『壹』 CH-1000型综合传动装置的操纵与控制
CH-1000传动装置采用了先进的计算机控制技术,将控制芯片集成于电子控制单元(ECU)中,该单元分别与发动机,各传感器,档位选择手柄,自动换挡器以及数据输出和故障诊断机构相连,实现自动化闭环控制,通过传感器和换挡手柄来控制发动机油门和换挡器,并将数据传输给驾驶员及信息平台。
变速操纵装置采用电液全自动操作,省去了繁琐的换挡操纵,驾驶员可以选择自动变速或手动变速操纵,操纵轻松和方便很多,大大降低了驾驶员的体力消耗和精神疲劳。当使用自动挡操纵时,系统会自动从2挡起步,并根据路面状况逐步升级至预选的档位;而在恶劣地形起步时(例如泥地、沼泽、上坡路),可手动从1挡起步,再切换至预选档位;驾驶员也可以根据自己的驾驶习惯,选择手动加减挡的操作模式;一旦电控换挡装置损坏,系统还有备用的机械-液压手动应急换挡装置,可以挂前进2挡和倒车挡,尽快离开作战现场,避免了坦克“坐以待毙”的情况。
CH-1000传动装置的转向操作抛弃了我国坦克传统的双杆式操作,而是采用了Y形液压转向手柄,并通过机械连杆机构与转向机构的液压伺服控制阀连接,操纵简单、方便、省力,驾驶员只要稍用力转动手柄即可进行转向。转向手柄设置体现了“以人为本”的现代设计理念,可以根据驾驶员的身高调节位置。当变速装置挂空挡时,可以实现0半径“中心转向”;当变速装置挂倒档时,具有双流传动特有“反转向”操纵:例如顺时针转动手柄,得到的是车体向左后方转向。这和轮式车辆以及单流传动的履带车辆有所不同,转向手柄控制的不是左右转向,而是车体顺逆时针的转向,驾驶员可能需要通过训练稍加适应。
『贰』 坦克怎么转弯(履带)
单流转向系统的坦克:转向时减慢一侧履带的转速,从而让坦克转向慢的那一边;在速度特别慢的时候则完全可以让一侧的履带不转,这样可以加大转弯半径,让坦克快速转弯。
双流传动的坦克:两侧履带是两个独立的驱动源,比起单流传动来说,双流传动在转向时的制动方式更加复杂,它的转向不是仅仅减慢一侧履带的转速那么简单,因为是两个传动装置,所以在转向时可以更加灵活,在一侧履带减速时另一侧的履带还可以加速,从而让坦克在转向时更具机动性。
双流传动的中心转向也是基于这个原因,可以通过一个履带向前转动,一个履带向后转动实现坦克在地面自传,也就是中心转向。
(2)机械双流综合传动装置扩展阅读:
中国坦克也能中心转向:
北京工业学院负责的600马力以下级综合传动装置,后来被命名为CH400。CH400采用液力传动,具有六个前进挡和一个倒挡,手动换挡。
这是我国研制成功的第一种双流传动装置,能够实现液压无级转向,在空挡时可以实现中心转向。
之后,北方车辆研究所研制的大功率综合传动装置CH1000研制成功,该传动装置额定功率1103千瓦,能够实现自动换挡和液压无级转向。
CH1000研制的成功,标志着我国主战坦克从此将有优秀的双流传动装置。
CH1000装备于我国99式主战坦克的改进型,相信过不了多久,大家就会看到我国主战坦克的中心转向。
CH400研制成功后,北京工业学院在基本型的基础上,将CH400系列化。到目前为止,CH400系列已经装备了多种型号履带车辆,包括步兵战车、两栖突击车、自行火炮、导弹发射车等。
CH400系列还派生出了小型化产品CH300,目前已经在履带输送车、指挥车等轻型车辆上成功应用,将来会推向国际市场,为各国的老装备提供升级服务。所有CH系列传动装置都能完成中心转向。
『叁』 99A2主战坦克的传动系统如何。
99A2式坦克采用了先进的全自动的CH-1000液力机械综合传动装置,达到了90年代初国际先进水平,与勒克莱尔坦克使用的SESM-500大致相当。
