㈠ 数控机床组成及各部分的工作原理。
数控机床是有控制介质、人机交互设备、计算机数控(CNC)装置、进给伺服系统、主轴驱动系统、可编程控制器(PLC)、反馈系统、自适应控制和机床本体等部分组成,其工作原理如下:
控制介质,要对数控机床进行控制,就必须在人与数控机床之间建立某种联系,这种联系的中间媒介物质就是控制介质。
人机交互设备,数控机床在加工运行时,通常需要操作人员对数控系统进行干预及对输入的加工程序进行编辑、修改和调试,数控系统也要显示数控机床运行状态等。
计算机数控装置,数控装置是数控机床的中枢,目前,绝大部分数控机床采用微型计算机控制。
进给伺服驱动系统,伺服驱动系统的作用是把来自数控装置的位置控制移动指令变成机床工作部件的运动。
主轴驱动系统,机床的主轴驱动系统和进给伺服驱动系统。
可编程控制器,的作用是对数控机床进行辅助控制。
反馈系统,包括位置反馈和速度反馈。
自适应控制器,数控机床工作台的位移量和速度等过程参数可在编写程序时用指令确定。
机床主体,数控机床主体由床身、立柱和工作台等组成。
㈡ 数控机床对进给传动系统的要求是什么
数控机床对进给传动系统的要求:提高传动部件的刚度;减小传动部件的惯量;减小传动部件的间隙;减小系统的摩擦阻力。
数控机床是数字控制机床(Computer numerical control machine tools)的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,用代码化的数字表示,通过信息载体输入数控装置。经运算处理由数控装置发出各种控制信号,控制机床的动作,按图纸要求的形状和尺寸,自动地将零件加工出来。数控机床较好地解决了复杂、精密、小批量、多品种的零件加工问题,是一种柔性的、高效能的自动化机床,代表了现代机床控制技术的发展方向,是一种典型的机电一体化产品。
数控机床的操作和监控全部在这个数控单元中完成,它是数控机床的大脑。与普通机床相比,数控机床有如下特点:
1、对加工对象的适应性强,适应模具等产品单件生产的特点,为模具的制造提供了合适的加工方法;
2、加工精度高,具有稳定的加工质量;
3、可进行多坐标的联动,能加工形状复杂的零件;
4、加工零件改变时,一般只需要更改数控程序,可节省生产准备时间;
5、机床本身的精度高、刚性大,可选择有利的加工用量,生产率高(一般为普通机床的3~5倍);
6、机床自动化程度高,可以减轻劳动强度;
7、有利于生产管理的现代化。数控机床使用数字信息与标准代码处理、传递信息,使用了计算机控制方法,为计算机辅助设计、制造及管理一体化奠定了基础;
8、对操作人员的素质要求较高,对维修人员的技术要求更高;
9、可靠性高。
㈢ 简述数控机床与普通机床进给传动系统结构布置上的区别
⑴数控机床进给传动链首端件是用伺服电动机;
⑵传动机构采用滚珠丝杠副(版个别改装经济型数权控机床仍采用普通丝杠副);
⑶垂直布置的进给传动系统结构中,设置有制动装置;
⑷进给传动系统中的齿轮副,采用了消除齿轮啮合间隙结构。
㈣ 试论述数控机床各组成部分为保证满足主传动系统的功能和要求所采取的各项措施。
3.1 数控机床进给传动系统要求
为了确保数控机床进给传动系统的传动精度和工作平稳性,在设计机械传动装置时,应注意以下要求。
(1) 提高传动精度和刚度。数控机床本身的精度,尤其是进给传动装置的传动精度和定位精度对零件的加工精度起着关键性的作用,是数控机床的特征指标。为此,首先要保证各个传动件的加工精度,尤其是提高滚珠丝杠螺母副(直线进给系统)、蜗杆副(圆周进给系统)的传动精度。另外,在进给传动链中加入减速齿轮以减小脉冲当量(即伺服系统接收一个指令脉冲驱动工作台移动的距离),从系统设计的角度分析,也可以提高传动精度;通过预紧传动滚珠丝杠,消除齿轮、蜗轮等传动件的间隙等办法,来提高传动精度和刚度。
(2) 减少各运动零件的惯量。传动件的惯量对进给传动系统的启动和制动特性都有影响,尤其是高速运转的零件,其惯量的影响更大。在满足传动强度和刚度的前提下,尽可能减小执行部件的质量,减小旋转零件的直径和质量,以减少运动部件的惯量。
(3) 减少运动件的摩擦阻力。机械传动结构的摩擦阻力,主要来自丝杠螺母副和导轨。在数控机床进给传动系统中,为了减小摩擦阻力,消除低速进给爬行现象,提高整个伺服进给系统稳定性,广泛采用滚珠丝杠和滚动导轨以及塑料导轨和静压导轨等。
(4) 响应速度快。所谓快速响应特性是指进给传动系统对输入指令信号的响应速度及瞬态过程结束的迅速程度。快速响应是伺服进给系统的动态性能,反映了系统的跟踪精度。工件加工过程中,工作台应能在规定的速度范围内灵敏而精确地跟踪指令,在运行时不出现丢步和多步现象。进给传动系统响应速度的大小不仅影响到机床的加工效率,而且影响加工精度。设计中应使机床工作台及传动机构的刚度、间隙、摩擦以及转动惯量尽可能达到最佳值,以提高伺服进给系统的快速响应性。
(5) 较强的过载能力。由于电动机频繁换向,且加减速度很快,电动机可能在过载条件下工作,这就要求电动机有较强的过载能力,一般要求在数分钟内过载4~6倍而不损坏。
(6) 稳定性好,寿命长。稳定性是伺服进给系统能够正常工作的最基本条件,特别是在低速进给情况下不产生爬行,并能适应外加负载的变化而不发生共振。稳定性与系统的惯性、刚度、阻尼及增益等都有关系,适当选择的各项参数,并能达到最佳的工作性能,是伺服进给系统设计的目标。
所谓伺服进给传动系统的寿命,主要指其保持数控机床传动精度和定位精度的时间长短,即各传动部件保持其原来制造精度的能力。为此,应合理选择各传动部件的材料、热处理方法及加工工艺,并采用适当的润滑方式和防护措施,以延长其寿命。
(7) 使用维护方便。数控机床属于高精度自动控制机床,主要用于单件、中小批量、高精度及复杂的生产加工,机床的开机率相应就高,因而进给传动系统的结构设计应便于维护和保养,最大限度地减少维修工作量,以提高机床的利用率。