电子轨道状态的变化。抗磁性物质的抗磁性一般很微弱,磁化率H一般约为-10-5,为负值。
2、 顺磁性
顺磁性物质的主要特征是,不论外加磁场是否存在,原子内部存在永久磁矩。但在无外加磁场时,由于顺磁物质的原子做无规则的热振动,宏观看来,没有磁性;在外加磁场作用下,每个原子磁矩比较规则地取向,物质显示极弱的磁性。磁化强度与外磁场方向一致,
为正,而且严格地与外磁场H成正比。
顺磁性物质的磁性除了与H有关外,还依赖于温度。其磁化率H与绝对温度T成反比。
式中,C称为居里常数,取决于顺磁物质的磁化强度和磁矩大小。
顺磁性物质的磁化率一般也很小,室温下H约为10-5。一般含有奇数个电子的原子或分子,电子未填满壳层的原子或离子,如过渡元素、稀土元素、钢系元素,还有铝铂等金属,都属于顺磁物质。
3、 铁磁性
对诸如Fe、Co、Ni等物质,在室温下磁化率可达10-3数量级,称这类物质的磁性为铁磁性。
铁磁性物质即使在较弱的磁场内,也可得到极高的磁化强度,而且当外磁场移去后,仍可保留极强的磁性。其磁化率为正值,但当外场增大时,由于磁化强度迅速达到饱和,其H变小。
铁磁性物质具有很强的磁性,主要起因于它们具有很强的内部交换场。铁磁物质的交换能为正值,而且较大,使得相邻原子的磁矩平行取向(相应于稳定状态),在物质内部形成许多小区域——磁畴。每个磁畴大约有1015个原子。这些原子的磁矩沿同一方向排列,假设晶体内部存在很强的称为“分子场”的内场,“分子场”足以使每个磁畴自动磁化达饱和状态。这种自生的磁化强度叫自发磁化强度。由于它的存在,铁磁物质能在弱磁场下强列地磁化。因此自发磁化是铁磁物质的基本特征,也是铁磁物质和顺磁物质的区别所在。
铁磁体的铁磁性只在某一温度以下才表现出来,超过这一温度,由于物质内部热骚动破坏电子自旋磁矩的平行取向,因而自发磁化强度变为0,铁磁性消失。这一温度称为居里点 。在居里点以上,材料表现为强顺磁性,其磁化率与温度的关系服从居里——外斯定律,
式中C为居里常数。
4、 反铁磁性
反铁磁性是指由于电子自旋反向平行排列。在同一子晶格中有自发磁化强度,电子磁矩是同向排列的;在不同子晶格中,电子磁矩反向排列。两个子晶格中自发磁化强度大小相同,方向相反,整个晶体 。反铁磁性物质大都是非金属化合物,如MnO。
不论在什么温度下,都不能观察到反铁磁性物质的任何自发磁化现象,因此其宏观特性是顺磁性的,M与H处于同一方向,磁化率 为正值。温度很高时, 极小;温度降低, 逐渐增大。在一定温度 时, 达最大值 。称 为反铁磁性物质的居里点或尼尔点。对尼尔点存在 的解释是:在极低温度下,由于相邻原子的自旋完全反向,其磁矩几乎完全抵消,故磁化率 几乎接近于0。当温度上升时,使自旋反向的作用减弱, 增加。当温度升至尼尔点以上时,热骚动的影响较大,此时反铁磁体与顺磁体有相同的磁化行为。
三、电子轨道磁矩与轨道角动量的关系
设轨道半径为r (圆轨道)、电子速率为v
则轨道电流I:
电子的轨道磁矩
对处于氢原子基态的电子,
电子的轨道角动量(圆轨道)
L = mvr
式中m 为电子质量
由于电子带负电,电子轨道磁矩与轨道角动量的关系是:
(此式虽由圆轨道得出,但与量子力学的结论相同)
在这里要特别强调指出的是:电子轨道磁矩与轨道角动量成正比。
四、电子自旋磁矩与自旋角动量的关系
实验证明:电子有自旋(内禀)运动,相应有自旋磁矩大小为
自旋磁矩和自旋角动量 S 的关系:
在这里又要特别强调指出的是:电子自旋磁矩又与自旋角动量成正比。磁矩与角动量成正比不是偶然的。因为电子的角动量越大,它所带动的电磁以太涡旋的角动量也越大,磁矩当然也就越大了。这也就从另一个侧面印证了磁是以太的涡旋。
磁场
magnetic field
电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力矩皆源于此。
与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁力线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。
电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播。电磁波以有限的速度传播,具有可交换的能量和动量,电磁波与实物的相互作用,电磁波与粒子的相互转化等等,都证明电磁场是客观存在的物质,它的“特殊”只在于没有静质量。
磁现象是最早被人类认识的物理现象之一,指南针是中国古代一大发明。磁场是广泛存在的,地球,恒星(如太阳),星系(如银河系),行星、卫星,以及星际空间和星系际空间,都存在着磁场。为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素。在现代科学技术和人类生活中,处处可遇到磁场,发电机、电动机、变压器、电报、电话、收音机以至加速器、热核聚变装置、电磁测量仪表等无不与磁现象有关。甚至在人体内,伴随着生命活动,一些组织和器官内也会产生微弱的磁场。
电磁场
electromagnetic field
有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。
地磁场
geomagnetic field
从地心至磁层顶的空间范围内的磁场。地磁学的主要研究对象。人类对于地磁场存在的早期认识,来源于天然磁石和磁针的指极性。磁针的指极性是由于地球的北磁极(磁性为S极)吸引着磁针的N极,地球的南磁极(磁性为N极)吸引着磁针的S极。这个解释最初是英国W.吉伯于1600年提出的。吉伯所作出的地磁场来源于地球本体的假定是正确的。这已为1839年德国数学家C.F.高斯首次运用球谐函数分析法所证实。
地磁场是一个向量场。描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素。常用的地磁要素有7个,即地磁场总强度F,水平强度H,垂直强度Z,X和Y分别为H的北向和东向分量,D和I分别为磁偏角和磁倾角。其中以磁偏角的观测历史为最早。在现代的地磁场观测中,地磁台一般只记录H,D,Z或X,Y,Z。
近地空间的地磁场,像一个均匀磁化球体的磁场,其强度在地面两极附近还不到1高斯,所以地磁场是非常弱的磁场。地磁场强度的单位过去通常采用伽马(γ),即10高斯。1960年决定采用特斯拉作为国际测磁单位,1高斯=10特斯拉(T),1伽马=10特斯拉=1纳特斯拉(nT),简称纳特。地磁场虽然很弱,但却延伸到很远的空间,保护着地球上的生物和人类,使之免受宇宙辐射的侵害。
