导航:首页 > 装置知识 > 设计胶带运送机的传动装置

设计胶带运送机的传动装置

发布时间:2024-05-25 20:47:08

机械设计课程设计带式运输机传动装置

机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图

1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器

二. 工作情况:
载荷平稳、单向旋转

三. 原始数据
鼓轮的扭矩T(N·m):850
鼓轮的直径D(mm):350
运输带速度V(m/s):0.7
带速允许偏差(%):5
使用年限(年):5
工作制度(班/日):2

四. 设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写

五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份

六. 设计进度
1、 第一阶段:总体计算和传动件参数计算
2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写

传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大齿轮浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。

电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。

2.电动机容量的选择
1) 工作机所需功率Pw
Pw=3.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW

3.电动机转速的选择
nd=(i1’·i2’…in’)nw
初选为同步转速为1000r/min的电动机

4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求。

计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=38.4
i=25.14

② 课程设计带式输送机传动装置

本次毕业设计是关于矿用固定式带式输送机的设计。首选胶带输送机作了简单的内概述:接着分析了带式输送容机的选型原则及计算方法;然后根据这些设计准则与计算选型方法按照给定参数要求进行选型设计;接着对所选择的输送机各主要零部件进行了校核。普通带式输送机由六个主要部件组成:传动装置,机尾和导回装置,中部机架,拉紧装置以及胶带。最后简单的说明了输送机的安装与维护。目前,胶带输送机正朝着长距离,高速度,低摩擦的方向发展,近年来出现的气垫式胶带输送机就是其中的一中。在胶带输送机的设计、制造以及应用方面,目前我国与国外先进水平相比仍有较大差距,国内在设计制造带式输送机过程中存在着很多不足。
关键词:带式输送机,选型设计,主要部件

以上资料来自“三人行设计网” 我只是复制了一部分给你看 但愿能对你有所帮助 他的还算比较全 你可以去看看 呵呵

③ 胶带输送机减速器中减速的传动装置是

传动装置是齿轮。胶带输送如陆机通过齿轮传动装置使胶带输送机减速。胶带输送机是一种摩擦驱动以连续方式运输物料的机械,应用它可以将物料在一定的输送线上脊橡者,从最初的供料点到最终的卸料点间形成一种樱薯物料的输送流程。

④ 甯﹀紡杈撻佹満浼犲姩瑁呯疆璁捐″紑棰樻姤鍛

甯﹀紡杈撻佹満浼犲姩瑁呯疆璁捐″紑棰樻姤鍛

銆銆 涓.閫夐樹緷鎹鍙婃剰涔

銆銆1. 甯﹀紡杈撻佹満鏄鑳跺甫鍏间綔鐗靛紩鏈烘瀯鍜屾壙杞芥満鏋勭殑涓绉嶈繍杈撹惧囷紝瀹冨湪鍦伴潰鍜屼簳涓嬭繍杈撳叿鏈夊箍娉涚殑杩愮敤銆備笌鍏朵粬璁惧囷紙濡傛満杞︾被锛夌浉姣旓紝甯﹀紡杈撻佹満涓嶄粎鍏锋湁闀胯窛绂汇佸ぇ杩愰噺銆佽繛缁杩愯緭绛夌壒鐐癸紝鑰屼笖杩愯屽彲闈狅紝鏄撲簬瀹炵幇鑷鍔ㄥ寲鍜岄泦涓鎺у埗锛岀粡娴庢晥鐩婂崄鍒嗘槑鏄俱傚叾杩愯岀淮鎶よ垂鐢ㄨ繙浣庝簬鍏璺姹借繍鏂瑰紡锛屼笖鎬绘姇璧勫皬锛屽嚒鑳藉疄琛屽甫寮忚緭閫佹満杈撻佺殑鍦哄悎锛岄兘閲囩敤杩炵画甯﹀紡杩愯緭鏈鸿緭閫併

