① 目前全世界海洋波浪能发电的现状(包括中国)及你对此项目前景的评估
波浪能发电顶级技术在中国,关键技术问题已突破,即将进入产业化发展.目前对波浪能储量的估算是计算波浪沿海岸消散的功率,大洋的波浪具有更大的功率,开发前景相当广阔.
海洋波浪具有巨大的能量,已成为世界各主要国家争相研究开发的焦点之一,抢占这一技术领域的制高点,具有非常重大的战略意义。
100多年来,世界各国科学家提出了许多设想,发明了各种各样的波浪能发电装置,提出的发明专利申请超过千项,尤其是近年来受能源危机和环境污染的巨大压力,清洁无污染、可再生、环境友好、不消耗现有资源的海洋能技术更是受到各海洋国家政府和企业的普遍重视,西方国家利用其科技和技术优势,纷纷投入巨资对各种装置展开试验,并且取得了一定的成绩。比较著名的包括“点头鸭”( Duck)式波能转换装置,海蛇号(Pelamis)波力装置,AquaBuoy波能装置Manchester_bobber 波能装置,Fred_olsen_wec 波能装置,Seavolt_wave_rider波能装置,振荡水柱(Oscillating WaveConverter,简称OWC)式波能转换装置,OWEC波能装置,三叉戟式波能装置,海狗号(Seadog)波能装置,收缩波道式波能转换装置,摆式波能转换装置,振荡浮子式波能转换装置,PS Frog and Frog波能装置等。
我国也对国外的波浪技术展开了跟踪研究,从20世纪80年代初开始对固定式和漂浮式振荡水柱波能装置以及摆式波能装置进行研究。1985年,中科院广州能源研究所成功开发利用对称翼透平的航标灯用波浪发电装置。在山东大管岛研制了一套摆式装置.2005年初,在广东省汕尾市遮浪半岛,我国自主研发的波浪能独立稳定发电系统(采用振荡水柱+液压转换装置)实海况试验获得成功,这是世界首座波浪能独立稳定发电系统。此外,我国还研制了一种波浪能发电系统,即振荡浮子岸式波能转换装置,采用振荡浮子作为波浪能的吸收载体,然后将浮子吸收的能量通过一个液压装置转换出去,用来驱动电机发电。
从国内外试验应用的情况来看,由于海洋环境的复杂性和波浪能源的多变性,普遍没有达到预期的效果。主要表现在能源输出的稳定性问题、能源汇集问题、能源利用效率问题、潮汐变化的影响、采用复杂结构产生的成本效益问题、装置结构的安全性问题、装置的抗腐蚀问题、海洋环境的建设安装问题、与现有生产技术、设备的通用、配套等问题。导致波浪能利用技术多年来一直进展缓慢,没有取得关键性的突破,也导致国内不少人对波浪能利用产生悲观情绪。
长期以来,人们都知道波浪具有巨大的能量,但都普遍认为波浪能是最不稳定的能源,在应用中偏重于提高单次波浪的利用,从波浪能所固有的特点来看,这是十分不利的,我们正常所能应用的波浪能与暴风时所具有的波浪能往往相差几个数量级,为了提高利用单次波浪的功率,往往把单个装置做得很大,而一旦风暴来临,则往往超出其结构、材料的应力,造成装置的破坏,这些从英国制造的第一座(OSPREY),挪威的500 kW岸式波能装置(MOWC),中国3 kW岸式振荡水柱波力电站的研建过程中可以得到验证。
实质上波浪能是一种随机产生的能源,虽然单个波浪的波高,波长,周期,位置都随时间而不同,但是一定水域内的波浪能量随时间的变化是缓慢的,通过提高波浪能采集的覆盖率和进行能量聚集,就可以得到强大稳定的能量输出。上述难题都以基本解决,相信不久人们就能用上这一清洁环保,无消耗无排放,环境友好的再生电力.
