导航:首页 > 装置知识 > 微机型自动励磁调节装置

微机型自动励磁调节装置

发布时间:2025-10-07 09:28:54

⑴ 励磁系统自动调节励磁电流

在电力系统中,调节发电机励磁电流通常不直接在转子回路进行,因为电流过大不易操作。一种常见方法是通过改变励磁机的励磁电流来间接调控。可控硅导通角改变是其中的关键技术,根据发电机的电压、电流变化,自动调整可控硅整流器的工作状态,进而影响励磁电流。这种装置由晶体管、可控硅等电子元件构成,具有快速响应、无失灵区、大功率输出、小巧轻便等优点,有助于在紧急情况下抑制过电压和实现快速灭磁。



自动调节励磁装置的结构包括多个单元:测量单元负责比较实际信号与设定值,通过放大单元驱动可控硅;同步单元确保触发脉冲与交流励磁电源同步;调差单元负责负荷分配的稳定;稳定单元提升电力系统的稳定性;限制单元防止发电机在异常状态下运行。每个单元根据特定功能来设计,有的装置可能仅包含部分单元。



组成部件包括电压互感器、电流互感器、励磁变压器等,需供给AC380v和DC220v电源,以及特定的空接点和模拟信号接口。同时,励磁控制、保护和信号回路涉及灭磁开关、助磁电路、风机等组件,以确保故障时迅速、安全地处理。



近几十年来,随着新技术的发展,数字自动调节励磁装置逐渐取代传统装置。微机计算机配合外部设备构成的数字装置,能够实现自适应最佳调节,成为现代电力系统中重要的组成部分。




(1)微机型自动励磁调节装置扩展阅读

供给同步发电机励磁电流的电源及其附属设备统称为励磁系统。它一般由励磁功率单元和励磁调节器两个主要部分组成。励磁功率单元向同步发电机转子提供励磁电流;而励磁调节器则根据输入信号和给定的调节准则控制励磁功率单元的输出。励磁系统的自动励磁调节器对提高电力系统并联机组的稳定性具有相当大的作用。尤其是现代电力系统的发展导致机组稳定极限降低的趋势,也促使励磁技术不断发展。

⑵ 电动机励磁控制柜有哪些配置

3.2整流回路
如原理图所示,同步电动机微机励磁装置采用三相全控桥整流,其输出供给同步电动机励磁电流,控制回路通过对同步电动机的励磁电流,励磁电压,定子电流,定子电压,功率因数等参数进行测量,按一定的控制规律和控制方式进行运算,计算出可控硅触发角,通过经过触发角移相的触发脉冲来控制相应的可控硅导通,得到不同的直流输出电压,实现控制同步电动机的目的。
3.3启动回路
当同步电动机启动时,灭磁环节自动投入工作。由转子感应的交变能量通过灭磁电阻释放,保证同步电动机正常启动。当电动机转速达到额定转速的90%(可整定)时,对于降压启动的同步电动机,由控制器发出投全压信号,切除降压启动设备,使电动机加速启动。当电动机的转速达到额定转速的95%(可整定),控制器向可控硅发出触发脉冲,装置自动向同步电动机投入励磁,同步电动机牵入同步运行。
3.5进线空开
进线空开安装于外部励磁电源进线与整流变压器一次测中间,作为励磁电源投切及输入过流保护用。常规型号带有一辅助触点作为空开位置指示。用户可选带有电动操作机构的空开,S300励磁控制器均配有电动操作控制接口。另用户可选带有报警触头的空开,将报警常开触头接至控制器过流保护接口。
空气开关的容量根据励磁变压器容量选择,详见装置配置清单。
3.6整流变压器
本装置常规配置为三相干式整流变压器,绝缘等级B级,组别DY11。
3.7指示仪表
本装置配有指针式功率因数表、定子电流表、励磁电压表和励磁电流表。
3.8信号测量
在励磁输出的主回路上配置有穿心式霍尔传感器,用于励磁电流测量。
定子电流传感器,定子电压传感器,励磁电压传感器皆集成到S300励磁控制器内部进行测量。
3.9风机单元
本装置采用台湾卡固无电容风机,并设有风机控制和风机监视。
3.10励磁控制器
3.11触摸屏面板
3.12对外端子
3.13远程操作通信接口
四、S300微机励磁调节器说明
S300同步电动机微机控制器是整个系统装置的核心装置。其负责整个励磁装置的控制、测量、保护、通信等。每个调节器都设置有软标签,标签的信息包括调节器型号、序列号、版本号等。其中序列号是控制器区别的唯一标识。
4.1 调节器硬件结构
4.1.1外形
S300微机控制器为独立的单元结构,除了励磁电流传感器需要外置以外,其它所有单元均集成在控制器内部。控制器冷却方式为自然冷却,上下设有通风网孔,以防止尘埃进入。其外形尺寸如图所示:

