㈠ 氯碱化工行业里用空分装置生产氮气干什么
因为在经常需要用氮气置换设备管道,
㈡ 氮气的氮气用途
1.提高轮胎行驶的稳定性和舒适性
氮气几乎为惰性的双原子气体,化学性质极不活泼,气体分子比氧分子大,不易热胀冷缩,变形幅度小,其渗透轮胎胎壁的速度比空气慢约30~40%, 能保持稳定胎压,提高轮胎行驶的稳定性,保证驾驶的舒适性;氮气的音频传导性低,相当于普通空气的1/5,使用氮气能有效减少轮胎的噪音,提高行驶的宁静度。
2.防止爆胎和缺气碾行
爆胎是公路交通事故中的头号杀手。据统计,在高速公路上有46%的交通事故是由于轮胎发生故障引起的,其中爆胎一项就占轮胎事故总量的70%。汽车行驶时,轮胎温度会因与地面磨擦而升高,尤其在高速行驶及紧急刹车时,胎内气体温度会急速上升,胎压骤增,所以会有爆胎的可能。而高温导致轮胎橡胶老化,疲劳强度下降,胎面磨损剧烈,又是可能爆胎的重要因素。而与一般高压空气相比,高纯度氮气因为无氧且几乎不含水份不含油,其热膨胀系数低,热传导性低,升温慢,降低了轮胎聚热的速度,不可燃也不助燃等特性,所以可大大地减少爆胎的几率。
3.延长轮胎使用寿命
使用氮气后,胎压稳定体积变化小,大大降低了轮胎不规则磨擦的可能性,如冠磨、胎肩磨、偏磨,提高了轮胎的使用寿命;橡胶的老化是受空气中的氧分子氧化所致,老化后其强度及弹性下降,且会有龟裂现象,这时造成轮胎使用寿命缩短的原因之一。氮气分离装置能极大限度地排除空气中的氧气、硫、油、水和其它杂质,有效降低了轮胎内衬层的氧化程度和橡胶被腐蚀的现象,不会腐蚀金属轮辋,延长了轮胎的使用寿命,也极大程度减少轮辋生锈的状况。
4.减少油耗,保护环境
轮胎胎压的不足与受热后滚动阻力的增加,会造成汽车行驶时的油耗增加;而氮气除了可以维持稳定的胎压,延缓胎压降低之外,其干燥且不含油不含水,热传导性低,升温慢的特性,减低了轮胎行走时温度的升高,以及轮胎变形小抓地力提高等,降低了滚动阻力,从而达到减少油耗的目的。 N原子的价电子层结构为2s2p3,即有3个成单电子和一对孤电子对,以此为基础,在形成化合物时,可生成如下三种键型:
1.形成离子键
2.形成共价键
3.形成配位键
N原子有较高的电负性(3.04),它同电负性较低的金属,如Li(电负性0.98)、Ca(电负性1.00)、Mg(电负性1.31)等形成二元氮化物时,能够获得3个电子而形成N3-离子。
N2 + 6Li == 2 Li3N
N2 + 3Ca =△= Ca3N2
N2 + 3Mg =点燃= Mg3N2
N3-离子的负电荷较高,半径较大(171pm),遇到水分子会强烈水解,因此的离子型化合物只能存在于干态,不会有N3-的水合离子。 N原子同电负性较高的非金属形成化合物时,形成如下几种共价键:
⑴N原子采取sp3杂化态,形成三个共价键,保留一对孤电子对,分子构型为三角锥型,例如NH3.NF3.NCl3等。 若形成四个共价单键,则分子构型为正四面体型,例如NH4+离子。
⑵N原子采取sp2杂化态,形成2个共价键和一个键,并保留有一对孤电子对,分子构型为角形,例如Cl—N=O 。(N原子与Cl 原子形成一个σ 键和一个π键,N原子上的一对孤电子对使分子成为角形。) 若没有孤电子对时,则分子构型为三角形,例如HNO3分子或NO3-离子。硝酸分子中N原子分别与三个O原子形成三个σ键,它的π轨道上的一对电子和两个O原子的成单π电子形成一个三中心四电子的不定域π键。在硝酸根离子中,三个O原子和中心N原子之间形成一个四中心六电子的不定域大π键。
