❶ 感应同步器如何在数控机床上应用
感应同步器的工作原理及应用
应同步器与旋转变压器一样,是利用电磁耦合原理,将位移或转角转化成电信号的位置检测装置。实质上,感应同步器是多极旋转变压器的展开形式。感应同步器按其运动形式和结构形式的不同,可分为旋转式(或称圆盘式)和直线式两种。前者用来检测转角位移,用于精密转台,各种回转伺服系统;后者用来检测直线位移,用于大型和精密机床的自动定位,位移数字显示和数控系统中,两者工作原理和工作方式相同。
(一)感应同步器的结构与工作原理
感应同步器由定子和滑尺两部分组成。定尺和滑尺通常以优质碳素钢作为基体,一般选用导磁材料,其膨胀系数尽量与所安装的主基体相近。定尺与滑尺平行安装,且保持一定间隙。定尺表面制有连续平面绕组(在基体上用绝缘的粘合剂贴上铜箔,用光刻或化学腐蚀方法制成方形开口平面绕组);在滑尺的绕组周围常贴一层铝箔,防止静电干扰,滑尺上制有两组分段绕组,分别称为正弦绕组和余弦绕组,,这两段绕组相对于定尺绕组在空间错开1/4的节距,节距用2τ表示,安装时定尺组件与滑尺组件安装在机床的不动和移动部件上,例如工作台和床身,滑尺安装在机床上,并自然接地。工作时,当在滑尺两个绕组中的任一绕组加上激励电压时,由于电磁感应,在定尺绕组中会感应出相同频率的感应电压,通过对感应电压的测量,可以精确的测量出位移量。
直线式感应同步器的结构原理
滑尺在不同位置时定尺上的感应电压。在a点时,定尺与滑尺绕组重合,这时感应电压最大;当滑尺相对于定尺平行移动后,感应电压逐渐减少,在错开1/4节距的b点时,感应电压为零;继续移至1/2节距的c点时,得到的电压值与a点相同,但极性相反;在3/4节距时
达到d点,又变为零;再移动一个节距到e点,电压幅值与a点相同。这样,滑尺在移动一个节距的过程中,感应电压变化了一个余弦波形。由此可见,在励磁绕组中加上一定的交变励磁电压,感应绕组中会感应出相同频率的感应电压,其幅值大小随着滑尺移动作余弦规律变化。滑尺移动一个节距,感应电压变化一个周期。感应同步器就是利用感应电压的变化进行位置检测的。
(二)感应同步器的应用
与旋转变压器一样,有鉴相式和鉴幅式两种工作方式,原理亦相同。
(三)感应同步器的特点
(1)精度高。因为定尺的节距误差有平均自补偿作用,所以尺子本身的精度能做得较高。直线感应同步器对机床位移的测量是直接测量,不经过任何机械传动装置,测量精度主要取决于尺子的精度。感应同步器的灵敏度(或称分辨率),取决于一个周期进行电气细分的程度,灵敏度的提高受到电子细分电路中信噪比的限制,只要对线路进行精心设计和采取严密的抗干扰措施,可以把电噪声减到很低,并获得很高的稳定性。
(2)测量长度不受限制。当测量长度大于250㎜时,可以采用多块定尺接长,相邻定尺间隔可用块规或激光测长仪进行调整,使总长度上的累积误差不大于单块定尺的最大偏差。行程为几米到几十米的中型或大型机床中,工作台位移的直线测量,大多数采用直线式感应同步器来实现。
(3)对环境的适应较高。因为感应同步器金属基板和床身铸铁的热胀系数相近,当温度变化时,还能获得较高的重复精度,另外,感应同步器是非接触式的空间耦合器件,所以对尺面防护要求低,而且可选择耐温性能良好的非导磁性涂料作保护层,加强感应同步器的抗温防湿能力。
(4)维护简单,寿命长。感应同步器的定尺和滑尺互不接触,因此无任何摩擦,磨损,使用寿命长,且无须担心元件老化等问题。
(5)抗干扰能力强,工艺性好,成本较低,便于复制和成批生产。
❷ 检测装置的要求
计算机数控系统的位置控制是将插补计算的理论位置与实际反馈位置相比较,用其差值去控制进给电机。而实际反馈位置的采集,则是由一些位置检测装置来完成的。这些检测装置有旋转变压器、感应同步器、脉冲编码器、光栅、磁栅……
对于采用半闭环控制的数控机床,其闭环路内不包括机械传动环节,它的位置检测装置一般采用旋转变压器,或高分辨率的脉冲编码器,装在进给电机或丝杠的端头,旋转变压器(或脉冲编码器)每旋转一定角度,都严格地对应着工作台移动的一定距离。测量了电机或丝杠的角位移,也就间接地测量了工作台的直线位移。