銆銆2. 甯﹀紡杈撻佹満鏄涓绉嶇悊鎯崇殑杩炵画杩愯緭璁惧囷紝浣嗙洰鍓嶅叾鏁堣兘杩樻病鏈夊厖鍒嗗彂鎸ワ紝璧勬簮鏈夋墍娴璐癸紝濡傚皢甯﹀紡杈撻佹満鍋氶傚綋淇鏀癸紝骞堕噰鐢ㄤ竴瀹氱殑.瀹夊叏鎺鏂斤紝鎴栬歌兘瀹炵幇浜恒佽繍鏂欍佸弻鍚戣繍杈撶瓑鍔熻兘锛屽仛鍒颁竴鏈哄氱敤锛屼娇鍏跺彂鎸ユ洿澶х殑缁忔祹鏁堢泭銆

銆銆 浜.鍘熷嬫暟鎹鍙婂伐浣滄潯浠

銆銆1銆佸師濮嬫暟鎹锛

銆銆2銆佸伐浣滄潯浠讹細

銆銆杩炵画鍗曞悜杩愯浆锛屽伐浣滄椂鏈夎交寰鎸鍔锛屼娇鐢ㄦ湡闄愪负10骞达紝灏忔壒閲忕敓浜э紝鍗曠彮鍒跺伐浣滐紙8灏忔椂/澶╋級銆傝繍杈撻熷害鍏佽歌宸涓5%銆

銆銆 涓.璁捐″唴瀹逛互鍙婄爺绌舵柟娉

銆銆1.浼犲姩鏂规堢殑鎷熷畾锛堣捐″崟绾у渾鏌遍娇杞鍑忛熷櫒鍜屼竴绾у甫浼犲姩锛

銆銆2.鐢靛姩鏈虹殑閫夋嫨

銆銆涓锛塝绯诲垪涓夌浉寮傛ョ數鍔ㄦ満

銆銆3.璁$畻鎬讳紶鍔ㄦ瘮鍜屽垎閰嶄紶鍔ㄦ瘮

銆銆4.璁$畻杩愬姩鍙傛暟鍜屽姩鍔涘弬鏁

銆銆5.浼犲姩闆朵欢鐨勮捐

銆銆涓锛夌毊甯﹁疆浼犲姩璁捐¤$畻

銆銆1.鏅閫歏甯

銆銆2.纭瀹氬甫杞鐩村緞浠ュ強甯﹂

銆銆3.纭瀹氬甫闀垮拰涓蹇冭窛

銆銆4.楠岀畻灏忓甫杞鍖呰

銆銆5.纭瀹氬甫鏍规暟

銆銆浜岋級榻胯疆浼犲姩鐨勮捐

銆銆涓夛級杞寸殑璁捐¤$畻

銆銆1.鏍规嵁鎵鐭╀及绠楄酱鐨勮酱寰

銆銆鍥涳級婊氬姩杞存壙鐨勯夋嫨鍙婇獙绠

銆銆1.璁$畻杈撳叆杞存壙

銆銆2.璁$畻杈撳嚭杞存壙

銆銆浜旓級閿鑱旀帴鐨勯夋嫨

銆銆鍏锛夎仈杞村櫒鐨勯夋嫨

銆銆涓冿級娑︽粦娌瑰強娑︽粦鏂瑰紡鐨勯夋嫨

銆銆 鍥.璁捐′换鍔

銆銆1.閮ㄤ欢瑁呴厤鍥句竴寮狅紙A1锛

銆銆2.闆朵欢宸ヤ綔鍥句袱寮狅紙A3锛

銆銆3.璁捐¤烘枃涓浠斤紙6000~8000瀛楋級

銆銆 浜.璁捐¤繘绋嬪畨鎺

銆銆1.璁捐″噯澶囧伐浣滐紙2012.10.9~2012.10.20锛

銆銆2.浼犲姩瑁呯疆鐨勬讳綋璁捐★紙2012.10.21~2012.11.10锛

銆銆3.浼犲姩闆朵欢鐨勮捐★紙11.11~20锛

銆銆4.缁樺埗瑁呴厤鍥惧拰闆朵欢鐨勫伐浣滃浘锛11.21~30锛

銆銆5. 鎾板啓璁$畻璇存槑涔﹀拰姣曚笟璁捐¤烘枃锛11.1~12.10锛

銆銆6.淇鏀硅烘枃銆佸畾绋匡紙12.10~17锛

銆銆7.鍑嗗囩瓟杈╋紙12.18~30锛

銆銆 鍏.鍙傝冩枃鐚

銆銆1.銆婄畝鏄庢満姊拌捐℃墜鍐屻嬶紝瀛斿噷鍢夛紝鍖椾含鐞嗗伐澶у﹀嚭鐗堢ぞ锛2008

銆銆2.銆婃満姊拌剧▼璁捐°嬶紝瀹嬪疂鐜夛紝鍚村畻娉斤紝楂樼瓑鏁欒偛鍑虹増绀撅紝2009