地磁场包括基本磁场和变化磁场两个部分,它们在成因上完全不同。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢。变化磁场包括地磁场的各种短期变化,主要起源于地球外部,并且很微弱。
地球的基本磁场可分为偶极子磁场、非偶极子磁场和地磁异常几个组成部分。偶极子磁场是地磁场的基本成分,其强度约占地磁场总强度的90%,产生于地球液态外核内的电磁流体力学过程,即自激发电机效应。非偶极子磁场主要分布在亚洲东部、非洲西部、南大西洋和南印度洋等几个地域,平均强度约占地磁场的10%。地磁异常又分为区域异常和局部异常,与岩石和矿体的分布有关。
地球变化磁场可分为平静变化和干扰变化两大类型。平静变化主要是以一个太阳日为周期的太阳静日变化,其场源分布在电离层中。干扰变化包括磁暴、地磁亚暴、太阳扰日变化和地磁脉动等,场源是太阳粒子辐射同地磁场相互作用在磁层和电离层中产生的各种短暂的电流体系。磁暴是全球同时发生的强烈磁扰,持续时间约为1~3天,幅度可达10纳特。其他几种干扰变化主要分布在地球的极光区内。除外源场外,变化磁场还有内源场。内源场是由外源场在地球内部感应出来的电流所产生的。将高斯球谐分析用于变化磁场,可将这种内、外场区分开。根据变化磁场的内、外场相互关系,可以得出地球内部电导率的分布。这已成为地磁学的一个重要领域,叫做地球电磁感应。
地球变化磁场既和磁层、电离层的电磁过程相联系,又和地壳上地幔的电性结构有关,所以在空间物理学和固体地球物理学的研究中都具有重要意义。
『陆』 关于磁的资料啊
我们的生活每时每刻都和磁性有关。没有它,我们就无法看电视、听收音机、打电话;没有它,连夜晚甚至都是一片漆黑。
人类虽然很早就认识到磁现象,但直到了现代,人们对磁现象的认识才逐渐系统化,发明了不计其数的电磁仪器,象电话、无线电、发电机、电动机等。如今,磁技术已经渗透到了我们的日常生活和工农业技术的各个方面,我们已经越来越离不开磁性材料的广泛应用。
由于物质的磁性既看不到,也摸不着,我们无法通过自己的五种感官(听觉、视觉、味觉、嗅觉、触觉)直接体会磁性的存在,但人们还是在实践中逐步揭开了其神秘面纱。磁铁总有两个磁极,一个是N极,另一个是S极。一块磁铁,如果从中间锯开,它就变成了两块磁铁,它们各有一对磁极。不论把磁铁分割得多么小,它总是有N极和S极,也就是说N极和S极总是成对出现,无法让一块磁铁只有N极或只有S极。
磁极之间有相互作用,即同性相斥、异性相吸。也就是说,N极和S极靠近时回相互吸引,而N极和N极靠近时回互相排斥。知道了这一点,我们就明白了为什么指南针会自动指示方向。原来,地球就是一块巨大的磁铁,它的N极在地理的南极附近,而S极在地理的北极附近。这样,如果把一块长条形的磁铁用细线从中间悬挂起来,让它自由转动,那么,磁铁的N极就会和地球的S极互相吸引,磁铁的S极和地球的N极互相吸引,使得磁铁方向转动,直到磁铁的N极和S极分别指向地球的S极和N极为止。这时,磁铁的N极所指示的方向就是地理的北极附近。
参考资料:http://www.pslsh2f.pudong-e.sh.cn/xsly/hdtd/efx_blog/more.asp?name=sunjianping&id=2048
一、物质磁性的起源
如果磁是电磁以太涡旋,一个磁铁,没看到任何电磁以太的涡旋,为什么会有磁性?我们的回答是:物质的磁性起源于原子中电子的运动,电子的运动会产生一个电磁以太的涡旋。
早在1820年,丹麦科学家奥斯特就发现了电流的磁效应,第一次揭示了磁与电存在着联系,从而把电学和磁学联系起来。
为了解释永磁和磁化现象,安培提出了分子电流假说。安培认为,任何物质的分子中都存在着环形电流,称为分子电流,而分子电流相当一个基元磁体。当物质在宏观上不存在磁性时,这些分子电流做的取向是无规则的,它们对外界所产生的磁效应互相抵消,故使整个物体不显磁性。在外磁场作用下,等效于基元磁体的各个分子电流将倾向于沿外磁场方向取向,而使物体显示磁性。
磁现象和电现象有本质的联系。物质的磁性和电子的运动结构有着密切的关系。乌伦贝克与哥德斯密特最先提出的电子自旋概念,是把电子看成一个带电的小球,他们认为,与地球绕太阳的运动相似,电子一方面绕原子核运转,相应有轨道角动量和轨道磁矩,另一方面又绕本身轴线自转,具有自旋角动量和相应的自旋磁矩。施特恩-盖拉赫从银原子射线实验中所测得的磁矩正是这自旋磁矩。(现在人们认为把电子自旋看成是小球绕本身轴线的转动是不正确的。)
电子绕原子核作圆轨道运转和绕本身的自旋运动都会产生电磁以太的涡旋而形成磁性,人们常用磁矩来描述磁性。因此电子具有磁矩,电子磁矩由电子的轨道磁矩和自旋磁矩组成。在晶体中,电子的轨道磁矩受晶格的作用,其方向是变化的,不能形成一个联合磁矩,对外没有磁性作用。因此,物质的磁性不是由电子的轨道磁矩引起,而是主要由自旋磁矩引起。每个电子自旋磁矩的近似值等于一个波尔磁子 。 是原子磁矩的单位, 。因为原子核比电子重2000倍左右,其运动速度仅为电子速度的几千分之一,故原子核的磁矩仅为电子的千分之几,可以忽略不计。
孤立原子的磁矩决定于原子的结构。原子中如果有未被填满的电子壳层,其电子的自旋磁矩未被抵消,原子就具有“永久磁矩”。例如,铁原子的原子序数为26,共有26个电子,在5个轨道中除了有一条轨道必须填入2个电子(自旋反平行)外,其余4个轨道均只有一个电子,且这些电子的自旋方向平行,由此总的电子自旋磁矩为4 。
二、 物质磁性的分类
1、 抗磁性
当磁化强度M为负时,固体表现为抗磁性。Bi、Cu、Ag、Au等金属具有这种性质。在外磁场中,这类磁化了的介质内部的磁感应强度小于真空中的磁感应强度M。抗磁性物质的原子(离子)的磁矩应为零,即不存在永久磁矩。当抗磁性物质放入外磁场中,外磁场使电子轨道改变,感生一个与外磁场方向相反的磁矩,表现为抗磁性。所以抗磁性来源于原子中电子轨道状态的变化。抗磁性物质的抗磁性一般很微弱,磁化率H一般约为-10-5,为负值。
2、 顺磁性
顺磁性物质的主要特征是,不论外加磁场是否存在,原子内部存在永久磁矩。但在无外加磁场时,由于顺磁物质的原子做无规则的热振动,宏观看来,没有磁性;在外加磁场作用下,每个原子磁矩比较规则地取向,物质显示极弱的磁性。磁化强度与外磁场方向一致,
