导航:首页 > 装置知识 > 论文实验装置图重复

论文实验装置图重复

发布时间:2025-06-18 10:14:06

Ⅰ 欧姆定律的实验验证

欧姆第一阶段的实验是探讨电流产生的电磁力的衰减与导线长度的关系,其结果于1825年5月在他的第一篇科学论文中发表。在这个实验中,他碰到了测量电流强度的困难。在德国科学家施威格发明的检流计启发下,他把斯特关于电流磁效应的发现和库仑扭秤方法巧妙地结合起来,设计了一个电流扭力秤,用它测量电流强度。欧姆从初步的实验中发出,电流的电磁力与导体的长度有关。其关系式与今天的欧姆定律表示式之间看不出有什么直接联系。欧姆在当时也没有把电势差(或电动势)、电流强度和电阻三个量联系起来 。
在欧姆之前,虽然还没有电阻的概念,但是已经有人对金属的电导率(传导率)进行研究。欧姆很努力,1825年7月,欧姆也用上述初步实验中所用的装置,研究了金属的相对电导率。他把各种金属制成直径相同的导线进行测量,确定了金、银、锌、黄铜、铁等金属的相对电导率。虽然这个实验较为粗糙,而且有不少错误,但欧姆想到,在整条导线中电流不变的事实表明电流强度可以作为电路的一个重要基本量,他决定在下一次实验中把它当作一个主要观测量来研究。
在以前的实验中,欧姆使用的电池组是伏打电堆,这种电堆的电动势不稳定,使他大为头痛。后来经人建议,改用铋铜温差电偶作电源,从而保证了电源电动势的稳定。
1826年,欧姆用上面图中的实验装置导出了他的定律。在木质座架上装有电流扭力秤,DD'是扭力秤的玻璃罩,CC'是刻度盘,s是观察用的放大镜,m和m'为水银杯,abb'a'为铋框架,铋、铜框架的一条腿相互接触,这样就组成了温差电偶。A、B是两个用来产生温差的锡容器。实验时把待研究的导体插在m和m'两个盛水银的杯子中,m和m'成了温差电池的两个极 。

欧姆准备了截面相同但长度不同的导体,依次将各个导体接入电路进行实验,观测扭力拖拉磁针偏转角的大小,然后改变条件反复操作,根据实验数据归纳成下关系:
x=q/(b+l)式中x表示流过导线的电流的大小,它与电流强度成正比,A和B为电路的两个参数,L表示实验导线的长度。1826年4月欧姆发表论文,把欧姆定律改写为:x=ksa/ls为导线的横截面积,K表示电导率,A为导线两端的电势差,L为导线的长度,X表示通过L的电流强度。如果用电阻l'=l/ks代入上式,就得到X=a/I'这就是欧姆定律的定量表达式,即电路中的电流强度和电势差成正比而与电阻成反比。

Ⅱ 如何计算重复性

将测量列(10次测量结果,n=10)用贝塞尔公式计算即可。如果要计算由标准装置重复性引入的标准不确定度,则应该用平均值的实验标准偏差来表征。

即:还要将该单次测量结果的实验标准偏差(重复性)再除以根号m(m为实际测量次数,通常m≤n,自由度仍然为n-1。

贝塞尔曲线(Bézier curve),又称贝兹曲线或贝济埃曲线,是应用于二维图形应用程序的数学曲线。一般的矢量图形软件通过它来精确画出曲线,贝兹曲线由线段与节点组成,节点是可拖动的支点,线段像可伸缩的皮筋,我们在绘图工具上看到的钢笔工具就是来做这种矢量曲线的。

贝塞尔曲线是计算机图形学中相当重要的参数曲线,在一些比较成熟的位图软件中也有贝塞尔曲线工具,如PhotoShop等。在Flash4中还没有完整的曲线工具,而在Flash5里面已经提供出贝塞尔曲线工具。