这种结构使硝酸中N原子的表观氧化数为+5,由于存在大π键,硝酸盐在常况下是足够稳定的。
⑶N原子采取sp 杂化,形成一个共价叁键,并保留有一对孤电子对,分子构型为直线形,例如N2分子和CN-中N原子的结构。 制备少量氮气的基本原理是用适当的氧化剂将氨或铵盐氧化,最常用的是如下几种方法:
⑴加热亚硝酸铵的溶液: (343k)NH4NO2 ===== N2↑+ 2H2O
⑵亚硝酸钠与氯化铵的饱和溶液相互作用: NH4Cl + NaNO2 === NaCl + 2H2O + N2↑
⑶将氨通过红热的氧化铜: 2 NH3 + 3 CuO === 3 Cu + 3 H2O + N2
⑷氨水与溴水反应:8 NH3 + 3 Br2 (aq) === 6 NH4Br + N2↑
⑸重铬酸铵加热分解: (NH4)2Cr2O7===N2↑+Cr2O3+4H2O
{6}加热叠氮化钠,使其热分解,可得到很纯的氮气,2NaN3===2Na+3N2↑ 变压吸附(Pressure Swing Adsorption,简称PSA)气体分离技术是非低温气体分离技术的重要分支,是人们长期来努力寻找比深冷法更简单的空分方法的结果。七十年代西德埃森矿业公司成功开发了碳分子筛,为PSA空分制氮工业化铺平了道路。三十年来该技术发展很快,技术日趋成熟,在中小型制氮领域已成为深冷空分的强有力的竞争对手。
变压吸附制氮是以空气为原料,用碳分子筛作吸附剂,利用碳分子筛对空气中的氧和氮选择吸附的特性,运用变压吸附原理(加压吸附,减压解吸并使分子筛再生)而在常温使氧和氮分离制取氮气。
变压吸附制氮与深冷空分制氮相比,具有显著的特点:吸附分离是在常温下进行,工艺简单,设备紧凑,占地面积小,开停方便,启动迅速,产气快(一般在30min左右),能耗小,运行成本低,自动化程度高,操作维护方便,撬装方便,无须专门基础,产品氮纯度可在一定范围内调节,产氮量≤2000Nm3/h。但到目前为止,除美国空气用品公司用PSA制氮技术,无须后级纯化能工业化生产纯度≥99.999%的高纯氮外(进口价格很高),国内外同行一般用PSA制氮技术只能制取氮气纯度为99.9%的普氮(即O2≤0.1%),个别企业可制取99.99%的纯氮(O2≤0.01%),纯度更高从PSA制氮技术上是可能的,但制作成本太高,用户也很难接受,所以用非低温制氮技术制取高纯氮还必须加后级纯化装置。 膜分离空分制氮也是非低温制氮技术的新的分支,是80年代国外迅速发展起来的一种新的制氮方法,在国内推广应用还是近几年的事。
膜分离制氮是以空气为原料,在一定的压力下,利用氧和氮在中空纤维膜中的不同渗透速率来使氧、氮分离制取氮气。它与上述两种制氮方法相比,具有设备结构更简单、体积更小、无切换阀门、操作维护也更为简便、产气更快(3min以内)、增容更方便等特点,但中空纤维膜对压缩空气清洁度要求更严,膜易老化而失效,难以修复,需要换新膜,膜分离制氮比较适合氮气纯度要求在≤98%左右的中小型用户,此时具有最佳功能价格比;当要求氮气纯度高于98%时,它与同规格的变压吸附制氮装置相比,价格要高出30%左右,故由膜分离制氮和氮纯化装置相组合制取高纯氮时,普氮纯度一般为98%,因而会增加纯化装置的制作成本和运行成本。 加氢除氧法
在催化剂作用下,普氮中残余氧和加入的氢发生化学反应生成水,其反应式:2H2+O2=2H2O,再通过后级干燥除去水份,而获得下列主要成份的高纯氮:N2≥99.999 %,O2≤5×10-6,H2≤1500×10-6,H2O≤10.7×10-6。制氮成本在0.5元/m3左右。