对于采用闭环控制系统的数控机床,应该直接测量工作台的直线位移,可采用感应同步器、光栅、磁栅等测量装置。由工作台直接带动感应同步器的滑动尺移动的同时,与装在机床床身上的定尺配合,测量出工作台的实际位移值。数控机床的加工精度主要由检测系统的精度决定。位移检测系统能够测量的最小位移量称为分辨率。分辨率不仅取决于检测元件本身,也取决于测量线路。数控机床对检测装置的主要要求有:可靠性高和高抗干扰性、满足精度和速度要求、使用维护方便、成本低。
对于不同类型的数控机床,因工作条件和检测要求不同,可以采用以下不同的检测方式。
❸ 数控机床故障诊断与维修常用的检测装置有哪些
数控机床中常见的位置检测装置包括感应同步器、旋转变压器、磁尺、光栅和激光干涉仪等,它们能精准测量机床的运动位置。这些装置通常安装在机床的关键部位,确保加工过程的精确性和稳定性。
在维修过程中,维修人员还会用到多种检测工具。逻辑测试笔可以用于检查电路中的逻辑电平,信号发生笔则用来生成测试信号,万用表可以测量电压、电流和电阻,示波器用于观察信号波形,检验棒、百分表、千分表、千分尺等精密测量工具用于检测零件的尺寸和形状,激光干涉仪和水平仪则用于精确测量距离和平面度,方规、角尺和平尺用于测量角度和平面。
除了上述工具,还有振动检测器用于监测机床振动情况,红外温度检测器可以测量机床表面温度,转速检测器用于测量机床转速,噪声检测器则用来检测机床工作时的噪音。这些检测装置和工具共同作用,使得维修工作更加高效、准确。
在维修过程中,技术人员还需要根据具体故障情况选择合适的检测工具。例如,如果遇到位置偏差问题,可以使用激光干涉仪和磁尺进行精确测量;若需要检查电路问题,则逻辑测试笔和信号发生笔会派上用场;而对于温度异常,则红外温度检测器是不可或缺的工具。
总之,数控机床的维修工作需要依赖多种检测装置和工具的支持,这些设备和技术共同构成了完整的维修体系,确保机床能够高效、稳定地运行。
❹ 机床测头都能做什么
COMP系列机床测头采用最稳定的3点触发结构设计,在测头的内部有一个触发机构,当测针受外力作用产生径向或轴向移动时,触发机构触发,测头内部的电路向接收器发出触发信号,接收器将信号传送给数控机床,获得机床各轴位置坐标,再根据不同测量点的数据,计算出需要测量结果。
❺ 目前在高精度数控机床中常使用什么作为位置检测装置
位置检测装置在抄数控机床控制中直接决定机床精度的好坏,主要由数控系统和伺服系统决定。
位置检测方式只测量位移增量,并用数字脉冲的个数来表示单位位移(即最小设定单位)的数量,每移动一个测量单位就发出一个测量信号。
其优点是检测装置比较简单,任何一个对中点都可以作为测量起点。但在此系统中,移距是靠对测量信号累积后读出的,一旦累计有误,此后的测量结果将全错。另外在发生故障时(如断电)不能再找到事故前的正确位置,事故排除后,必须将工作台移至起点重新计数才能找到事故前的正确位置。脉冲编码器,旋转变压器,感应同步器,光栅,磁栅,激光干涉仪等都是增量检测装置
❻ 数控机床对位置检测装置的要求有哪些 详细
直接测量和间接测量
1.直接测量
直接测量是将检测装置直接安装在执行部件上,如光栅、感应同步器等用来直接测量工作台的直线位移,位置检测装置安装在执行部件(即末端件)上直接测量执行部件末端件的直线位移或角位移,可以构成闭环进给伺服系统。测量方式有直线光栅、直线感应同步器、磁栅、激光干涉仪等测量执行部件的直线位移。由于此种检测方式是采用直线型检测装置对机床的直线位移进行测量,因此,其优点是直接反映工作台的直线位移量;缺点是要求检测装置与行程等长,对大型的数控机床来说,这是一个很大的限制。
2.间接测量
间接测量装置是将检测装置安装在滚珠丝杠或驱动电动机轴上,通过检测转动件的角位移来间接测量执行部件的直线位移。
位置检测装置安装在执行部件前面的传动元件或驱动电动机轴上,测量其角位移,经过传动比变换以后才能得到执行部件的直线位移量,这样可以构成闭环伺服进给系统,如将脉冲编码器装在电动机轴上。
间接测量使用可靠、方便,无长度限制;其缺点是,在检测信号中加入了直线转变为旋转运动的传动链误差,从而影响测量精度。一般需对数控机床的传动误差进行补偿,才能提高定位精度。
除了以上位置检测装置,伺服系统中往往还包括检测速度的元件,用以检测和调节发动机的转速。常用的元件是测速发电机。