为正,而且严格地与外磁场H成正比。
顺磁性物质的磁性除了与H有关外,还依赖于温度。其磁化率H与绝对温度T成反比。
式中,C称为居里常数,取决于顺磁物质的磁化强度和磁矩大小。
顺磁性物质的磁化率一般也很小,室温下H约为10-5。一般含有奇数个电子的原子或分子,电子未填满壳层的原子或离子,如过渡元素、稀土元素、钢系元素,还有铝铂等金属,都属于顺磁物质。
3、 铁磁性
对诸如Fe、Co、Ni等物质,在室温下磁化率可达10-3数量级,称这类物质的磁性为铁磁性。
铁磁性物质即使在较弱的磁场内,也可得到极高的磁化强度,而且当外磁场移去后,仍可保留极强的磁性。其磁化率为正值,但当外场增大时,由于磁化强度迅速达到饱和,其H变小。
铁磁性物质具有很强的磁性,主要起因于它们具有很强的内部交换场。铁磁物质的交换能为正值,而且较大,使得相邻原子的磁矩平行取向(相应于稳定状态),在物质内部形成许多小区域——磁畴。每个磁畴大约有1015个原子。这些原子的磁矩沿同一方向排列,假设晶体内部存在很强的称为“分子场”的内场,“分子场”足以使每个磁畴自动磁化达饱和状态。这种自生的磁化强度叫自发磁化强度。由于它的存在,铁磁物质能在弱磁场下强列地磁化。因此自发磁化是铁磁物质的基本特征,也是铁磁物质和顺磁物质的区别所在。
铁磁体的铁磁性只在某一温度以下才表现出来,超过这一温度,由于物质内部热骚动破坏电子自旋磁矩的平行取向,因而自发磁化强度变为0,铁磁性消失。这一温度称为居里点 。在居里点以上,材料表现为强顺磁性,其磁化率与温度的关系服从居里——外斯定律,
式中C为居里常数。
4、 反铁磁性
反铁磁性是指由于电子自旋反向平行排列。在同一子晶格中有自发磁化强度,电子磁矩是同向排列的;在不同子晶格中,电子磁矩反向排列。两个子晶格中自发磁化强度大小相同,方向相反,整个晶体 。反铁磁性物质大都是非金属化合物,如MnO。
不论在什么温度下,都不能观察到反铁磁性物质的任何自发磁化现象,因此其宏观特性是顺磁性的,M与H处于同一方向,磁化率 为正值。温度很高时, 极小;温度降低, 逐渐增大。在一定温度 时, 达最大值 。称 为反铁磁性物质的居里点或尼尔点。对尼尔点存在 的解释是:在极低温度下,由于相邻原子的自旋完全反向,其磁矩几乎完全抵消,故磁化率 几乎接近于0。当温度上升时,使自旋反向的作用减弱, 增加。当温度升至尼尔点以上时,热骚动的影响较大,此时反铁磁体与顺磁体有相同的磁化行为。
三、电子轨道磁矩与轨道角动量的关系
设轨道半径为r (圆轨道)、电子速率为v
则轨道电流I:
电子的轨道磁矩
对处于氢原子基态的电子,
电子的轨道角动量(圆轨道)
L = mvr
式中m 为电子质量
由于电子带负电,电子轨道磁矩与轨道角动量的关系是:
(此式虽由圆轨道得出,但与量子力学的结论相同)
在这里要特别强调指出的是:电子轨道磁矩与轨道角动量成正比。
四、电子自旋磁矩与自旋角动量的关系
实验证明:电子有自旋(内禀)运动,相应有自旋磁矩大小为
自旋磁矩和自旋角动量 S 的关系:
在这里又要特别强调指出的是:电子自旋磁矩又与自旋角动量成正比。磁矩与角动量成正比不是偶然的。因为电子的角动量越大,它所带动的电磁以太涡旋的角动量也越大,磁矩当然也就越大了。这也就从另一个侧面印证了磁是以太的涡旋。
磁场
magnetic field
电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力矩皆源于此。
与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁力线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。
电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播。电磁波以有限的速度传播,具有可交换的能量和动量,电磁波与实物的相互作用,电磁波与粒子的相互转化等等,都证明电磁场是客观存在的物质,它的“特殊”只在于没有静质量。
磁现象是最早被人类认识的物理现象之一,指南针是中国古代一大发明。磁场是广泛存在的,地球,恒星(如太阳),星系(如银河系),行星、卫星,以及星际空间和星系际空间,都存在着磁场。为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素。在现代科学技术和人类生活中,处处可遇到磁场,发电机、电动机、变压器、电报、电话、收音机以至加速器、热核聚变装置、电磁测量仪表等无不与磁现象有关。甚至在人体内,伴随着生命活动,一些组织和器官内也会产生微弱的磁场。
电磁场
electromagnetic field
有内在联系、相互依存的电场和磁场的统一体和总称 。随时间变化的电场产生磁场 , 随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。
地磁场
geomagnetic field
从地心至磁层顶的空间范围内的磁场。地磁学的主要研究对象。人类对于地磁场存在的早期认识,来源于天然磁石和磁针的指极性。磁针的指极性是由于地球的北磁极(磁性为S极)吸引着磁针的N极,地球的南磁极(磁性为N极)吸引着磁针的S极。这个解释最初是英国W.吉伯于1600年提出的。吉伯所作出的地磁场来源于地球本体的假定是正确的。这已为1839年德国数学家C.F.高斯首次运用球谐函数分析法所证实。
地磁场是一个向量场。描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素。常用的地磁要素有7个,即地磁场总强度F,水平强度H,垂直强度Z,X和Y分别为H的北向和东向分量,D和I分别为磁偏角和磁倾角。其中以磁偏角的观测历史为最早。在现代的地磁场观测中,地磁台一般只记录H,D,Z或X,Y,Z。
近地空间的地磁场,像一个均匀磁化球体的磁场,其强度在地面两极附近还不到1高斯,所以地磁场是非常弱的磁场。地磁场强度的单位过去通常采用伽马(γ),即10高斯。1960年决定采用特斯拉作为国际测磁单位,1高斯=10特斯拉(T),1伽马=10特斯拉=1纳特斯拉(nT),简称纳特。地磁场虽然很弱,但却延伸到很远的空间,保护着地球上的生物和人类,使之免受宇宙辐射的侵害。
地磁场包括基本磁场和变化磁场两个部分,它们在成因上完全不同。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢。变化磁场包括地磁场的各种短期变化,主要起源于地球外部,并且很微弱。