② 海洋波浪能的开发利用
波浪能量如此巨大,存在如此广泛,自古吸引着沿海的能工巧匠们,想尽各种办法,企图驾驭海浪为人所用。
波浪所蕴涵的能量主要是是指海洋表面波浪所具有的动能和势能。波浪的能量与波高的平方、波浪的运动周期以及迎波面的宽度成正比。波浪能是海洋能源中能量最不稳定的一种能源。台风导致的巨浪,其功率密度可达每米迎波面数千kW,而波浪能丰富的欧洲北海地区,其年平均波浪功率也仅为20~40kW/m中国海岸大部分的年平均波浪功率密度为2~7kW/m。
全世界波浪能的理论估算值也为109kW量级。利用中国沿海海洋观测台站资料估算得到,中国沿海理论波浪年平均功率约为1.3X107kW。但由于不少海洋台站的观测地点处于内湾或风浪较小位置,故实际的沿海波浪功率要大于此值。其中浙江、福建、广东和台湾沿海为波能丰富的地区。
将波浪能收集起来并转换成电能或其他形式能量的波能装置有设置在岸上的和漂浮在海里的两种。
按能量传递形式分类有直接机械传动、低压水力传动、高压液压传动、气动传动4种。
其中气动传动方式采用空气涡轮波力发电机,把波浪运动压缩空气产生的往复气流能量转换成电能,旋转件不与海水接触,能作高速旋转,因而发展较快。
波力发电装置五花八门,不拘一格,有点头鸭式、波面筏式、波力发电船式、环礁式、整流器式、海蚌式、软袋式、振荡水柱式、多共振荡水柱式、波流式、摆式、结合防波堤的振荡水柱式、收缩水道式等十余种。
全世界波浪利用的机械设计数以千计,获得专利证书的也达数百件,因此波浪能利用被称为“发明家的乐园”。
最早的波浪能利用机械发明专利是1799年法国人吉拉德父子获得的,他们尝试为一种可以附在漂浮船只上的巨大杠杆申请专利,它可以随海浪一起波动来驱动岸边的水泵和发电机。1854-1973年的119年间,英国登记了波浪能发明专利340项,美国为61项。在法国,则可查到有关波浪能利用技术的600种说明书。
早期海洋波浪能发电付诸实用的是气动式波力装置。道理很简单,就是利用波浪上下起伏的力量,通过压缩空气,推动汲筒中的活塞往复运动而做功。1910年,法国人布索.白拉塞克在其海滨住宅附近建了一座气动式波浪发电站,供应其住宅l000瓦的电力。这个电站装置的原理是:与海水相通的密闭竖管中的空气因波浪起伏而被压缩或抽空稀薄,驱动活塞做往复运动,再转换成发电机的旋转运动而发出电力。
1960年代,日本研制成功用于航标灯浮体上的气动式波力发电装置。此种装置已经投入批量生产,产品额定功率从60瓦到500瓦不等。产品除日本自用外,还出口,成为仅有的少数商品化波能装备之一。该产品发电的原理就像一个倒置的打气筒,靠波浪上下往复运动的力量吸、压空气,推动涡轮机发电。
有关专家估计,用于海上航标和孤岛供电的波浪发电设备有数十亿美元的市场需求。这一估计大大促进了一些国家波力发电的研究。
1970年代以来,英国、日本、挪威等国为波力发电研究投入大量人力物力,成绩也最显著。英国曾计划在苏格兰外海波浪场,大规模布设“点头鸭”式波浪发电装置,供应当时全英所需电力。这个雄心勃勃的计划,后因装置结构过于庞大复杂成本过高而暂时搁置。
1980年代,日本“海明”波浪发电试验船取得年发电19万度的良好成绩,实现了海上浮体波浪电站向陆地小规模送电。日本已将“海明”波浪发电船列为“离岛电源”的首选方案,继续研究改进。
中国波力发电研究成绩也很显著。1970年代以来,上海、青岛、广州和北京的五六家研究单位开展了此项研究。用于航标灯的波力发电装置也已投入批量生产。向海岛供电的岸式波力电站也在试验之中。
③ 波浪能发电类型
波浪能发电的方法繁多,主要分为三大类:机械式、气动式和液压式。
机械式发电装置通过传动机构,如齿条、齿轮和棘轮,将波浪的往复运动转化为单向旋转,驱动发电机。早期的机械装置结构笨重,可靠性较低,尚未广泛实用。例如,齿条与浮子联动,带动左右齿轮旋转,再通过多级齿轮将能量传递至发电机。