位置检测装置是数控机床伺服系统的重要组成部分。它的作用是检测位移和速度,发送反馈信号,构成闭环或半闭环控制。数控机床的加工精度主要由检测系统的精度决定。不同类型的数控机床,对位置检测元件,检测系统的精度要求和被测部件的最高移动速度各不相同。现在检测元件与系统的最高水平是:被测部件的最高移动速度高至240m/min时,其检测位移的分辨率(能检测的最小位移量)可达1μm,如24m/min时可达0.1μm。最高分辨率可达到
0.01μm。
数控机床对位置检测装置有如下要求:
(1)受温度,湿度的影响小,工作可靠,能长期保持精度,抗干扰能力强。
(2)在机床执行部件移动范围内,能满足精度和速度的要求。
(3)使用维护方便,适应机床工作环境。
(4)成本低。
❼ 常用位置检测装置是如何进行分类的
常用位置检测装置分为位移、速度和电流三品种型。按安装的位置及耦合右式分为间接丈量和间接丈量;按丈量方式分为增量式和绝对式;按检测信号的类型分为模仿式和数字式;按活动体例分为反转展转式和直线式检测安装;按信号转换的原型可分为光电效应、光栅效应、电磁感应道理、电压效应、电阻效应和磁阻效应等类检测安装。数控机床中采用的位置检测安装根基分为直线式和扭转式两大类。直线式位置检测安装用来检测活动部件的直线位移量;扭转式位置检测安装用来检测反转展转部件的动弹位移量。
(1)数字式和模仿式检测。从检测信号的类型来分,检测元件可分为数字式和模仿式。统一种检测元件既能够做成数字式,也能够做成模仿式,次要取决于利用体例和丈量线路。所谓数字式是指将机械位移量改变为数字脉冲的丈量安装,而模仿式是指将机械位移量改变为电压幅值或相位的丈量安装。
(2)增量式和绝对式检测。从丈量的体例来分,检测元件可分为增量式和绝对式。增量式检测的是相对位移量,即位移的增量值,工作台挪动的距离是靠对丈量信号的计数后给出的。所以,数控机床上往往要给出一个固定的参考点,增量式检测元件就是反映相对此参考点的增量值。增量式安装比力简单,使用较广。
绝对式检测的是位移的绝对位置,每一被测点均有一个响应的信号作为丈量值。检测没有累积误差,一旦堵截电源后位相信息也不丢失,但布局复杂。
(3)扭转型和直线型。就检测元件的本身来分,可分为扭转型和直线型。扭转型也称间接检测,因为机床工作台的直线位移与驱动电动机的扭转角度有固定的比例关系,因而,能够采用检测驱动电动机的扭转角度来间接测得工作台的挪动量,由此所形成的位置检测系统是半闭环节制系统。扭转型无检测长度的限制,利用便利靠得住。但丈量信号插手了直线活动改变为扭转活动的传动链误差,丈量精度略低些。
直线型也称间接检测,就是对机床工作台的直线挪动采用间接直线检测,直观地反映其位移量,其所形成的位置检测系统是全闭环节制系统,其检测安装要与行程等长。对于大型数控机床来说,遭到了必然限制,常用于精度要求较高的中小型数控机床上。
❽ 检测装置的分类
增量式检测方式只测量位移增量,每移动一个测量单位就发出一个测量信号。其优点是检测装置比较简单,任何一个对中点都可以作为测量起点。移动距离是靠对测量信号计数后读出的,一旦计数有误,此后的测量结果将全错。另外在发生故障时(如断电等)不能再找到事故前的正确位置,事故排除后,必须将工作台移至起点重新计数才能找到事故前的正确位置。
绝对值式测量方式可以避免上述缺点,它的被测量的任一点的位置都以一个固定的零点作基准,每一被测点都有一个相应的测量值。采用这种方式,分辨率要求愈高,结构也愈复杂。 数字式检测是将被测量单位量化以后以数字形式表示,它的特点是:
①被测量量化后转换成脉冲个数,便于显示处理;
②测量精度取决于测量单位,与量程基本无关;
③检测装置比较简单,脉冲信号抗干扰能力强。
模拟式检测是将被测量用连续的变量来表示。在大量程内作精确的模拟式检测在技术上有较高要求,数控机床中模拟式检测主要用于小量程测量。它的主要特点是:
①直接对被测量进行检测,无须量化;
②在小量程内可以实现高精度测量;
③可用于直接检测和间接检测。
对机床的直线位移采用直线型检测装置测量,称为直接检测。其测量精度主要取决于测量元件的精度,不受机床传动精度的直接影响。但检测装置要与行程等长,这对大型数控机床来说,是一个很大的限制。
对机床的直线位移采用回转型检测元件测量,称为间接测量。间接检测可靠方便,无长度限制,缺点是在检测信号中加大了直线转变为旋转运动的传动链误差,从而影响检测精度。因此,为了提高定位精度,常常需要对机床的传动误差进行补偿。