Ⅲ 阿司匹林的制备

阿司匹灵药片通常由约0.32克乙酰水杨酸与少量淀粉混合并压紧而成。淀粉的作用在于使其粘合成片。加过缓冲剂的阿司匹灵通常含有一种碱性缓冲剂,以减少对胃壁粘膜的酸性刺激作用,因为乙酰化后的产物并非毫无刺激性。一种称为Bufferin的药片含阿司匹灵5谷、二羟胺基乙酸铝0.75谷和碳酸镁1.5谷。复合解痛片通常含阿司匹灵,非那西汀和咖啡因。例如,Empirin即是一号一种典型的APC(取Aspirin,Phenactin和Caffein三者之字首并合而成),它含有阿司匹灵0.233克,非那西汀0.166克,咖啡因0.03克。

阿司匹灵乃是现代生活中最大众化的万应药(冶百病的药)之一,而且,尽管它的奇妙历史开始于200年前,关于这个不可思议的药我们仍有许多东西该学。虽然至今仍然无人确切知道它究竟怎样或为什么会起作用,美国每年消耗的阿司匹灵量却在二千万磅以上。

阿司匹灵的历史开始于1763年6月2日,当时一位名叫Edward Stone的牧师在伦敦皇家学会宣读一篇论文,题为“关于柳树治愈寒颤病成功的报告”。Stone 所指的寒颤病实为现在所称的疟疾,但他用”治愈”这两个字则是乐观主义的;他的柳树皮提出物真正所起的作用是缓减这种疾病的发烧症状,几乎一世纪以后,一位苏格兰医生想证实这种柳树皮提出物是否也能缓和急性风湿病。最终,发现这种提出物是一种强效的止痛、退热和抗炎(消肿)药。

此后不久,从事研究柳树皮提出物和绣线菊属植物的花(它含同样的要素)的有机化学家分离和鉴定了其中的活性成分,称之为水杨酸(Salicylic Acid);Salicylic取自拉丁文Salix,即柳树的拉丁文植物名。随后,此化合物便能用化学方法大规模生产以供医学上的使用。不久以后,水杨酸作为一种药物使用受到它的酸性的严重限制,这一点巳变得极其明显。

水杨酸

这个物质严重刺激口腔、食道和胃壁的粘膜。设法克服这个问题的第一个尝试是改用酸性较小的钠盐(水杨酸钠),但这个办法仅仅取得部分成功。水杨酸钠的刺激性虽然小些,但却有令人极为不愉快的甜味,以致大多数病人不愿服用它。直到接近十九世纪初期(1893年)才出现一个突破,当时在Bayer公司德国分行工作的化学师Felix Hoffmann发明了一条实际可行的合成乙酰水杨酸的路线。乙酰水杨酸被证明能体现与水杨酸钠相同的所有医学上的性质,但没有令人不愉快的味道或对粘膜的高度刺激性。Bayer公司德国分行遂把它的这个新产品称为阿司匹灵(Aspirin),这个名称是从A(指Acetyl,即乙酰基)和字根spir(绣线菊属植物的拉丁文名spirea)导出的。阿司匹灵的来历是目前使用的许多药品的典型。许多医药品开始时都以植物的提出物或民间药物出现,然后由化学家分离出其中的活性成分,测定其结构并加以改良,结果才变成为比原来更好的药物。

阿 司 匹 林

阿司匹灵的作用方式在最近几年方始逐渐得到阐明。一组崭新的叫做前列腺素的化合物巳被证明与身体的免疫反应有关联。当身体功能的正常运行受到外来物质或受到不习惯的刺激时,会激发前列腺素的合成。这类物质与范围广泛的生理过程有关联,并被认为是负责引起疼痛、发烧和局部发炎的。

最近,已经证实阿司匹灵能阻碍体内合成前列腺素,因而能减弱身体的免疫反应(也就是一些让你知道什么地方出现了毛病的反应)的症状(发烧、疼痛、发炎)。一个更为惊人的发现是,前列腺素F2a能引起子宫平滑肌收缩,从而导致流产。事实上,根据革一假设,IUD(控制生育的子宫内避孕器)是由于避孕使子宫膜受到微弱刺激,激起局部连续不断地合成前列遥素而奏效的。前列腺素之间的联系,不免使人怀疑经常服用阿司匹灵的妇女也许不应再信任IUD这种避孕法了。然而,直到目前,还没有发现服用阿司匹灵和IUD失败之间的肯定的联系。