4.1.2 端子
S300微机控制器采用知名厂家订购的插拔式端子,确定了其良好的接触性能。接线端子分为上下两排,上排为传感器信号,下排为开关量输入输出信号,有效的进行了强弱电的分离。接线端子安排如下表所示:

4.1.3 模拟量测量
a 励磁电流
励磁电流的测量由安装在柜内的穿心式霍尔励磁电流传感器完成。励磁电流传感器通过霍尔效应将励磁电流变换成小电流信号送入调节器内部,调节器内部通过取样电阻转换成电压信号,再经过信号调理送入调节器的中央处理器,实现励磁电流的测量。
因励磁电流传感器规格根据同步电动机的额定励磁电流进行选择,所以其通常有如下几种规格选择:

注意:根据励磁电流传感器的型号不同,需在调节器的参数设定中配置励磁电流传感器的一次侧电流值。
b励磁电压
励磁电压的测量由配置于调节器内部的霍尔励磁电压传感器完成。通过取灭磁可控硅两端的电压信号送入控制器内部,控制器内部经过取样电阻变成小电流信号送入霍尔励磁电压传感器隔离变送后再经过信号调理送入调节器中央处理器,实现励磁电压的测量。
c定子电流
定子电流信号由同步电动机启动柜内的电流互感器将电机电流变换成标准的额定电流为5A的标准信号送入控制器内部,控制器内部再经过高精度的电流传感器变换成小电流信号经过调理送入中央处理器。定子电流的测量范围最大为6A,极限输入电流为30A。
由于存在CT变比的问题,所以须在调节器的参数设定中配置互感器的CT变比。
d母线电压
母线电压信号由同步电动机启动柜内电压互感器将额定为100V的电压信号送入控制器内部,控制器内部通过取样电阻送入高精度电压传感器,传感器将电压信号变换成小电流信号后再经过调理送入中央处理器。定子电压信号测量范围最大为120V,极限输入为150V,输入阻抗为 ** KΩ。
由于存在PT变比的问题,所以须在调节器参数设定中配置PT变比。
4.1.4 功率因数测量
同步电动机的电流、电压交流信号经过控制器内部互感器后,通过信号调理转换成两组标准的方波信号送入中央处理器的脉冲捕获端口,中央处理器通过测量两路方波信号的时间差计算出功率因数。
母线频率的测量也是通过电压的方波获得的。
由于在PT和CT的接线时存在随机接线的情况,本控制器特经过特殊处理,所以对PT和CT的接线只要求为一相的电流和另两相的电压,对接线顺序不做任何要求。
4.1.5 同步信号
用于整流可控硅触发的三相同步信号,取自整流变压器的二次侧,所以对整流器的连接组不做要求,控制器通过内部的三个传感器隔离后变成小电流信号,再经过信号调理变换成三路方波信号送入CPLD单元进行同步采样。
三相电压的输入范围为AC30V~AC350V。线间输入阻抗为** KΩ。
4.1.6触发脉冲输出
控制器内部CPLD产生的六路双窄脉冲经过光耦隔离,推动达林顿管来驱动脉冲变压器。
4.1.7 开关量
a开关量输入
S300微机控制器内部配置15路光耦隔离的开关量输入,采用控制器内部的DC+24V作为操作电源,极限输入电压DC30V,接点量输入回路对地绝缘大于1000V。
b开关量输出
S300微机控制器内部配置11路继电器输出接点,每组触点容量不低于3A(长时间吸合电流不宜大于1A)。
4.1.8 电源配置
控制器内部集成开关电源,有+24V,+15V,-15V,+5V四路输出,具有短路,过流等保护。控制器内部对四路开关电源进行监视。
由于采用开关电源,电源的输入范围为AC220V±20%或DC220V±20%。
+24V引出至端子,供开关量输入,输出与触摸屏显示用,不可用于其它回路。最大输出能力为500mA。
4.1.9 通信端口
控制器内部集成三个通信端口,其功能与接线如下:
PORT0:用于就地显示用通信,DB9母型接口,隔离的RS232电平标准,遵循标准的MODBUS RTU协议,通信波特率9600,支持热插拔。
PORT0(母头)
引脚 信号名称
2 232 TXD