该传动装置为双流传动系统,由一对前传动齿轮,带自动闭锁功能的同轴液力变矩器,行星变速箱,大功率无级转向机,汇流行星排,液力减速器。此外还有为2个冷却风扇提供动力的风扇液力耦合传动机构和为液压控制系统提供动力的辅助液压泵等部件。传动装置与发动机通过连接件连接成一整体固定在一个三点式框架上,可以实现整体吊装,在战场上可在40分钟内进行拆装,为车辆重新投入战斗赢得了宝贵时间。
CH1000型传动变速装置为6个前进挡和3个倒档行星变速箱,但实际使用时只采用其中5个前进挡和2个倒档,该传动装置使得99A2具有良好的机动性,最高时速可达70KM,最高越野时速达54KM,(试验时最高时速曾经达到了80KM,最高越野时速达到了60KM)0-32KM/H加速时间仅为7秒,远好于99式的12秒;于战场上快速推进和撤退;操纵装置采用电液全自动手自一体操作,省去了繁琐的换挡操纵,操纵轻松和方便很多,大大降低了驾驶员的体力消耗和精神疲劳。当使用自动挡操纵时,系统会自动从2挡起步,并根据路面状况逐步升级至预选的档位;而在恶劣地形起步时可手动从1挡起步,再切换至预选档位;驾驶员也可以根据自己的驾驶习惯,选择手动加减挡的操作模式;一旦电控换挡装置损坏,系统还有备用的机械-液压手动应急换挡装置,可以挂前进2挡和倒车1挡,尽快离开作战现场,避免了坦克“坐以待毙”的情况。
CH1000型的转向系统为我国自主研发的大功率液压机械无级转向机。它相对广泛使用的纯液压转向机构而言,具有更高的效率,而且液压件的功率只需要1/3,这样就克服了我国在大功率液压马达上的技术瓶颈。它独立地做成一个箱体集成于综合传动系统中,并具有独立的操纵机构。CH1000的转向操作抛弃了原有99式的双杆式操作,改为和M1坦克类似的液压转向舵操作,简单、方便、省力,驾驶员只要稍用力转动手柄即可进行转向,而不用像以前那样呵哧呵哧地费力拉左右转向杆进行转向了;转向手柄还可以根据驾驶员的身高调节位置。大功率转向系统可以实现每档最小转向半径至无穷大的无极转向,因此功率损失较小,效率较高;而传统的单流转向装置大部分情况都是非规定半径的滑摩转向,这需要驾驶员多次间歇操纵,费力繁琐,而且大量的能量消耗在摩擦和生热中,效率低下,严重磨损转向部件,从这点而言,该转向装置的优点是不言而喻的。转向手柄上安装还有超限转向开关以便车辆在高速行驶中可以自动降挡以适应狭窄转向路段。特别值得一提的是,当车辆挂空挡时,可以实现0半径“中心转向”,实现了我国坦克在这方面“零的突破”;而在车俩挂倒档时,具有双流传动特有“反转向”操纵,也就是相同操纵时,倒车方向与前进方向正好相反,这和轮式车辆以及单流传动的履带车辆有所不同,转向手柄控制的不是左右转向,而是车体顺逆时针的转向,驾驶员可能需要稍微适应一下。
『肆』 坦克典型的液力传动有哪些介绍
现代主战坦克上,应用的液力传动类型很多,这里只介绍典型的液力传动简单工作原理及其特点。
液力传动的关键部件是液力元件,目前在坦克和其他战斗车辆上,广泛使用的液力元件兼有液力变矩器和液力偶合器的性能,这种液力元件称为综合式液力变距器。
它的泵轮与主动轴相连,泵轮转动时,泵轮内的工作液体得到泵轮内叶片给予的能量后,产生离心力,迫使液体流动。这就是把发动机的机械能变成了泵轮内工作液体的动能和压能。
液流进入涡轮,冲击涡轮内叶片。此时,液体的能量又变成与涡轮相连的被动轴上的机械能,使被动轴旋转。导轮在涡轮小转速下与壳体固定在一起作为一个外力矩支点,使液流的压能减小,动能增加。