实验4- 3 阿司匹林的制备
实验原理

水杨酸 乙酸酐 乙酰水杨酸 乙酸
(阿司匹林)
水杨酸在酸性条件下受热,还可发生缩合反应,生成少量聚合物。

实验用品
仪器:三颈瓶(100mL) 、球形冷凝管 、 减压过滤装置、电炉与调压器、表面皿、水浴锅、温度计(100℃)
药品:水杨酸(C.P.)、乙酸酐(C.P.) 、浓硫酸 、盐酸溶液(1∶2)、 饱和碳酸氢钠溶液
实验装置图

图4-3-2减压过滤装置
实验步骤
(1) 酰化
实验装置:普通回流装置
加料量:
水杨酸: 4g
乙酸酐(新蒸馏): 10mL
浓硫酸: 7滴

反应温度 :75~80℃
水浴温度 :80~85℃
反应时间 :20min
(2) 结晶、抽滤
实验装置:减压过滤装置
试剂用量:
蒸 馏 水:100mL
冰-水浴冷却
放置20min
(3) 初步提纯
实验装置; 减压过滤装置
试剂用量:
饱和碳酸钠溶液:50mL
盐酸溶液:30mL
结晶析出:冰-水浴冷却

(4) 重结晶
实验装置; 普通回流装置
减压过滤装置
试剂用量: 95%乙醇
适量水

(5) 称量、计算收率

注意事项
(1)乙酸酐有毒并有较强烈的刺激性,取用时应注意不要与皮肤直接接触,防止吸入大量蒸气。加料时最好于通风橱内操作,物料加入烧瓶后,应尽快安装冷凝管,冷凝管内事先接通冷却水。
(2)反应温度不宜过高,否则将会增加副产物的生成。
(3)由于阿司匹林微溶于水,所以洗涤结晶时,用水量要少些,温度要低些,以减少产品损失。
(4)浓硫酸具有强腐蚀性,应避免触及皮肤或衣物。

阿司匹林化学名称为乙酰水杨酸,是白色晶体,熔点135℃,微溶于水(37℃时,1g/100gH20)。
早在18世纪时,人们就已从柳树中提取了水杨酸,并发现它具有解热、镇痛和消炎作用,但其刺激口腔及胃肠道黏膜。水杨酸可与乙酸
酐反应生成乙酰水杨酸,即阿司匹林,它具有与水杨酸同样的药效。近年来,科学家还新发现了阿司匹林具有预防心脑血管疾病的作用,因而得到高度重视。
本实验以浓硫酸为催剂,使水杨酸与乙酸酐在75℃左右发生酰化反应,制取阿司匹林。

阿司匹林可与碳酸氢钠反应生成水溶性的钠盐,而作为杂质的副产物则不能与碱作用,可在用碳酸氢钠溶液进行纯化时将其分离除去。

于干燥的圆底烧瓶中加入4g水杨酸和10mL新蒸馏的乙酸酐,在振摇下缓慢滴加7 滴浓硫酸,参照图4-3-1安装普通回流装置。通水后,振摇反应液使水杨酸溶解。然后用水浴加热,控制水浴温度在80~85℃之间,反应20min。
撤去水浴,趁热于球形冷凝管上口加入2mL蒸馏水,以分解过量的乙酸酐。
稍冷后,拆下冷凝装置。在搅拌下将反应液倒入盛有100mL冷水的烧杯中,并用冰-水浴冷却,放置20min。待结晶析出完全后,减压过滤。
将粗产品放入100mL烧杯中,加入50mL饱和碳酸钠溶液并不断搅拌,直至无二氧化碳气泡产生为止。减压过滤,除去不溶性杂质。滤液倒入洁净的烧杯中,在搅拌下加入30mL盐酸溶液,阿司匹林即呈结晶析出。将烧杯置于冰-水浴中充分冷却后,减压过滤。用少量冷水洗涤滤饼两次,压紧抽干,称量粗产品
将粗产品放入100mL锥形瓶中,加入95%乙醇和适量水(每克粗产品约需3mL95%乙醇和5mL水),安装球形冷凝管,于水浴中温热并不断振摇,直至固体完全溶解。拆下冷凝管,取出锥形瓶,向其中缓慢滴加水至刚刚出现混浊,静止冷却。结晶析出完全后抽滤。
将结晶小心转移至洁净的表面皿上,晾干后称量,并计算收率。