3 232 RXD

5 232 GND

触摸屏
引脚 信号名称
2 232 RXD
3 232 TXD
5 232 GND

PORT1:用于远程通信,DB9母型接口,隔离的RS485电平标准,遵循标准的MODBUS RTU协议,默认通信波特率9600,支持热插拔。
PORT1(母头)
引脚 信号名称
2 485 TXD

3 485 RXD

5 485 GND

远 程
引脚 信号名称
2 232 RXD
3 232 TXD
5 485 GND

PORT2:用于双机通信用(只有双机配置时),DB9母型接口,隔离的CAN总线标准,通信速率500Kbit/s。
PORT2(母头)本套
引脚 信号名称
2 CAN TXD

3 CAN RXD

5 CAN GND

PORT2(母头)另套
引脚 信号名称
2 CAN RXD
3 CAN TXD
5 CAN GND

4.2 调节器软件构成
S300微机控制器配置功能强大的软件系统,其中央处理器的DSP内核可进行单周期的浮点数运算,大大增强了其数据处理的速度,是其它常规单片机或PLC控制器无法比拟的。运用可编程逻辑器件CPLD作为触发单元,杜绝了现场信号的干扰对系统运行的影响,大大提高了系统的稳定性。
4.2.1 同步信号采样及触发脉冲形成
同步信号采样及触发脉冲形成均由可编程逻辑器件CPLD独立完成,这样不仅解放了中央处理器,而且取消了以往用单一定时器控制触发角的方法,做到三路同步信号无延时同步采样。由于三相交流信号每个周期存在六个过零点,所以触发角调节为每周期调整六次,控制器调节速度为300 次/秒。
4.2.2 调试状态控制
在励磁工况为调试时,励磁就绪信号,投全压信号无输出,起车信号无效,若此时起车信号输入则控制器的故障停机继电器动作。按下投励按钮系统立即投入励磁,若为手动模式,则系统自动进行调节稳定到系统设定值,此时按增磁减磁按钮调节的为恒励磁电流调节器的给定值。若为开环模式,则系统按当前的触发角输出励磁电流,此时按增磁减磁按钮调节的为可控硅的触发角。
4.2.3 起车投励控制及停机
在励磁工况为工作状态,若满足起车条件则励磁就绪信号输出。当同步电动机起车后,励磁控制器起车监视定时器开始计时,在达到防早投时间后,励磁控制器开始检测系统滑差。当系统滑差达到设定的投全压滑差或起车监视定时器达到设定的投全压时间时,投全压控制继电器吸合并保持5秒。当系统滑差达到设定的投励滑差或起车监视定时器达到设定的投励时间时,控制器的中央处理器按照捕捉到的准角顺极性投入励磁。若在达到防早投时间后人为的按动投励按钮,则中央处理器立即投入励磁,因此种方式不检测系统滑差与投励角度所以只在极端情况下使用。
控制器设有起车强励功能,可使同步电动机更轻松的牵入同步。强励倍数与强励时间可通过触摸屏整定,非负载过重的情况下请采用系统默认的整定值。
对于全压启动的同步电动机系统,投全压输出信号依然存在,只不过该信号不做连接。
当主断路器断开瞬间,控制器启动逆变灭磁操作,将并持续2秒钟。
4.2.4 励磁就绪输出控制
励磁就绪控制作为允许同步电动机启动的必要条件,连接至同步电动机启动柜的合闸回路中。当系统满足如下条件时,励磁就绪信号才会输出
a励磁工况为工作;
b空气开关位置为合闸;
c励磁系统各项监测正常
d励磁系统无故障
4.2.5 风机控制
在励磁控制器投入励磁的同时,风机控制继电器即吸合启动风机。同时励磁控制器对风机进行监视,当风机出现故障时,励磁故障继电器吸合直到风机故障排出并人为按下信号复位按钮,励磁故障解除。
因风机故障短时间内并不影响系统正常运行,所以风机故障时并不会导致故障停机信号输出。
4.2.6 励磁状态输出
在电机启动结束,系统投入励磁5秒后,系统进入到稳态,此时励磁状态继电器吸合。此信号可用于带有气动离合器的磨机系统,或其他带有负载分合装置的自动投切控制,也可串入离合器的合闸回路,作为允许合离合器的必要条件。