然后液流再进入泵轮继续循环。导轮在涡轮大轮速时与壳体自动解脱联接,于是导轮开始在液流中空转,此时,变矩器作为偶合器工作。综合式变矩器在整个工作范围内,效率均比较高,因而得到广泛采用。
发动机的动力,从液力变矩器,或综合式变矩器之后分流,一路经变速箱输入左、右汇流行星排的齿圈,另一路经双向变量泵双向定量马达,经锥齿轮而输入左、右汇流行星排的太阳轮,由左、右汇流行星排框架轴输入主动轮,以带动两侧履带旋转。
坦克直线行驶时,液压泵排量为零,液压元件不参加工作,汇流行星排太阳轮由于液压马达锁住而不动。
此时,发动机动力经液力变矩器,或综合式变矩器,变速箱而传入左、右汇流行星排齿圈,经汇流排框架输入侧减速器,带动主动轮旋转。可见这种传动在直驶时为单流。
坦克转向对,液压泵、液压马达参加工作,发动机功率除按坦克直线行驶时输入左、右汇流行星排齿囵外,还通过液压泵、液压马达而输入汇流行星太阳轮,使左、右汇流行星排太阳轮发生大小相等、方向相反的旋转,这样使汇流行星排框架的左、右速度不同,从而使坦克两侧履带速度和牵引力不同,使坦克转向。
这种典型的液力传动除具有一般液力传动的优点外,还具有如下特点,即直驶时功率为单流传递,转向时功率为双流传递,通过控制液压泵排量的连续变化可使坦克获得无级转向的性能。
在空档时,还可以获得绕坦克几何中心的转向,此时,全部功率将由液压元件传递。这种传动由直驶到转向的过渡连续平稳,转向半径的范围宽,操纵特性好,高档修正方向的能力好。
液压机械传动
未来的坦克上可能采用HMPT-500型液压机械传动装置。该传动装置包括一个多片式主离合器,两个油冷多片式停车制动器,两套具有相同排量的球形活塞式液压泵-液压马达组和一套齿轮装置。
传动装置有三个排档和一个倒档,Ⅰ-倒档为液压传动,Ⅱ-Ⅲ档为液压机械传动。
就是说,该传动的Ⅰ-倒档为单流,Ⅱ-Ⅲ档为双流。该传动具有液力传动的一切优点,还克服了液力传动中液力元件自动调节性能的不足,它具有可控无级变速的优点,使用这种传动可使发动机按选择的一条耗油率最小的功率—速度曲线工作,以达到最好的经济性,它能与发动机实现最理想的匹配。
在Ⅰ-Ⅱ-Ⅲ档速度范围内,该传动的转向特性完全相同,即同一转向信号,使两履带产生相同的差动速度,内侧履带减速时产生的能量直接传输到外侧履带,使其增速,从而减小了功率损失。
对于给定的转向讯号,其转向半径随车速的增加而增大。这种传动,从坦克机动性观点来看是比较理想的,从技术方面来看,难度较大。
『伍』 鍧﹀厠鎬庝箞杞寮
鍧﹀厠杞鍚戞渶绠鍗曠殑鍋氭硶锛
鍑忔參涓渚у饱甯︾殑杞閫燂紝浠庤岃╁潶鍏嬭浆鍚戞參鐨勯偅涓杈癸紝杩欐槸鍦ㄨ岄┒鏃剁殑閫氬父鍋氭硶锛岃屽湪閫熷害鐗瑰埆鎱㈢殑鏃跺欏垯瀹屽叏鍙浠ヨ╀竴渚х殑灞ュ甫涓嶈浆锛岃繖鏍峰彲浠ュ姞澶ц浆寮鍗婂緞锛岃╁潶鍏嬪揩閫熻浆寮銆
瀵逛簬鍗曟祦杞鍚戠郴缁熺殑鍧﹀厠鏉ヨ达紝杩欑嶅ぇ鍗婂緞鐨勮浆寮宸茬粡鏄鏋侀檺浜嗭紝杩欐剰鍛崇潃鍗曟祦浼犲姩鐨勫潶鍏嬪湪寰堝氭椂鍊欓兘瑕侀氳繃鈥滃掕溅鈥濈殑鏂瑰紡鏉ラ氳繃鏌愪簺鐙绐勭殑璺闈锛岃繖涓鏃跺欏傛灉鑳借╁潶鍏嬪師鍦拌浆鍔ㄧ殑璇濓紝灏卞彲浠ュ厤鍘讳笂杩扮殑楹荤儲锛岃岃佹兂浣垮潶鍏嬪疄鐜扳滀腑蹇冭浆鍚戔濆氨蹇呴』閲囩敤鍙屾祦浼犲姩瑁呯疆銆
鍙屾祦浼犲姩鍦ㄨ浆鍚戞椂鐨勫埗鍔ㄦ柟寮忔洿鍔犲嶆潅锛岃浆鍚戜笉鏄浠呬粎鍑忔參涓渚у饱甯︾殑杞閫燂紝鍥犱负鏄涓や釜浼犲姩瑁呯疆锛屾墍浠ュ湪杞鍚戞椂鍙浠ユ洿鍔犵伒娲伙紝鍦ㄤ竴渚у饱甯﹀噺閫熸椂鍙︿竴渚х殑灞ュ甫杩樺彲浠ュ姞閫燂紝浠庤岃╁潶鍏嬪湪杞鍚戞椂鏇村叿鏈哄姩鎬с
鎵╁睍璧勬枡锛
鍧﹀厠鑳藉熸敼鍙樿溅韬鐨勬柟鍚戯紝涓昏佹槸閫氳繃涓撻棬鐨勮浆鍚戞満鏋勬潵瀹屾垚鐨勶紝杩欑嶈浆鍚戞満鏋勫彲浠ヤ娇鍧﹀厠涓や晶鐨勫饱甯︿互涓嶅悓鐨勯熷害杩愬姩銆