地球的基本磁场可分为偶极子磁场、非偶极子磁场和地磁异常几个组成部分。偶极子磁场是地磁场的基本成分,其强度约占地磁场总强度的90%,产生于地球液态外核内的电磁流体力学过程,即自激发电机效应。非偶极子磁场主要分布在亚洲东部、非洲西部、南大西洋和南印度洋等几个地域,平均强度约占地磁场的10%。地磁异常又分为区域异常和局部异常,与岩石和矿体的分布有关。
地球变化磁场可分为平静变化和干扰变化两大类型。平静变化主要是以一个太阳日为周期的太阳静日变化,其场源分布在电离层中。干扰变化包括磁暴、地磁亚暴、太阳扰日变化和地磁脉动等,场源是太阳粒子辐射同地磁场相互作用在磁层和电离层中产生的各种短暂的电流体系。磁暴是全球同时发生的强烈磁扰,持续时间约为1~3天,幅度可达10纳特。其他几种干扰变化主要分布在地球的极光区内。除外源场外,变化磁场还有内源场。内源场是由外源场在地球内部感应出来的电流所产生的。将高斯球谐分析用于变化磁场,可将这种内、外场区分开。根据变化磁场的内、外场相互关系,可以得出地球内部电导率的分布。这已成为地磁学的一个重要领域,叫做地球电磁感应。
地球变化磁场既和磁层、电离层的电磁过程相联系,又和地壳上地幔的电性结构有关,所以在空间物理学和固体地球物理学的研究中都具有重要意义。
『柒』 核磁共振和电子自旋共振,二者实验装置非常不同,为什么
电子自旋共振虽然原理类似于核磁共振,但由于电子质量远轻于原子核,而有内强度大许多的磁容矩。以氢核(质子)为例,电子磁矩强度是质子的659.59倍。因此对于电子,磁共振所在的拉莫频率通常需要透过减弱主磁场强度来使之降低。但即使如此,拉莫频率通常所在波段仍比核磁共振拉莫频率所在的射频范围还要高——微波,因而有穿透力以及对带有水分子的样品有加热可能的潜在问题,在进行人体造影时则需要改变策略,所以二者实验装置非常不同
『捌』 什么是磁体
一、物质磁性的起源
如果磁是电磁以太涡旋,一个磁铁,没看到任何电磁以太的涡旋,为什么会有磁性?我们的回答是:物质的磁性起源于原子中电子的运动,电子的运动会产生一个电磁以太的涡旋。
早在1820年,丹麦科学家奥斯特就发现了电流的磁效应,第一次揭示了磁与电存在着联系,从而把电学和磁学联系起来。
为了解释永磁和磁化现象,安培提出了分子电流假说。安培认为,任何物质的分子中都存在着环形电流,称为分子电流,而分子电流相当一个基元磁体。当物质在宏观上不存在磁性时,这些分子电流做的取向是无规则的,它们对外界所产生的磁效应互相抵消,故使整个物体不显磁性。在外磁场作用下,等效于基元磁体的各个分子电流将倾向于沿外磁场方向取向,而使物体显示磁性。
磁现象和电现象有本质的联系。物质的磁性和电子的运动结构有着密切的关系。乌伦贝克与哥德斯密特最先提出的电子自旋概念,是把电子看成一个带电的小球,他们认为,与地球绕太阳的运动相似,电子一方面绕原子核运转,相应有轨道角动量和轨道磁矩,另一方面又绕本身轴线自转,具有自旋角动量和相应的自旋磁矩。施特恩-盖拉赫从银原子射线实验中所测得的磁矩正是这自旋磁矩。(现在人们认为把电子自旋看成是小球绕本身轴线的转动是不正确的。)
电子绕原子核作圆轨道运转和绕本身的自旋运动都会产生电磁以太的涡旋而形成磁性,人们常用磁矩来描述磁性。因此电子具有磁矩,电子磁矩由电子的轨道磁矩和自旋磁矩组成。在晶体中,电子的轨道磁矩受晶格的作用,其方向是变化的,不能形成一个联合磁矩,对外没有磁性作用。因此,物质的磁性不是由电子的轨道磁矩引起,而是主要由自旋磁矩引起。每个电子自旋磁矩的近似值等于一个波尔磁子 。 是原子磁矩的单位, 。因为原子核比电子重2000倍左右,其运动速度仅为电子速度的几千分之一,故原子核的磁矩仅为电子的千分之几,可以忽略不计。
孤立原子的磁矩决定于原子的结构。原子中如果有未被填满的电子壳层,其电子的自旋磁矩未被抵消,原子就具有“永久磁矩”。例如,铁原子的原子序数为26,共有26个电子,在5个轨道中除了有一条轨道必须填入2个电子(自旋反平行)外,其余4个轨道均只有一个电子,且这些电子的自旋方向平行,由此总的电子自旋磁矩为4 。
二、 物质磁性的分类
1、 抗磁性
当磁化强度M为负时,固体表现为抗磁性。Bi、Cu、Ag、Au等金属具有这种性质。在外磁场中,这类磁化了的介质内部的磁感应强度小于真空中的磁感应强度M。抗磁性物质的原子(离子)的磁矩应为零,即不存在永久磁矩。当抗磁性物质放入外磁场中,外磁场使电子轨道改变,感生一个与外磁场方向相反的磁矩,表现为抗磁性。所以抗磁性来源于原子中电子轨道状态的变化。抗磁性物质的抗磁性一般很微弱,磁化率H一般约为-10-5,为负值。
2、 顺磁性
顺磁性物质的主要特征是,不论外加磁场是否存在,原子内部存在永久磁矩。但在无外加磁场时,由于顺磁物质的原子做无规则的热振动,宏观看来,没有磁性;在外加磁场作用下,每个原子磁矩比较规则地取向,物质显示极弱的磁性。磁化强度与外磁场方向一致,
为正,而且严格地与外磁场H成正比。
顺磁性物质的磁性除了与H有关外,还依赖于温度。其磁化率H与绝对温度T成反比。
式中,C称为居里常数,取决于顺磁物质的磁化强度和磁矩大小。
顺磁性物质的磁化率一般也很小,室温下H约为10-5。一般含有奇数个电子的原子或分子,电子未填满壳层的原子或离子,如过渡元素、稀土元素、钢系元素,还有铝铂等金属,都属于顺磁物质。
3、 铁磁性
对诸如Fe、Co、Ni等物质,在室温下磁化率可达10-3数量级,称这类物质的磁性为铁磁性。
铁磁性物质即使在较弱的磁场内,也可得到极高的磁化强度,而且当外磁场移去后,仍可保留极强的磁性。其磁化率为正值,但当外场增大时,由于磁化强度迅速达到饱和,其H变小。
铁磁性物质具有很强的磁性,主要起因于它们具有很强的内部交换场。铁磁物质的交换能为正值,而且较大,使得相邻原子的磁矩平行取向(相应于稳定状态),在物质内部形成许多小区域——磁畴。每个磁畴大约有1015个原子。这些原子的磁矩沿同一方向排列,假设晶体内部存在很强的称为“分子场”的内场,“分子场”足以使每个磁畴自动磁化达饱和状态。这种自生的磁化强度叫自发磁化强度。由于它的存在,铁磁物质能在弱磁场下强列地磁化。因此自发磁化是铁磁物质的基本特征,也是铁磁物质和顺磁物质的区别所在。
铁磁体的铁磁性只在某一温度以下才表现出来,超过这一温度,由于物质内部热骚动破坏电子自旋磁矩的平行取向,因而自发磁化强度变为0,铁磁性消失。这一温度称为居里点 。在居里点以上,材料表现为强顺磁性,其磁化率与温度的关系服从居里——外斯定律,