气动式则利用气室和气袋等装置,将波浪能转换为空气能,进而驱动气轮机发电。如浮漂式装置,浮体中心管随着波浪起伏,导致气室容积变化,空气进出气轮机,驱动发电。日本益田善雄的导航灯浮标成功应用了气动式装置。1976年,威尔斯发明的对称翼气轮机简化了气动系统,成为主流技术。
液压式通过泵液装置,将波浪能转化为液体压能或位能,再驱动油压马达或水轮机发电。如点头鸭装置,通过波浪产生的动压力和静压力驱动鸭嘴浮动,转换为油压,驱动发电机组。然而,点头鸭装置结构复杂,海上工作安全性较低,未广泛采用。
最后是收缩斜坡聚焦波道式装置,波浪在变窄的波道中增压,转化为海水位能,驱动低水头水轮发电。这种装置在挪威奥依加登岛的发电站已取得成功,但对地形条件有较高要求。
总体来说,这三种类型的波浪能发电装置各有优缺点,机械式和气动式在技术上各有突破,而液压式在能量转换和稳定性上表现出色,但实际应用中还需考虑多种因素。
波浪能发电(wave power generation)是以波浪的能量为动力生产电能。海洋波浪蕴藏着巨大的能量,正弦波浪每米波峰宽度的功率P≈HT kW/m。式中,H为波高,m;T为波周期,s。通过某种装置可将波浪的能量转换为机械的、气压的或液压的能量,然后通过传动机构、气轮机、水轮机或油压马达驱动发电机发电。全球有经济价值的波浪能开采量估计为1~10亿kW。中国波浪能的理论储量为7000万kW左右。
④ 波浪能发电的历史
1799年,法国的吉拉德父子,获得了利用波浪能的首项专利。1910年,法国的波契克斯·普莱西克,建造了一套气动式波浪能发电装置,供应他自己住宅1 kW的电力。1965年,日本的益田善雄发明了导航灯浮标用气轮机波浪能发电装置,获得推广,成为首次商品化的波浪能发电装置。受1973年石油危机的刺激,从20世纪70年代中期起,英国、日本、挪威等波浪能资源丰富的国家,把波浪能发电作为解决未来能源的重要一环,大力研究开发。在英国,索尔特发明了点头鸭装置,科克里尔发明了波面筏装置,国家工程试验室发明了振荡水柱装置,考文垂理工学院发明了海蚌装置。1978年,日本建造了一艘长80 m、宽12 m、高5.5 m称为“海明号”的波浪能发电船。该船有22个底部敞开的气室,每两个气室可装设一台额定功率为125 kW的气轮机发电机组。1978~1986年,日本、美国、英国、加拿大、爱尔兰五国合作,先后三次在日本海由良海域对“海明号”进行了波浪能发电史上最大规模的实海原型试验。但因发电成本高,未获商业实用。1985年,英国、中国各自研制成功采用对称翼气轮机的新一代导航灯浮标用的波浪能发电装置,挪威在卑尔根附近的奥依加登岛建成了一座装机容量为250 kW的收缩斜坡聚焦波道式波浪能发电站和一座装机容量为500 kW的振荡水柱气动式波浪能发电站,标志着波浪能发电站实用化的开始。
⑤ 波浪能发电的类型
波浪能发电方式数以千计,按能量中间转换环节主要分为机械式、气动式和液压式三大类。 通过某种泵液装置将波浪能转换为液体(油或海水)的压能或位能,再由油压马达或水轮机驱动发电机发电的方式。点头鸭液压式装置简图。波浪运动产生的流体动压力和静压力使靠近鸭嘴的浮动前体升沉并绕相对固定的回转轴往复旋转,驱动油压泵工作,将波浪能转换为油的压能,经油压系统输送,再驱动油压发电机组发电。点头鸭装置有较高的波浪能转换效率,但结构复杂,海上工作安全性差,未获实用。图6是收缩斜坡聚焦波道式装置简图。波浪进入宽度逐渐变窄、底部逐渐抬高的收缩波道后,波高增大,海水翻过导波壁进入海水库,波浪能转换为海水位能,然后用低水头水轮发电机组发电。聚焦波道装置已在挪威奥依加登岛250 kW波浪能发电站成功的应用。这种装置有海水库储能,可实现较稳定和便于调控的电能输出, 是迄今最成功的波浪能发电装置之一。但对地形条件依赖性强, 应用受到局限。