銆銆3.銆婃満姊拌捐°嬶紝婵鑹璐碉紝绾鍚嶅垰锛岄珮绛夋暀鑲插嚭鐗堢ぞ锛2009

銆銆4.銆婃満姊板埗鍥俱嬶紝瀹嬪織鑹锛岄粍鍥藉叺锛岄檲铏庯紝鍖椾含鐞嗗伐澶у﹀嚭鐗堢ぞ锛2009

銆銆5.銆婂伐绋嬫潗鏂欍嬶紝 鑻忔棴骞筹紝婀樻江澶у﹀嚭鐗堢ぞ锛2008

銆銆6.銆婃満姊拌捐¤剧▼璁捐″浘鍐屻嬶紝闄堥搧楦o紝楂樼瓑鏁欒偛鍑虹増绀撅紝2009

銆銆7.銆婃満姊拌捐″熀纭銆嬶紝闄堢珛寰凤紝楂樼瓑鏁欒偛鍑虹増绀撅紝2007.8绗3鐗

銆銆8.銆婃満姊板師鐞嗐嬶紝瀛欐亽锛岄檲浣滄ā锛岃憶鏂囨澃锛岄珮绛夋暀鑲插嚭鐗堢ぞ锛2006

銆銆9.銆婃潗鏂欏姏瀛︺嬪惔寤哄崕锛岄噸搴嗗ぇ瀛﹀嚭鐗堢ぞ锛2002

;

⑤ 机械设计课程设计---设计带式输送机传动装置

参考:

可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,它与普通胶带输送机相比增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。

结构概述

伸缩胶带输送机分为固定部分和非固定部分两大部分。固定部分由机头传动装置、储带装置、收放胶带装置等组成;非固定部分由无螺栓连接的快速可拆支架、机尾等组成。

1、 机头传动装置由传动卷筒、减速器、液力联轴器、机架、卸载滚筒、清扫器组成。

n 机头传动装置是整个输送机的驱动部分,两台电机通过液力联轴器、减速器分别传递转距给两个传动滚筒(也可以用两个齿轮串联起来传动)。用齿轮传动时,应卸下一组电机、液力联轴器和减速器。

n 液力联轴器为YL-400型,它由泵轮、透平轮、外壳、从动轴等构成,其特点是泵轮侧有一辅助室,电机启动后,液流透过小孔进入工作室,因而能使负载比较平衡地启动而电机则按近于坚载启动,工作时壳体内加20号机械油,充油量为14m3,减速器采用上级齿轮减速,第一级为圆弧锥齿轮,第二、第三级为斜齿和直齿圆柱齿轮,总传动比为25.564,与SGW-620/40T型刮板输送机可通用互换,减速器用螺栓直接与机架连接。

n 传动卷筒为焊接结构,外径为Φ500毫米,卷筒表面有特制的硫化胶层,因此对提高胶带与滚筒的eua值,防止打滑、减少初张力,具有较好的效果。

n 卸载端和头部清扫器,带式逆止器,便于卸载,机头最前部有外伸的卸载臂,由卸载滚筒和伸出架组成,滚筒安装在伸出架上,其轴线位置可通过轴承两侧的螺栓进行调节,以调整胶带在机头部的跑偏,在卸载滚筒的下部装有两道清扫器,由于清扫器刮板紧压在胶带上,故可除去粘附着的碎煤,带式逆止器以防止停车时胶带倒转。