式中C为居里常数。
4、 反铁磁性
反铁磁性是指由于电子自旋反向平行排列。在同一子晶格中有自发磁化强度,电子磁矩是同向排列的;在不同子晶格中,电子磁矩反向排列。两个子晶格中自发磁化强度大小相同,方向相反,整个晶体 。反铁磁性物质大都是非金属化合物,如MnO。
不论在什么温度下,都不能观察到反铁磁性物质的任何自发磁化现象,因此其宏观特性是顺磁性的,M与H处于同一方向,磁化率 为正值。温度很高时, 极小;温度降低, 逐渐增大。在一定温度 时, 达最大值 。称 为反铁磁性物质的居里点或尼尔点。对尼尔点存在 的解释是:在极低温度下,由于相邻原子的自旋完全反向,其磁矩几乎完全抵消,故磁化率 几乎接近于0。当温度上升时,使自旋反向的作用减弱, 增加。当温度升至尼尔点以上时,热骚动的影响较大,此时反铁磁体与顺磁体有相同的磁化行为。
三、电子轨道磁矩与轨道角动量的关系
设轨道半径为r (圆轨道)、电子速率为v
则轨道电流I:
电子的轨道磁矩
对处于氢原子基态的电子,
电子的轨道角动量(圆轨道)
L = mvr
式中m 为电子质量
由于电子带负电,电子轨道磁矩与轨道角动量的关系是:
(此式虽由圆轨道得出,但与量子力学的结论相同)
在这里要特别强调指出的是:电子轨道磁矩与轨道角动量成正比。
四、电子自旋磁矩与自旋角动量的关系
实验证明:电子有自旋(内禀)运动,相应有自旋磁矩大小为
自旋磁矩和自旋角动量 S 的关系:
在这里又要特别强调指出的是:电子自旋磁矩又与自旋角动量成正比。磁矩与角动量成正比不是偶然的。因为电子的角动量越大,它所带动的电磁以太涡旋的角动量也越大,磁矩当然也就越大了。这也就从另一个侧面印证了磁是以太的涡旋。
『玖』 求:物理小故事,多多益善
古希腊的学者阿基米德曾豪情万丈地宣称:给我一个支点,我能撬动地球。而现代的美国发明家特士拉更是“牛气”,他说:用一件共振器,我就能把地球一裂为二!
他来到华尔街,爬上一座尚未竣工的钢骨结构楼房,从大衣口袋里掏出一件小物品,把它夹在其中一根钢梁上,然后按动上面的一个小钮。数分钟后,可以感觉到这根钢梁在颤抖。慢慢地,颤抖的强度开始增加,延伸到整座楼房。最后,整个钢骨结构开始吱吱嘎嘎
地发出响声,并且摇摆晃动起来。惊恐万状的钢架工人以为建筑出现了问题,甚至是闹地震了,于是纷纷慌忙地从高架上逃到地面。眼见事情越闹越大,他觉得这个恶作剧该收场了,于是,把那件小物品收了回来,然后从一个地下通道悄悄地溜开了,留下工地上的那些惊魂甫定、莫名其妙的工人。
上面这一段是一本书中有关美国著名发明家特士拉进行共振器发明的描写,里面所说的“小物品”便是一个共振器。可以预见,若是他把这个小物品再开上那么十来分钟,这座建筑物准会轰然倒地。书中说,用同样的这个小物品,在一小时不到的时间内,也能把布鲁克林大桥(连接纽约曼哈坦岛和长岛的大桥)摧毁,使之坠入幽深黑暗的海底。而且,在这本书里,特士拉甚至说:用这件小物品,我还能把地球一裂为二!
这该是一本科幻或者荒诞小说吧?否则,一件大不过拳头、重不过几斤的小东西,真的就有那么厉害,能把一座巍然耸立的大楼甚至是一座巨无霸似的大桥震垮?它是一件什么物品呢?
原来,它是一件共振器,它的威力主要在于它能发出各种频率的波,这些不同频率的波作用于不同的物体,就能够相应地产生出一种共振波,当这种共振波达到一定程度时,就能使物体被摧毁。
如果你对共振的威力还有怀疑,那就让我们一起来了解共振吧。
共振创造了世界
共振是物理学上的一个运用频率非常高的专业术语。共振的定义是两个振动频率相同的物体,当一个发生振动时,引起另一个物体振动的现象。
共振在声学中亦称“共鸣”,它指的是物体因共振而发声的现象,如两个频率相同的音叉靠近,其中一个振动发声时,另一个也会发声。
在电学中,振荡电路的共振现象称为“谐振”。
产生共振的重要条件之一,就是要有弹性,而且一件物体受外来的频率作用时,它的频率要与后者的频率相同或基本相近。从总体上来看,这宇宙的大多数物质是有弹性的,大到行星小到原子,几乎都能以一个或多个固有频率来振动。
共振不仅在物理学上运用频率非常高,而且,共振现象也可以说是一种宇宙间最普遍和最频繁的自然现象之一,所以在某种程度上甚至可以这么说,是共振产生了宇宙和世间万物,没有共振就没有世界。
我们都知道,宇宙是在一次剧烈的大爆炸后产生的。而促使这次大爆炸产生的根本原因之一,便是共振。当宇宙还处于浑沌的奇点时,里面就开始产生了振荡。最初的时候,这种荡振是非常微弱的。渐渐地,振荡的频率越来越高、越来越强,并引起了共振。最后,在共振和膨胀的共同作用下,导致了一阵惊天动地的轰然巨响,宇宙在瞬间急剧膨胀、扩张,然后,就产生了日月星辰,于是,在地球上便有了日月经天、江河行地,也有了植物蓬勃葳蕤、动物飞翔腾跃。
共振不仅创造出了宏观的宇宙,而且,微观物质世界的产生,也与共振有着密不可分的干系。从电磁波谱看,微观世界中的原子核、电子、光子等物质运动的能量都是以波动的形式传递的。宇宙诞生初期的化学元素,也可以说是通过共振合成和产生的。有一些粒子微小到简直无法想象,但它们可以在共振的作用之下,在100万亿分之一秒的瞬间,互相结合起来,于是新的化学元素便产生了。因为宇宙中这些粒子的生成与共振有着如此密切的关系,所以粒子物理学家经常把粒子称为“共振体”。
既然共振是宇宙间一切物质运动的一种普遍规律,人及其它的生物也是宇宙间的物质,当然共振也是普遍存在于这些生命中了。
人除了呼吸、心跳、血液循环等都有其固有频率外,人的大脑进行思维活动时产生的脑电波也会发生共振现象。类似的共振现象在其它动物身上也同样普遍地存在着。我们喉咙间发出的每个颤动,都是因为与空气产生了共振,才形成了一个个音节,构成一句句语言,才能使我们能够用这些语言来表达我们的情感和进行社会交往。
许多动物身上还存在着其它一些形式的共振现象。炎热的午间,蝉儿发出的“知了、知了”声;宁静的夜晚,蟋蟀发出的“叽—嘶”声;还有不知疲倦的大肚子蝈蝈的鸣叫声,尽管这些昆虫的声调大不相同,但其中的共同之处都是借助了共振的原理,都是靠摩擦身体的某一部位与空气产生共鸣而发声。除了昆虫之外,鸟类也是巧妙地运用着共振来演奏生命之曲的大师,它们运用共振所发出的圆润婉转的鸣叫声,是自然界生命大合唱中最为优美的声部和旋律。因此,可以这么说,如果没有共振,世界将会失去多少天籁、大地将会变得多么死寂!