Ⅳ 戴维森的历史再现

戴维森花了两年多的时间继续这项研究,设计和安装了新的仪器设备,并用不同的金属材料作靶子。工作虽然没有多大进展,但却为以后的工作作了技术准备。1925 年,戴维森和他的助手革末(L.H.Germer,比戴维森小15岁)又开始了电子束的轰击实验。一次偶然的事件使他们的工作获得了戏剧性的进展。有一天,正当革末给管子加热、去气,用于吸附残余气体分子的炭阱瓶突然破裂了,空气冲进了真空系统,致使处于高温的镍靶严重氧化。过去这种事情也发生过,整个管子只好报废。这次戴维森决定采取修复的办法,在真空和氢气中加热、给阴极去气。经过两个月的折腾,又重新开始了正式试验。在这中间,奇迹出现了。 1925年5月初,结果还和1921年所得差不多,可是5月中曲线发生特殊变化,出现了好几处尖锐的峰值。他们立即采取措施,将管子切开,看看里面发生了什么变化。经公司一位显微镜专家的帮助,发现镍靶在修复的过程中发生了变化,原来磨得极光的镍表面,现在看来构成了一排大约十块明显的结晶面。他们断定散射曲线的原因就在于原子重新排列成晶体阵列。
这一结论促使戴维森和革末修改他们的实验计划。既然小的晶面排列很乱,无法进行系统的研究,他们就作了一块大的单晶镍,并切取一特定方向来做实验。他们事前并不熟悉这方面的工作,所以前后花了近一年的时间,才准备好新的镍靶和管子。有趣的是,他们为熟悉晶体结构做了很多X 衍射实验,拍摄了很多X衍射照片,可就是没有将X衍射和他们正从事的电子衍射联系起来。他们设计了很精巧的实验装置,镍靶可沿入射束的轴线转360°,电子散射后的收集器也可以取不同角度,显然他们的目标已从探索原子结构,转向探索晶体结构。1926年他们继续做电子散射实验,然而结果并不理想,并没有马上重获偶然事件之后的那种曲线。
1926年夏,戴维森陪伴他的夫人(里查森之妹)回英国探亲,戴维森这时正为自己未获成功的实验踌躇,就随身带着新近得到的实验结果,希望他的姻兄能给他一些启示。
这时正值英国科学促进会在牛津开会。戴维森随里查森参加了会议。在1926 年8月10日的会议上,他听到了著名的德国物理学家玻恩(M.Born)讲到,戴维森和康斯曼从金属表面反射的实验有可能是德布罗意波动理论所预言的电子衍射的证据。会议之后,戴维森与里查森找到玻恩和其他一些著名的物理学家,让他们看新近得到的单晶曲线,并且进行了热烈的讨论。在回美国的航程中,戴维森把所有时间用来阅读薛定谔的著作。显然他从牛津的讨论中有所启示,也许从这里可以找到解释。
戴维森回到纽约后,立即和革末一起研究薛定谔的论文,但是计算结果跟实验所得结果相差甚远。于是,他们索性放弃原来的实验,投入到一项进行全面研究的计划中去。这时,他们已经完全由“不自觉”的状态转到“自觉”地寻找电子波的实验证据中来了。
1926年12月,全面的研究开始了。经过2~3个月的紧张工作,取得了一系列成果,整理后发表于1927年12月“物理评论”上,论文系统地叙述了实验方法和实验结果。
戴维森与革末的实验装置极其精巧(图37-1)。整套装置仅长12 cm、高5 cm,密封在玻璃泡里,经反复烘烤与去气,真空度达10-6Pa。散射电子用一双层的法拉第桶(即所谓电子收集器)收集,送到电流计测量。收集器内外两层之间用石英绝缘,加有反向电压,以阻止经过非弹性碰撞的电子进入收集器;收集器可沿轨道转动,使散射角在20°~90°的范围内改变。
仔细制备的样品是从晶体生长的单晶镍切割下来的,经过研磨、腐蚀,取(111)面正对电子束,这是由于镍是面心型晶体,(111)面是这类晶体点阵最为密集的方向。晶体安装在沿入射束方向的轴上,可以随意改变方位。散射电流取决于四个因素:轰击电流、方位、散射角和轰击电压。已知散射电流与轰击电流之间有简单的正比关系,实验主要考察散射电流跟后面三项的关系。他们做了大量的测试工作。他们综合几十组曲线,肯定这是电子束打到镍晶体发生的衍射现象。于是,他们进一步作定量比较。然而,不同加速电压下,电子束的最大值所在的散射角,总与德布罗意公式计算的结果相差一些。他们发现,如果用理论值乘0.7,与电子衍射角基本相符。文章发表不久,依卡特(Eckart)指出,这是电子在晶体中的折射率不同所致。