加氢除氧、除氢法
此法分三级,第一级加氢除氧,第二级除氢,第三级除水,获得下列组成的高纯氮:N2≥99.999%,O2≤5×10-6,H2≤5×10-6,H2O≤10.7×10-6。制氮成本在0.6元/m3左右。
碳脱氧法
在碳载型催化剂作用下(在一定温度下),普氮中之残氧和催化剂本身提供的碳发生反应,生成CO2。反应式:C+O2=CO2。再经过后级除CO2和H2O获得下列组成的高纯氮气:N2≥99.999%,O2≤5×10-6,CO2≤5×10-6,H2O≤10.7×10-6。制氮成本在0.6元/m3左右。
优劣评比
上述三种氮气纯化方法中,方法(1)因成品氮中H2量过高满足不了磁性材料的要求,故不采用;方法(2)成品氮纯度符合磁性材料用户的要求,但需氢源,而且氢气在运输、贮存、使用中都存在不安全因素;方法(3)成品氮的质量完全可满足磁性材料的用气要求,工艺中不使用H2,无加氢法带来的问题,氮中无H2且成品氮的质量不受普氮波动的影响,故和其他氮气纯法相比,氮气质量更加稳定,是最适合磁性材料行业中一种氮气纯化方法。

㈢ 空分装置下塔的压力氮气取出量减少有利于氧气纯度吗
看了楼上各位的见解,我也凑个热闹。前面各位都在说减少中压氮采出进塔内气量会减少,容我个人有点看法,先不讨论这个,我想从主冷入手来说说个人的看法。产品纯度下降我们首先考虑的是物料平衡,如果采出量大于进气含量这种情况下,在不改变膨胀量时主冷应该是下降的,因为上塔的压力比正常工况低,也就是主冷的蒸发量相应的加大了,也就是主冷冷量和下塔的上升气不对等,同时取料口的氧、氩、氮分布层向下移动,导致氧纯度下降。这种情况下减少中压氮取出的话液氮节流阀不动时回流液会增大么?如楼上各位说的,如果液氮回流增大的话进气量是加大还是减少
呢!再一个,如果你的取出量没有超过进气含量的话应该是主冷液位有一定上涨,主冷的蒸发量不够。主冷的蒸发量不够,进塔气含湿量过高,膨胀量偏高,或者上塔压力过高都可以导致。在系统的冷量充足的情况下减少中压氮采出的话液氮节流阀不动时回流液氮应该是高了吧!回流液增大时进气量是加大还是减少呢!自己的一点想法,有不对的地方还请大家指正。
㈣ 空分装置塔里的密封气是干什么用的
密封气的用途主要是防止潮气进入,是冷箱内的珠光砂保持干燥。这样的话珠光砂的保冷效果相对较好,空分系统的冷损就小,相对能耗就低。密封气一定要用干燥氮气或是干燥废氮气,如果用空气的话因冷箱最顶部温度较低,会有部分空气液化,反而会冻坏冷箱外壁。
㈤ 氮气的用途
氮气用途
1,化工合成
1,合成纤维(锦纶、腈纶),合成树脂,合成橡胶等的重要原料。
2,氮是一种营养元素还可以用来制作化肥。例如:碳酸氢铵NH4HCO3,氯化铵NH4Cl,硝酸铵NH4NO3等等。
2,其他用途
1,由于氮的化学惰性,常用作保护气体,如:瓜果,食品,灯泡填充气。以防止某些物体暴露于空气时被氧所氧化,用氮气填充粮仓,可使粮食不霉烂、不发芽,长期保存。
2,液氮还可用作深度冷冻剂。作为冷冻剂在医院做除斑,包,豆等的手术时常常也使用,即将斑,包,豆等冻掉,但是容易出现疤痕,并不建议使用。
3,高纯氮气用作色谱仪等仪器的载气。
4,用作铜管的光亮退火保护气体。
5,跟高纯氦气、高纯二氧化碳一起用作激光切割机的激光气体。
6,氮气也作为食品保鲜保护气体的用途。
7,在化工行业,氮气主要用作保护气体、置换气体、洗涤气体、安全保障气体。