鍝涓渚у饱甯︾殑杩愬姩閫熷害杈冩參锛岃溅浣撳氨鍚戝摢杈硅浆鍚戙傚傛灉瑕佸湪鍘熷湴鈥滄帀澶粹濓紝鍙瑕佹妸涓渚х殑灞ュ甫瀹屽叏鍋滀綇锛屼娇鍏堕熷害涓洪浂锛岄潬鍙︿竴渚у饱甯︿骇鐢熺殑鍔ㄥ姏灏卞彲浠ュ甫鍔ㄥ潶鍏嬪湪鍘熷湴杞鍚戜簡銆傦紙澶ч儴鍒嗗潶鍏嬬殑涓ゆ潯灞ュ甫鍙浠ヤ竴鍓嶄竴鍚庡弽鏂瑰悜杩愬姩锛屽仛鍒扮湡姝f剰涔変笂鐨勫師鍦拌浆鍚戙傦級
鍙傝冭祫鏂欐潵婧愶細鐧惧害鐧剧戔斺斿潶鍏
『陆』 CH-1000型综合传动装置的结构与性能
CH-1000型传动装置为双流传动系统(所谓双流传动,是指该传动装置的变速和转向功能,分别由2条功率流进行独立传递的,再经汇流装置汇合后输出),净重约1900KG。传动装置的主体结构,是由箱体、一对前传动锥齿轮,带自动闭锁功能并与主动轴同轴的液力变矩器,1个三自由度行星变速箱,大功率液压机械无级转向机,汇流行星排,液力减速器等主要部件组成的;此外还有为液压控制系统提供动力的辅助液压泵,以及置于传动装置顶部的2个液压冷却风扇等部件。
同轴行星侧传动和停车机械制动器为传动装置的外围部件,两者集成于一个壳体内,通过弹性联轴节与传动装置的主体连接。
传动装置与发动机通过连接件连接成一整体固定在一个三点式支承框架上,可以实现整体吊装,在战场上可在40分钟内进行拆装,为车辆重新投入战斗赢得了宝贵时间。
CH-1000型传动装置的变速机构为一个串联式的三自由度行星变速机构,由有2个简单行星排、1个复合行星排和6个控制件组成。其中2个简单行星排和3个控制件构成一组,操纵其中一个控制件可以得到“高”“低”“倒”3个档位;1个复合行星排和3个控制件构成另一组,操纵其中一个控制件可以得到“1-2-3”3个档位;2组以串联的形式结合。因此,结合2组内的各一个操纵件则可以得到6个前进挡、3个倒档共9个挡。由于系统采用了可自动闭锁的液力变矩器,因此可以动力换挡,并且在速度逐渐降到零的过程中保证动力不间断输出;而在4档以上时,液力变矩器的离合器自动闭锁,可以实现较高的传动效率。CH-1000型传动用于配套坦克时,最高试验速度可达80KM,最高公路运用速度和越野速度分别可达70KM和54KM,最高倒车速度可达34KM,0-32KM/H的加速时间为6-7秒。这为坦克带来了良好的机动性,特别是较高的倒车速度便于坦克快速撤退,大大提高了坦克的战场生存能力。
CH1000型的转向系统为我国自主研发的大功率液压机械无级转向机,实际上是一个简易的液压机械无级变速器,由连体式液压泵-马达,正反转行星排(含3个控制件)、功率合成机构和输入-输出机构组成。在大半径转向时,行星排机构由制动件锁定,功率全部由液压马达输出,此时为纯液压转向工况;在小半径转向时,结合正反转行星排上2个控制件的其中一个,就可以得到行星机构正、反方向的转向,此时功率由液压马达和机械行星机构共同输出,为液压-机械转向工况。它相对国际上广泛使用的纯液压转向机构而言,具有更高的输出效率,而且液压件的功率只需要1/3,这样就克服了我国在高压、大排量、大功率液压马达上的软肋造成的技术瓶颈。它独立地做成一个箱体模块集成于综合传动系统中,并具有独立的操纵机构。该转向系统可以实现最小转向半径至无穷大的无级转向,转向时内侧履带的制动功率可以回流到外侧履带,因此功率损失较小,效率较高;而传统的单流转向装置大部分工况都是非规定半径的滑摩转向,这需要驾驶员多次间歇操纵,费力繁琐,而且大量的能量消耗在摩擦和元件发热中,效率低下,磨损严重。当车辆挂空挡时,可以实现0半径“中心转向”,最小理论周转时间为8秒左右。