戴维森继续试验,发现随着轰击电压增加,偏差越来越小。根据戴维森的数据,贝特(Bethe)推算出金属表面存在内电势(镍约有15 V)。这样,戴维森就全面证实了电子波的存在。
如果说,戴维森是从偶然的发现中抓住了新的事物,针对解释不了的实验结果进行了艰苦的研究,从而发现和证实电子衍射现象的,那么,G.P.汤姆孙则是从一开始就抓住了这个主题,比较顺利地达到了预定目标。
1922 年,30岁的G.P.汤姆孙成为阿伯登(Aberdeen)大学的自然哲学教授。在那里,他继续做他父亲一直从事的正射线的研究工作,所用实验装置主要是真空设备和电子枪。1924年德布罗意第一篇关于物质波的论文在《哲学杂志》上发表时,他就对之深为欣赏,并于1925年也向《哲学杂志》投稿,讨论德布罗意的理论。1926年8月英国科学促进会对这个问题的讨论,使他也想到正射线有可能产生衍射效应。有一天,他到卡文迪什实验室,看到氦对电子的散射,当时误以为这就是电子衍射。G.P.汤姆孙回到阿伯登,就安排一位研究生雷德(A.Reid)用赛璐珞薄膜做这个课题。他们做这项工作很容易,因为他们的正射线散射实验已经做了好几年,只要将感应圈的极性反接,雷德立即得到了边缘模糊的晕圈照片。于是,G.P.汤姆孙和雷德的短讯发表于《自然》杂志1927 年6月18日刊上,仅次于戴维森两个月。为了说明观察到的现象正是电子衍射,而不是由于高速电子碰撞产生的X射线衍射,G.P.汤姆孙用磁场将电子束偏向一方,发现整个图像平移,保留原来的花样。由此肯定是带电粒子的射线,而不是X射线。接着,G.P.汤姆孙和他的同事对高速电子衍射进行了一系列的实验(实验装置原理如图37-2),靶子材料改用铝、金、铂等金属材料。因为当时他们还没有掌握真空溅射和镀膜技术,要制备厚度只有10-6cm的薄膜是非常困难的。G.P.汤姆孙在他的正式论文中宣布:他得到的电子衍射图形与X射线“粉末法”所得图形非常相似。这些图形的大小与德布罗意波动力学理论预计的结果在5%的范围内相符。
后来,戴维森和G.P.汤姆孙的电子衍射实验分别发展成为低能电子衍射技术(LEED)和反射式高能电子衍射技术(RHEED),在表面物理学中有广泛应用。
1929年——1930年冬,汤姆孙作为“非常任”讲师访问了纽约伊萨卡的康奈尔大学。1930年被任命为伦敦大学帝国学院教授,一直任职到1952年,此后担任剑桥神学院院长,1962年退休。
在帝国学院期间,G.P. 汤姆孙对核物理发生了兴趣。当1939年初宣布重核裂变的发现时,他注意到了这个发现在军事方面和其他方面应用的可能性,就建议英国空军部购买一吨氧化铀来作实验。战争爆发时,这些实验尚未完成。此时G.P.汤姆孙回到皇家航空研究院从事一系列军事课题的研究,包括磁性水雷的研究。一年以后,他担任了为研制原子弹而成立的国家委员会主席。1941年该委员会报告说制造原子弹是可能的,G.P.汤姆孙被授权向美国科学家通报了这一成果。
第二年,G.P. 汤姆孙在渥太华任科学联络处的官员,同美国原子弹计划保持着密切联系。他返回英国后,被委任为无线电广播协会副主席,后来又担任空军部的科学顾问。战后他回到帝国学院工作,1946年初开始对氘产生核动力的可能性发生了兴趣。在帝国学院,在维尔(Ware)博士指导下开始了这方面的一些实验,G.P.汤姆孙的研究是理论性的。后来因保密的需要,这项研究转交给奥尔德马斯顿联合电子工业研究实验室,G.P.汤姆孙继续担任顾问。