4.2.7 外部强励控制
此功能用于在同步电动机启动结束后,对同步电动机突加负载,如带有离合器的磨机系统离合器的合闸操作。由于离合器抱闸瞬间,磨机的启动力矩较大,超过了同步电动机的力矩,外部强励功能在离合器抱闸的瞬间投入强励,使同步电动机输出更大力矩将磨机拖入同步运行。该信号可取自离合器的状态输出接点。为防止强励造成励磁绕组过热,两次外部强励的间隔为十分钟,若在十分钟之内则控制器不对外部强励信号相应。
4.2.8 低电压强励控制
当电网电压跌落至控制器配置的低电压整定值时,如控制器参数配置为低电压强励使能,则控制器启动强励环节,并且按照1.2倍额定励磁输出;最大的强励输出时间为起车强励时间的2倍。持续低电压或两次低电压时间小于十分钟则不会重复强励。
4.2.9 同步电动机的失步及再整步控制
a失磁失步控制
在同步电动机运行过程中,励磁控制器对同步电动机进行失磁失步检测,当同步电动机的励磁电流低于励磁电流下限设定值并且转子感应电流交变频率高于5HZ时判定为失磁失步。当出现失磁失步情况时控制器故障停机继电器吸合使系统停机。
b带励失步及再整步
在同步电动机运行过程中,励磁控制器对同步电动机运行时的功率因数角进行分析来判定带励失步的发生,当出现带励失步情况时,若设定为动作于停机,则控制器故障停机继电器吸合使系统停机。若设定为动作与再整步,则控制器重新投入到滑差检测环节,在滑差达到设定的投励滑差值并且捕捉到准角后,控制器按照1.2倍额定励磁投入励磁,投入强励的时间为起车强励时间的两倍。
同步电动机的失步再整步过程中,励磁绕组、启动绕组温升很高,频繁的启动将会造成损坏,所以在每次两次失步在整步的间隔时间为十分钟,如果在十分钟内又发生了失步情况,则直接跳闸。
4.2.10 运行方式的控制
通过励磁电流的调节,可以改变同步电动机的运行状态。同步电动机运行在欠励状态,从电网吸收滞后的无功电流;运行在过励状态,从电网吸收超前的无功功率。通过对励磁电流的控制可以提高电网的功率因数。S300微机控制器配置了三种运行方式:自动模式(双闭环,内环为励磁电流调节,外环为功率因数调节)、手动模式(恒励磁电流调节)、开环模式(恒可控硅触发角)。
a自动模式
自动模式为励磁系统正常的工作模式,励磁控制器通过内环励磁电流调节器来维持系统的功率因数恒定,减小了由于电网或负载突然波动对电机稳态运行的影响,并且可以向电网输出一定比例的滞后的无功功率,从而改善电网的功率因数。
为保证系统运行的稳定性,在发生母线PT互感器断线或定子电流小于额定的5%时,系统转入到强制手动模式(即暂时转入手动模式待PT断线或定子电流恢复后回到自动模式)。
在励磁控制器无法按照给定的功率因数来正常调节系统的功率因数时,系统转入到手动模式。
b手动模式
在手动模式下,控制器按恒励磁电流调节,保持励磁电流的实际
输出值与给定值相等。
系统正常运行时,控制器工作在自动模式,手动模式作为备用。 当电机异步启动,失磁及带励失步再整步,以及过励保护、失磁
保护等控制器自动转入手动模式。
c开环模式
开环模式为保守的工作模式,只有在手动模式无法进行励磁调节时自动投入,在该模式下所有的励磁限制、调节功能全部退出,只维持励磁系统最基本的运行。
4.2.11 增磁减磁按钮的控制
因励磁工作模式有自动、手动和开环三种模式,所以在上述三种模式下,增磁减磁按钮分别对应不同的操作。
a在自动模式下,增磁减磁按钮调节的为功率因数的给定值;
b在手动模式下,增磁减磁按钮调节的为励磁电流的给定值;
c在开环模式下,增磁减磁按钮调节的为可控硅的触发角度;
增磁减磁按钮设有按钮粘连检测,当连续按下时间超过5秒时,报警继电器吸合,中央处理器不再响应增磁减磁按钮信号。当增磁减磁按钮释放后,自动恢复到正常状态。
4.2.12反时限最大励磁电流限制
为了防止同步电动机励磁绕组过热损坏绝缘,最大励磁电流限制采用反时限特性,模拟励磁绕组的发热模型,计算公式如下:

其中:
K-为常数,其量纲为时间,这里通过控制器参数配置里的最大强励倍数和对应的时限计算出K值
I-为故障电流,这里取实际的励磁电流
Ip-为保护启动电流,这里取电机的额定电流
r-为常数,这里取2
t-为保护动作时间
其允许的过励时间是随电机励磁大小而变化的,如下图所示曲线。

控制器按照参数配置里的最大强励倍数和对应的时限计算励磁绕组允许的热容量,当电机出现过励情况时对励磁绕组的热容量进行累计,并产生如下动作
①当实际励磁电流超过额定励磁电流时,控制器发出报警提示。如在短时间内励磁电流回归到正常值,报警自动解除
②当累计热容量达到1/2K时,控制器工作模式由自动模式转入手动模式,并且将励磁电流限制在0.9倍额定值。
③当累计热容量达到K时,则控制器立即作用于停机。
4.2.13其它故障监测
①控制器内部电源故障监测——动作于跳闸停机
②空气开关过流故障监测——动作于跳闸停机
③快速熔断器故障监测——动作于跳闸停机
④启动回路误开通监测——动作与跳闸停机
⑤整流桥缺相监测——动作于跳闸停机
⑥触发脉冲丢失监测——动作于跳闸停机
⑦空气开关电机运行状态下分闸——动作于跳闸停机
⑧励磁输出开了监测——动作于跳闸停机
⑨启动柜主断路器跳闸拒动监测——动作于跳闸停机
⑩励磁系统未就绪启动柜主断路器合闸监测——动作于跳闸停机
⑪PT断路监测——动作于故障报警
⑫风机故障监测——动作于故障报警
⑬增磁减磁按钮接点粘连——动作于故障报警
4.2.14防止误操作控制
①在就地操作模式下,除就地——远程按钮切换有效外其它操作均无效。
②在远程操作模式下,除就地——远程按钮切换有效外其它操作均无效。
③工作模式与调试模式的切换只有在装置未投励,主断路器断开的情况下有效。
④在工作模式时,电机启动过程中按下投励按钮,则动作于手动投励。灭磁按钮在主断路器闭合的情况下无效。
⑤空开分合闸操作只有在装置未投励,主断路器断开的情况下有效。

⑶ 自动励磁调节器的发展

励磁调节器的发展经历了几个阶段:30~40年代电力系统规模较小,励磁调节器主要起调压作用,故称调压器,多数为机电型调节器,已趋淘汰;50年代发展了电磁型调节器;60年代后发展为晶闸管励磁调节器,其调节功能也由单纯的调节电压发展为提高电力系统的稳定性。随着控制理论和计算技术的发展,自动励磁调节器也在不断改进:在功能上,向着综合控制方向发展,在原有基础上加入镇定器、欠励磁、过励磁等环节;在控制原理上,向着自适应调节方向发展,即调节器能自动适应系统工况的变动而择优整定其参数;在构成元件上,正向着微机化方向发展。