n 机架为焊接结构,用螺栓组装,机头传动装置所有的零部件均安装在机架上。电动机和减速器可根据具体情况安装在机架的左侧或右侧。

2、 储带装置包括储带转向架、储带仓架、换向滚筒、托辊小车、游动小车、张紧装置、张紧绞车等。

n 储带装置的骨架由框架和支架用螺栓连接而成,在机头传动装置两具转框架上装有三个固定换向滚筒与游动小车上的两个换向滚筒一起供胶带在储带装置中往复导向,架子上面安装固定槽形托辊和平托辊,以支撑胶带,架子内侧有轨道,供托辊不画和游动小车行走。

n 固定换向滚筒为定轴式,用于储带装置进行储带时,用以主承胶带,使其悬垂度不致过大,托辊小车随游动小车位置的变动,需要用人力拉出或退回。

n 游动小车由车架、换向滚筒、滑轮组、车轮等组成,滑轮组装在车身后都与另一滑轮组相适应,其位置可保证受力时车身不被抬起,这样,对保持车身稳定,防止换向滚筒上的胶带跑偏效果较好,车身下部还装着止爬钩,用以防止车轮脱轨掉道。

n 游动小车向左侧移动时,胶带放出,机身伸长,游动小车向右侧移动时,胶带储存,机身缩短,通过钢丝绳拉紧游动小车可使胶带得到适当的张紧度。

n 在储带装置的后部,设有张紧绞车,胶带张力指示器和张力缓冲器,张力缓冲器的作用是使输送机(在起动时让胶带始终保持一定的张力,以减少空载胶带的不适度和胶带层间的拍打)。

3、 收放胶带装置位于张紧绞车的后部,它由机架、调心托辊、减速器、电动机、旋杆等组成,其作用是将胶带增补到输送机机身上或从输送机机身取下,机架的两端和后端,各装一旋杆,当增加或减少胶带时用以夹紧主胶带,调心托辊组供卷筒收放胶带时导向,工作时将卷筒推进机架的一端用尾架顶起,另一端顶在减速器出轴的顶尖上,开动电动机通过减速器出轴的拨盘带动卷筒,收卷胶带,放出胶带,放出胶带时不开电机由外拖动卷筒反转,在不工作时活动轨可用插销挂在机架上,以缩小宽度,在活动轨上方应设置起重装置悬吊卷筒,巷道宽度可视具体情况适当拓宽,以利胶带收入时操作。

4、 中间架由无螺栓连接的快速可拆支架,由H型支架、钢管、平托辊和挂钩式槽形托辊、“V”型托辊等组成,是机器的非固定部分,钢管可作为拆卸的机身,用柱销固装在钢管上,用小锤可以打动,挂钩式槽形托辊胶接式,槽形角30°,用挂钩挂在钢管的柱销上,挂钩上制动的圆弧齿槽,托辊就是通过齿槽挂在柱销上的,可向前向后移动,以调节托辊位置控制胶带跑偏。

5、 上料装置、下料装置;上料装置安装在收放装置后边,由转向转导向接上料段,运送的物料从此段装上运至下料段,下料装置由下料段一组斜托辊将物料卸下,下料段直接极为,机尾由导轨(Ⅰ、Ⅱ、Ⅲ)和机尾滚筒座组成,导轨一端用螺栓固定在中支座上,并与另一导轨的前端用柱销胶接,藉以适应底板的不平,机尾滚筒与储带装置中的滚筒结构相同,能互换,其轴线位置可用螺栓调节,以调整胶带中在机尾的跑偏,机尾滚筒前端设有刮煤板,可使滚筒表面的碎煤或粉煤刮下,并收集泥槽中,用特制的拉泥板取出,机尾加上装有缓冲托辊组,受料时,可降低块煤对胶带的冲击,有利于提高胶带寿命

⑥ 设计题目:用于带式运输机的一级圆柱齿轮减速器

给你个例子,自己再算.

一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW

3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m

五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.

六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm

II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N•m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm

(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N•m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危险截面C的强度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。

主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N•m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够

(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min

(1)已知nII=121.67(r/min)

两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够

二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够

七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。

八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳.