其实更为重要的是,共振能充当地球生物的保护神。我们知道,紫外线是太阳发出的一种射线,它们如果大举入侵地球,人类及各种生物势必遭受极大的危害,因为过量的紫外线会使生物的机能遭到严重的破坏。不过不用担心,我们有大气层中的臭氧层,是它们借助于共振的威力,阻止了紫外线的长驱直入。当紫外线经过大气层时,臭氧层的振动频率恰恰能与紫外线产生共振,因而就使这种振动吸收了大部分的紫外线。所以,共振能使大气中的臭氧层变得如防晒油一样,保证我们不至于被射线的伤害。
另外,共振还能使地球维持在适当的温度,给地球生命创造出一个冷热适宜的生长环境。因为虽然经过臭氧层的堵截围追,但仍有少部分紫外线能够成功地突破层层防线,到达地球表面。这部分紫外线经过地球吸收后,能量减少,变为红外线,扩散回大气中。而红外线的热量,又恰好能和二氧化碳产生共振,然后被“挽留”在大气层中,使大气层保有一定温度,让万物在温暖和煦的环境中孕育成长。
俗话说万物生长靠太阳,其实也可以这么说:万物生长靠共振。因为我们所熟知的植物的光合作用,亦是叶绿素与某些可见光共振,才能吸收阳光,产生氧气与养分。所以没有共振,植物便不能生长,人类和许多动物也就因此会失去了食物的来源。也就是说,没有共振,地球上的生命便不能长期存在。
共振还是一个善于使用色彩和色调的魔幻绘画师,把我们所看到的每一件物体都神奇地染上了颜色,使我们这个世界变得五彩斑斓、艳丽缤纷。钠光是黄的,因为钠原子的振动产生所产生的是黄色的光。水银原子的振动发出蓝光。氖原子送出的振动到了你眼中,就成为了红色。在地面,共振也把所有的物体都染上了各式各样的颜色,从花卉到水果。红苹果把太阳光中我们称为蓝光和绿光的振动频率吸收了,因此我们看到的它就是红艳艳的、令人馋涎欲滴的样子。绿叶中的叶绿素分子的振动频率在太阳的红光及蓝光范围,所以共振把这两种颜色都“贪污”了,而只把绿的颜色反射入我们的眼里,因此树叶看上去便是生机盎然浓绿或嫩绿。也是这同一片叶子,到了秋天的时候,它被共振所“贪污”的却是绿光,因而这时反射出的是或黄或红的色彩,映衬出秋天的苍凉和凄美。就是那种很虚幻的彩虹也是因为有了共振,才有了赤橙黄绿青蓝紫。因此,我们的生活中有着如此美丽迷人的花红柳绿、斑斓烂漫,也无不是拜共振之所赐。
共振亦能毁灭世界
任何事物都是有两面性的,共振并非完完全全都是给我们带来福音,它也有着非常巨大的危害性。
说到共振的危害时,人们最为熟知和引用得最多的,便是下面这个例子:18世纪中叶,一队士兵在指挥官的口令下,迈着威武雄壮、整齐划一的步伐,通过法国昂热市一座大桥,快走到桥中间时,桥梁突然发生强烈的颤动并且最终断裂坍塌,造成许多官兵和市民落入水中丧生。后经调查,造成这次惨剧的罪魁祸首,正是共振!因为大队士兵齐步走时,产生的一种频率正好与大桥的固有频率一致,使桥的振动加强,当它的振幅达到最大限度直至超过桥梁的抗压力时,桥就断裂了。类似的事件还发生在俄国和美国等地。有鉴于此,所以后来许多国家的军队都有这么一条规定:大队人马过桥时,要改齐走为便步走。
对于桥梁来说,不光是大队人马厚重整齐的脚步能使之断裂,那些看似无物的风儿同样也能对之造成威胁。1940年,美国的全长860米的塔柯姆大桥因大风引起的共振而塌毁,尽管当时的风速还不到设计风速限值的1/3,可是因为这座大桥的实际的抗共振强度没有过关,所以导致事故的发生。每年肆虐于沿海各地的热带风暴,也是借助于共振为虎作伥,才会使得房屋和农作物饱受摧残。近几十年来,美国及欧洲等国家和地区还发生了许多起高楼因大风造成的共振而剧烈摇摆的事件。
也是由于共振的力量,巨大的冰川能被“温柔”的海洋波涛给拍裂开。甚至于美国阿拉斯加李杜牙湾经常出现的高达上百米的巨浪,也是由于共振在其中发挥了很大的“推波助澜”的作用。因为共振在这个海湾“作威作福”实在是太厉害了,所以许多航海人对这个海湾都是“敬”而远之。
给人类带来重大伤亡和财产损失的地震,其中亦有共振的“幢幢魔影”:当地壳里的某一板块发生断裂时,产生的波动频率传到地面上,与建筑物产生强烈的共振,于是,就造成了屋毁人亡的惨剧。
实际上,共振的危害程度和范围还无远远不止于此。持续发出的某种频率的声音会使玻璃杯破碎。机器的运转可以因共振而损坏机座。高山上的一声大喊,可引起山顶的积雪的共振,顷刻之间造成一场大雪崩。行驶着的汽车,如果轮转周期正好与弹簧的固有节奏同步,所产生的共振就能导致汽车失去控制,从而造成车毁人亡……
人们在生活和生产中会接触到各种振动源,这些振动都可能会对人体产生危害。由科学测试知道人体各部位有不同的固有频率,如眼球的固有频率最大约为60赫兹,颅骨的固有频率最大约为200赫兹等;把人体作为一个整体来看,如水平方向的固有频率约为3—6赫兹,竖直方向的固有频率约为48赫兹。因此,跟振动源十分接近的操作人员,如拖拉机驾驶员,风镐、风铲、电锯、镏钉机的操作工,在工作时应尽量避免这些振动源的频率与人体有关部位的固有频率产生共振。并且,为了保障工人的安全与健康,有关部门己作出了相应规定,要求用手工操作的各类振动机械的频率必须大于20赫兹。
对人危害程度尤为厉害的是次声波所产生的共振。次声波是一种每秒钟振动很少、我们耳朵听不到的声波。次声波的声波频率很低,一般均在20兆赫以下,波长却很长,不易衰弱。自然界的太阳磁暴、海浪咆哮、雷鸣电闪、气压突变、火山爆发;军事上的原子弹、氢弹爆炸试验,火箭发射、飞机飞行等等,都可以产生次声波。在我们工作、学习和生活的周围,能够产生次声波的小型动力设备很多,如鼓风机、引风机、压气机、真空泵、柴油机、电风扇、车辆发动机等。次声波的这种神奇的功能也引起了军事专家的高度重视,一些国家利用次声波的性质进行次声波武器的研制,目前已研制出次声波枪和次声波炸弹。不论是次声波枪还是次声波炸弹,都是利用频率为16—17赫兹的次声波,与人体内的某些器官发生共振,使受振者的器官发生变形、位移或出血,从而达到杀伤敌方的目的。现代科学研究已经证明,大量发射的频率为16—17赫兹的次声波会引起人体无法忍受的颤抖,从而产生视觉障碍、定向力障碍、恶心等症状,甚至还会出现可导致死亡的内脏损坏或破裂。这种次声波武器可以说是人类运用共振来危害人类自己的一种技术上的极致。