⑷ 励磁系统的自动调节

自动调节励磁电流的方法
在改变发电机的励磁电流中,一般不直接在其转子回路中进行,因为该回路中电流很大,不便于进行直接调节,通常采用的方法是改变励磁机的励磁电流,以达到调节发电机转子电流的目的。
常用方法有:改变励磁机励磁回路的电阻,改变励磁机的附加励磁电流,改变可控硅的导通角等。
这里主要讲改变可控硅导通角的方法,它是根据发电机电压、电流或功率因数的变化,相应地改变可控硅整流器的导通角,于是发电机的励磁电流便跟着改变。这套装置一般由晶体管,可控硅电子元件构成,具有灵敏、快速、无失灵区、输出功率大、体积小和重量轻等优点。在事故情况下能有效地抑制发电机的过电压和实现快速灭磁。
自动调节励磁装置的组成单元
自动调节励磁装置通常由测量单元、同步单元、放大单元、调差单元、稳定单元、限制单元及一些辅助单元构成。
1.测量单元
被测量信号(如电压、电流等),经测量单元变换后与给定值相比较,然后将比较结果(偏差)经前置放大单元和功率放大单元放大,并用于控制可控硅的导通角,以达到调节发电机励磁电流的目的。
2.同步单元
同步单元的作用是使移相部分输出的触发脉冲与可控硅整流器的交流励磁电源同步,以保证控硅的正确触发。
3.调差单元
调差单元的作用是为了使并联运行的发电机能稳定和合理地分配无功负荷。
4.稳定单元
稳定单元是为了改善电力系统的稳定而引进的单元 。励磁系统稳定单元 用于改善励磁系统的稳定性。
5.限制单元
限制单元是为了使发电机不致在过励磁或欠励磁的条件下运行而设置的。
必须指出并不是每一种自动调节励磁装置都具有上述各种单元,一种调节器装置所具有的单元与其担负的具体任务有关。
自动调节励磁的组成部件
自动调节励磁的组成部件有机端电压互感器、机端电流互感器、励磁变压器;励磁装置需要提供以下电流,厂用AC380v、厂用DC220v控制电源.厂用DC220v合闸电源;需要提供以下空接点,自动开机.自动停机.并网(一常开,一常闭)增,减;需要提供以下模拟信号,发电机机端电压100V,发电机机端电流5A,母线电压100V,励磁装置输出以下继电器接点信号;励磁变过流,失磁,励磁装置异常等。
励磁控制、保护及信号回路由灭磁开关,助磁电路、风机、灭磁开关偷跳、励磁变过流、调节器故障、发电机工况异常、电量变送器等组成。在同步发电机发生内部故障时除了必须解列外,还必须灭磁,把转子磁场尽快地减弱到最小程度,保证转子不过的情况下,使灭磁时间尽可能缩短,是灭磁装置的主要功能。根据额定励磁电压的大小可分为线性电阻灭磁和非线性电阻灭磁。
数字自动调节励磁装置
近十多年来,由于新技术,新工艺和新器件的涌现和使用,使得发电机的励磁方式得到了不断的发展和完善。在自动调节励磁装置方面,也不断研制和推广使用了许多新型的调节装置。由于采用微机计算机用软件实现的自动调节励磁装置有显著优点,目前很多国家都在研制和试验用微型机计算机配以相应的外部设备构成的数字自动调节励磁装置,这种调节装置将能实现自适应最佳调节。

阅读全文

与微机型自动励磁调节装置相关的资料

热点内容
vs2010工具箱介绍 浏览:875
液氮用于制冷是利用其什么性质 浏览:976
大型五金机电市场 浏览:350
空调里制冷的东西是什么样子的 浏览:959
电动工具20伏电源 浏览:982
怎么查wifi多少连接设备连接wifi 浏览:87
同步发电机自励恒压装置应有作用 浏览:421
手机如何查看我的设备 浏览:551
机械租赁多少是一般纳税人 浏览:655
太空仪表怎么设置 浏览:666
探究影响斜面机械效率的实验装置 浏览:712
仪表盘显示有什么意思 浏览:13
铸造件制品图纸怎么看 浏览:882
抽油机电机轴承如何拆卸 浏览:814
暖气一共几个阀门 浏览:787
江西大桶灌装设备哪里有 浏览:363
电脑加装机械硬盘怎么设置 浏览:585
微机型自动励磁调节装置 浏览:505
3207轴承的外径是多少 浏览:878
正规品牌轴承skf多少钱 浏览:537