Ⅳ 大学物理实验论文!!!!急急急!!!!注意,是小论文,不是实验心得体会

大学物理实验报告-弗兰克赫兹实验
大学物理试验 2009-02-26 18:59:30 阅读17868 评论14 字号:大中小 订阅
大学物理实验报告
实验题目:弗兰克赫兹实验
实验器材:F-H实验管、恒温加热电炉、F-H实验装置、示波器。
实验内容:
1.熟悉实验装置,掌握实验条件。
该实验装置由F-H管、恒温加热电炉及F-H实验装置构成,其装置结构如下图所示:

F-V管中有足够的液态汞,保证在使用温度范围内管内汞蒸气总处于饱和状态。一般温度在100 ºC至250 ºC。并且由于Hg对温度的灵敏度高,所以温度要调好,不能让它变化太大。灯丝电压控制着阴极K发射电子的密度和能量分布,其变化直接影响曲线的形状和每个峰的位置,是一个关键的条件。
2.测量Hg的第一激发电位。
1)起动恒温控制器,加热地F-H管,使炉温稳定在157 ºC,并选择合适的灯丝电压,VG1K=2.5V,VG2p=1.5V,Vf=1.3V。
2)改变VG2k的值,并记录下对应的Ip值上(每隔0.2V记录一个数据)。
3)作数据处理,作出对应的Ip-VG2k图,并求出Hg的第一激发电位(用逐差法)。
3.测Ar原子的第一激发电位。
1)调节好相关的数据:Vp=8.36V,VG1=1.62V,VG2k=0~100V,Vf=2.64V;
2)将相关档位调到自由档位,在示波器上观看得到的Ip-VG2k图,是否符合实验要求(有六个以上的波峰)。再将相关档位调到手动档位。
3)手动改变VG2k的值,并记录下对应的Ip值上(每隔0.05V记录一个数据)。
4)作数据处理,作出对应的Ip-VG2k图,并求出Hg的第一激发电位(用逐差法)。
4.得出结论。

原始数据:
1. Vf=1.3V VG1K=2.5V VG2p=1.5V T=157ºC
求汞原子的第一激发电位的数据表

阅读全文

与论文实验装置图重复相关的资料

热点内容
机械stl什么意思 浏览:606
原子吸收仪仪器检出限等于什么 浏览:137
绵阳液压设备plc哪里有卖 浏览:204
衡阳中湘机电五金市场 浏览:745
将绿色植物放在特定的实验装置内 浏览:529
永康五金市场三维地图 浏览:587
扬州市五金机电批发市场 浏览:354
河南智圆轴承什么时候倒闭啊 浏览:361
前轮轴承异响怎么回事 浏览:380
48v电动工具原理 浏览:826
单向轴承怎么装 浏览:597
手机机械设计软件有哪些问题 浏览:184
启辰d50用什么制冷剂 浏览:866
清洁家电设备多少钱 浏览:815
家庭管道阀门 浏览:267
管道上常用阀门 浏览:402
生产丁型螺丝设备多少钱 浏览:349
油锯轴承碎了怎么办 浏览:419
聚氨酯企业用什么阀门 浏览:182
编辑数据库工具箱 浏览:191