8,用作铝制品、铝型材加工,铝薄轧制等保护气体。
9,用作回流焊和波峰焊配套的保护气体,提高焊接质量。
10,用作浮法玻璃生产过程中的保护气体,防锡槽氧化。

3,深冷空分制氮
它是一种传统的空分技术,已有九十余年的历史,它的特点是产气量大,产品氮纯度高,无须再纯化便可直接应用于磁性材料,但它工艺流程复杂,占地面积大,基建费用高,需专门的维修力量,操作人员较多,产气慢(18~24h),它适宜于大规模工业制氮,氮气成本在0.7元/m3左右。
4,变压吸附制氮
变压吸附(Pressure Swing Adsorption,简称PSA)气体分离技术是非低温气体分离技术的重要分支,是人们长期来努力寻找比深冷法更简单的空分方法的结果。
七十年代西德埃森矿业公司成功开发了碳分子筛,为PSA空分制氮工业化铺平了道路。三十年来该技术发展很快,技术日趋成熟,在中小型制氮领域已成为深冷空分的强有力的竞争对手。
变压吸附制氮是以空气为原料,用碳分子筛作吸附剂,利用碳分子筛对空气中的氧和氮选择吸附的特性,运用变压吸附原理(加压吸附,减压解吸并使分子筛再生)而在常温使氧和氮分离制取氮气。
㈥ 空分产品的氧气,氮气在冶炼工业上起什么作用
使焦碳变成一氧化碳用作保护气防止高温金属再氧化
㈦ 氮气有什么用途,制氧机能同时生产多少纯氮产品
氮的化学性质不活泼,在平常的状态下有很大的惰性,不容易与其他物质发生化学反应。囚此,氮在冶金工业、电子上业、化学工业中广泛地用来作为保护气体。例如冷轧、镀锌、镀铬、热处理、连铸用的保护气;作为高炉炉顶转炉烟罩的密封气,以防可燃气体泄漏,以及干熄焦装置中焦炭的冷却气体等。一般的保护气要求的氮纯度为99.99%,有的要求氮纯度在99.999%以上
液氮是一种较方便的冷源。在食品工业、医疗事业、畜牧业以及科学研究等方面得到越来越广泛的应用。
在化肥工业中生产合成氨时,合成氨的原料气一氢、氮混合气若用纯液氮洗涤精制,可得到杂质含量极微的纯净气体,而空分装置可以提供洗涤所需的纯氮。
在空气中氮占了花78.03%,在采用空气分离的方法制取氧时,同时可获得氮产品.但是,由于空气中还有0.932%的氩存在,如果只实现氧氮分离,则氩分别成了氧氮产品中的杂
质。如果要求的氮产量是氧产量4倍,则氮的纯度只能在99.5%。对于采用冻结法清除空气中的水分和CO2的全低压空分装置,由于要靠足够的返流气体将冻结的水分和CO2带出装置之外,所以纯氮(99.999%)产量只有氧产量的1.1倍。对于抽取氩馏分的分子筛净化空分流程,纯氮的产量不受上述限制。
㈧ 氮气有什么作用,用科学语言来表达
人类能够有效利用氮气的主要途径是合成氨,但要求条件很高。近年来,人专们在竭力弄清植物固属氮的机理,争取用化学的方法模拟生物固氮,来实现当温和条件下开发利用空气中的氮资源。氮主要用于合成氨,反应式为 ( 条件为高压,高温、和催化剂。反应为可逆反应)还是合成纤维(锦纶、腈纶),合成树脂,合成橡胶等的重要原料。 氮是一种营养元素还可以用来制作化肥。例如:碳酸氢铵NH4HCO3,氯化铵NH4Cl,硝酸铵NH4NO3等等。
由于氮的化学惰性,常用作保护气体,如:瓜果,食品,灯泡填充气。以防止某些物体暴露于空气时被氧所氧化,用氮气填充粮仓,可使粮食不霉烂、不发芽,长期保存。液氮还可用作深度冷冻剂。
㈨ 空分装置制氮气后氧气是不是外排了
那多可惜啊,不是外排,而是回收利用。
㈩ 空分车间的作用是什么
作为公用工抄程,提供仪表空气、工厂风、压力流量适用的氮和氧,并副产液氧、液氮和液氩。