巧除共振的危害
共振给人们带来意想不到的灾难,那么,人们能不能消除这些灾难呢?为此,人们经过实践,总结出许多消除共振的办法。
据史籍记载,我国晋代就有人对共振现象作出了正确的解释,并已经能够完全认识到,防止共振的最好的方法是改变物体的固有频率,使之与外来作用力的频率相差越大越好。
古时还有一个有趣的故事,说的就是人们如何巧妙地消除共振的。唐朝时候,洛阳某寺一僧人房中挂着的一件乐器,经常莫名其妙地自动鸣响,僧人因此惊恐成疾,四处求治无效。他有一个朋友是朝中管音乐的官员,闻讯特去看望他。这时正好听见寺里敲钟声,那件乐器又随之作响。于是朋友说:你的病我可以治好,因为我找到你的病根了。只见朋友找到一把铁锉,在乐器上锉磨几下,乐器便再也不会自动作响了。朋友解释说这件乐器与寺院里的钟声的共振频率相合,于是敲钟时乐器也就会相应地鸣响,现在把乐器稍微锉去一点,也就改变了它的固有振动频率,它就不再能和寺里的钟声共鸣了。僧人恍然大悟,病也就随着痊愈了。
到了今天,人类对付共振危害的方法更是多种多样和更加先进。例如:人们在电影院、播音室等对隔音要求很高的地方,常常采用加装一些海绵、塑料泡沫或布帘的办法,使声音的频率在碰到这些柔软的物体时,不能与它们产生共振,而是被它们吸收掉。又如电动机要安装在水泥浇注的地基上,与大地牢牢相连,或要安装在很重的底盘上,为的是使基础部分的固有频率增加,以增大与电机的振动频率(驱动力频率)之差来防止基础的振动。
大街上的行人、车辆的喧闹声、机器的隆隆声——这些连绵不断的噪声不仅影响人们正常生活,还会损害人的听力。于是人们发明了一种消声器,它是由开有许多小孔的孔板和空腔所构成,当传来的噪声频率与消声器的固有频率相同时,就会跟小孔内空气柱产生剧烈共振。这样,相当一部分噪声能在共振时被“吞吃”掉,而且还能够转变为热能来进行使用。
利用共振能带来福祉
实际上,中国人对于共振的运用,还可以追溯到很久远的年代。
早在战国初期,当时的人就发明了各种各样的共鸣器,用来侦探敌情。《墨子·备穴》记载了其中的几种:
在城墙根下每隔一定距离挖一深坑,坑里埋置一只容量有七八十升的陶瓮,瓮口蒙上皮革,这样,实际上就做成了一个共鸣器。让听觉聪敏的人伏在这个共鸣器上听动静,遇有敌人挖地道攻城的响声,不仅可以发觉,而且根据各瓮瓮声的响度差可以识别来敌的方向和远近。另一种方法是:在同一个深坑里埋设两只蒙上皮革的瓮,两瓮分开一定距离,根据这两瓮的响度差来判别敌人所在的方向。
以上几种方法被历代军事家因袭使用。明代抗倭名将戚继光曾用上面的方法来侦听敌人凿地道的声音。甚至在本世纪的一些现代战争中,不少国家和民族还继续采用这些方法。
我国古时还发明出了另一种更加轻巧、简便、实用的共鸣器。如唐代的军队中就有一种用皮革制成的叫做“空胡鹿”的随军枕,让听觉灵敏和睡觉警醒的战士在宿营时使用,“凡人马行在三十里外,东西南北皆响闻”。当声音通过地面传播到空穴时,在空穴处产生交混回响,于是就能知道敌人的多寡远近。值得一提的是,这种用竹筒听地声的方法正是现代医用听诊器的滥觞。
宋代的科学家沈括就曾巧妙地利用共振原理设计出了在琴弦上跳舞的小人:先把琴或瑟的各弦按平常演奏需要调好,然后剪一些小小的纸人夹在各弦上。当弹动不夹纸人的某一弦线时,凡是和它共振的弦线上的纸人就会随着音乐跳跃舞动。这个发明比西方同类发明要早几个世纪。
到了现代,随着科技的发展和对共振研究的更加深入,共振在我们的社会和生活中“震荡”得更为频繁和紧密了。
弦乐器中的共鸣箱、无线电中的电谐振等,就是使系统固有频率与驱动力的频率相同,发生共振。我们在建筑工地经常可以看到,建筑工人在浇灌混凝土的墙壁或地板时,为了提高质量,总是一面灌混凝土,一面用振荡器进行震荡,使混凝土之间由于振荡的作用而变得更紧密、更结实。此外,粉碎机、测振仪、电振泵、测速仪等,也都是利用共振现象进行工作的。
进入20世纪以后,微波技术得到长足的发展,使我们人类的生活进入了一个全新的、更加神奇的领域。而微波技术正是一种把共振运用得非常精妙的技术。微波技术不仅广泛应用在电视、广播和通讯等方面,而且“登堂入室”,与人们的日常生活愈来愈密切相关,微波炉便是家庭应用共振技术的一个最好体现。具有2500赫兹左右频率的电磁波称为“微波”。食物中水分子的振动频率与微波大致相同,微波炉加热食品时,炉内产生很强的振荡电磁场,使食物中的水分子作受迫振动,发生共振,将电磁辐射能转化为热能,从而使食物的温度迅速升高。微波加热技术是对物体内部的整体加热技术,完全不同于以往的从外部对物体进行加热的方式,是一种极大地提高了加热效率、极为有利于环保的先进技术。
人的一生中,离不开音乐的“沐浴”和“滋润”,而优美曼妙的音乐里也无不蕴藏着共振的“精灵”。专家研究认为,音乐的频率、节奏和有规律的声波振动,是一种物理能量,而适度的物理能量会引起人体组织细胞发生和谐共振现象,这种声波引起的共振现象,会直接影响人们的脑电波、心率、呼吸节奏等,使细胞体产生轻度共振,使人有一种舒适、安逸感,音律的变化使人的身体有一种充实、流畅的感觉。它活化了体内的细胞,加快了血液的流动,激活了人的物理层次的生命潜能。人们还发现,当人处在优美悦耳的音乐环境中,可以改善精神系统、心血管系统、内分泌系统和消化系统的功能,促使人体分泌一种有利健康的活性物质,提高大脑皮层的兴奋性,振奋人的精神,让人们的心灵得到了陶冶和升华。所以,人们已经开始运用音乐产生的共振,来缓解人们由于各种因素造成的紧张、焦虑、忧郁等不良心理状态,而且还能用于治疗人的一些心理和生理上的疾病。
我们知道,粒子加速器对于物理学的研究和发展是至关重要的,而粒子加速器对于共振的运用,用“登峰造极”来形容也一点不为过。在粒子物理的基本小宇宙中,每一种能量都有对应的频率,反之亦然,这是很自然的物质互补原理,既有波又有粒子的特性。物质因为具有波的性质,也就有了频率。粒子加速器就是运用了这样的共振原理,把许多小小的“波纹”迭加起来,结果变成很大的“波峰”,可把电子或质子推到近乎光速,在高速的相撞下产生粒子来。
总而言之,共振不仅是一种客观存在,它也是有待于进一步开拓的科技领域。共振技术普遍应用于机械、化学、力学、电磁学、光学及分子、原子物理学、工程技术等几乎所有的科技领域。如音响设备中扬声器纸盆的振动,各种弦乐器中音腔在共鸣箱中的振动等利用了“力学共振”;电磁波的接收和发射利用了“电磁共振”;激光的产生利用了“光学共振”;医疗技术中则有已经非常普及的“核磁共振”等。在21世纪开始的正在蓬勃发展的信息技术、基因科学、纳米材料、航天高科学技术大发展的浪潮中,更是大量运用到共振技术。而且随着科学的发展,可以预见,共振将会对我们这个社会产生更加巨大的“震荡”。
参考资料:妖瑶咬要
回答者: Dyemn - 高级经理 七级 1-22 16:58
『拾』 环境样品磁性测量
环境样品磁性测量比较复杂,有的要在实验室外加强磁场测量人工剩磁,除此之外是测量样品的天然剩磁和磁化率。在古地磁研究中,还需要确定磁化强度的稳定性、居里点、饱和磁化强度和矫顽磁力。
4.4.2.1 环境样品磁化率测量
环境样品类似于土壤样品,不研究样品的磁化方向。
环境样品在外磁场中受感应,产生的磁化强度(M)与外加磁场(H)的比值(κ)称样品的磁化率。
环境地球物理学概论
环境样品的磁化率,可用体积磁化率(κ)和质量磁化率(χ)表示,两者的关系为
环境地球物理学概论
式中:ρ为物质的密度,g/cm3,χ单位记作SI(χ),m3/kg;它与CGS制的关系为χ(SI)=4π×10-3χ(CGSM)。
岩石或者环境样品的磁化率都是外加磁场的函数,只是在弱磁场中(即地磁场中),这种磁化才可以看成是线性的。在地球科学研究中,不仅研究岩石磁化率的数值,而且要研究磁化的方向性。
岩石或样品的磁性测量,原则上讲,凡能测量磁场分量的磁力仪,如悬丝式磁力仪,无定向磁力仪,磁通门磁力仪和卡帕桥等,都可以用来测量磁化率。只是所能达到的精度不同而已。
从测量方法来讲,测量岩石(或样品)磁性的方法主要有静态法和磁感应法。无定向磁力仪测量属静态法,激励场源为稳定场,卡帕桥测量属感应法,激励场源为交变场。其他测量方法,基本上由此派生。无定向磁力仪,灵敏度高(可达10-8),但对场地环境要求严格,受干扰因素较多,现在已经很少应用。
(1)卡帕桥仪磁化率测量方法
在地磁场中测量样品磁性,是比较方便的常用的磁感应方法。常用的仪器有捷克的KLY-1型,KLY-2型和KLY-3型以及我国的HKB-1型,KLY-2型和KLY-3型为数字式读数。主要用于测量岩石的磁化率。
仪器(以KLY-1型为例)主要由交流电桥组成,桥路由四个线圈S、S′、W1、W2构成四臂,如图4.4.1所示,S为测量线圈,测量样品放入其中;S′为平衡线圈,内有小的铁氧体,可上下移动,调节电桥的平衡,W1、W2是差动变压器的两个次级绕组;图中Am1、Am2、Am3为放大器;Dm为检波器,G为970Hz交变电压,M1、M2为读数显示装置。
打开仪器,在样品放入测量线圈之前,先要使用电位器P,调节电桥平衡,样品放入S后,电感增大,电桥失衡,再调节分压器Dr和电位器B,使电桥重新达到平衡,可以读出磁化率值。
测量之前要做好样品,环境样品准备与土壤样品准备类似,将风干之后的颗粒样品放入高4 cm,直径7~8 cm的无磁性材料制成的容器,一般为塑料或玻璃容器。装填要均匀,表面要平整,并称重量,记录容积。
图4.4.1 Kly-1型卡帕桥原理图
(2)磁通门仪磁化率测量法
使用的仪器为WCL-1型轻便磁化率测量仪,可以测量样品,也可现场测量,仪器为率表读数,测量范围为10×10-6CGSM~3CGSM,分辨率为5×10-6CGSM。测量样品一般装入高4 cm,直径为7~8 cm的塑料或玻璃盒内,进行测量。
4.4.2.2 天然剩磁测量方法
天然剩磁的测量仪器现在应用的主要是磁能门磁力仪,美国的DSM-1,2型数字旋转式仪,美国的Mini-Spin和WSW型无定向磁力仪。其中旋转式磁力仪应用较多。
旋转磁力仪的原理是在线圈内或磁通门系统附近磁化样品,连续旋转所产生交变电压振荡。输出电压的振幅正比于旋转轴垂直的磁矩分量,而电压的相位则利用被测分量的方向与样品的参考方向之间的关系来确定。总矢量可由样品绕第二个正交轴旋转得到,实际上是样品依次绕三个轴旋转以取得NRM所有分量的平均值,从而减少样品的非均匀性的影响。当标本绕z轴旋转时,可测得标本总磁矩U在xOy平面上的投影Uxy的大小及与x轴的夹角φyz与φzx,整理得标本的磁矩Uy和剩余磁化强度Mr。
环境地球物理学概论
由测得的相位角可计算Mr的偏角和倾角。
磁化率仪在测定岩石标本时,将标本放在有电流的线圈旁,由于磁感应能量的变化而产生附加电动势,从而测定岩石磁化率。磁化率仪只能测定岩石的磁化率,但测定快速方便,因而应用较广。