放油螺塞
选用外六角油塞及垫片M18×1.5
根据《机械设计基础课程设计》表5.3选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12
(4)箱座凸缘厚度b=1.5z=1.5×8=12
(5)箱座底凸缘厚度b2=2.5z=2.5×8=20

(6)地脚螺钉直径df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)
(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位销直径d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距离C1
(15) Df.d2

(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>9.6 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3

D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.

九、润滑与密封
1.齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2.滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4.密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。

十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。

十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

F=1.7KN

V=1.4m/s

D=220mm

η总 =0.86

Pd=2.76KW

Nw=121.5r/min

Ic=3~5

i=6~20

nd=729~2430r/min

Y100l2-4

i总=11.68

i带=3

i齿3.89

nI=473.33(r/min)
nII=121.67(r/min)
nw=121.67(r/min)

PI=2.64KW
PII=2.53KW

Td=18.56N•m
TI=53.26N•m
TII =198.58N•m

PC=3.3KW

V=7.06m/s

Ld=1605.8mm

a=497mm

α1=158.670

Z=3

F0=134.3kN

FQ=791.9N

Z1=20
z2=78

N1=1.36x109
N2=3.4×108

m=2.5

d1=50mm
d2=195mm

b1=60mm
b2=55mm

[σbb1]= 490Mpa
[σbb2] =410Mpa
中心矩a=122.5mm

V=1.23m/s

Mec=65.13N•m

σe=60MPa

C=118

L'h=48000h

LH=998953h

LH=53713h

⑦ 设计胶带输送机的传动装置

一、摩擦传动理论
带式输送机所需的牵引力是通过驱动装置中的驱动滚筒与输送带间的摩擦作用而传递的,因而称为摩擦传动。为确保作用力的传递和牵引构件不在驱动轮上打滑,必须满足下列条件:
(1)牵引构件具有足够的张力;
(2)牵引带与驱动滚筒的接触表面有一定的粗糙度;
(3)牵引带在驱动轮上有足够大的围包角。
图l—22为一台带式输送机的简图。当驱动滚筒按顺时针方向转动时,通过它与输送带间的摩擦力驱动输送带沿箭头方向运动。

在输送带不工作时,带子上各点张力是相等的。当输送带运动时,各点张力就不等了。其大小取决于张紧力P0、运输机的生产率、输送带的速度、宽度、输送机长度、倾角、托辊结构性能等等。故输送带的张力由l点到4点逐渐增加,而在绕经驱动滚筒的主动段,由4点到l点张力逐渐减小。必须使输送带在驱动滚筒上的趋入点张力Sn大于奔离点张力S1,方能克服运行阻力,使输送带运动。此两点张力之差,即为驱动滚筒传递给输送带的牵引力W0。在数值上它等于输送带沿驱动滚筒围包弧上摩擦力的总和,即
W0=Sn-S1 (1—1)
趋入点张力Sn随输送带上负载的增加而增大,当负载过大时,致使(Sn-S1)之差值大于摩擦力,此时输送带在驱动滚筒上打滑而不能正常工作。该现象在选煤厂中可经常遇到。
Sn与S1应保持何种关系方能防止打滑,保证输送带正常工作,这是将要研究的问题。
在讨论前,先作如下假设:
(1)假设输送带是理想的挠性体,可以任意弯曲,不受弯曲应力影响;
(2)假设绕经驱动滚筒上的输送带的重力和所受的离心力忽略不计(因与输送带上张力和摩擦力相比数值很小)。
如图l—22b所示,在驱动滚筒上取一单元长为dl的输送带,对应的中心角即围包角为dα。当滚筒回转时,作用在这小段输送带两端张力分别为S及S+dS。在极限状态下,即摩擦力达到最大静摩擦力时,dS应为正压力dN与摩擦系数μ的乘积,即
dS=μdN
dN为滚筒给输送带以上的作用力总和。
列出该单元长度输送带受力平衡方程式为

由于dα很小,故sin(dα/2)≈(dα/2),cos(dα/2)≈1,上述方程组可简化为

略去二次微量:dSdα,解上述方程组得 .
通过在这段单元长度上输送带的受力分析,可以得到,当摩擦力达到最大极限值时,欲保持输送带不打滑,各参数间的关系应满足dS/S=μdα。以定积分方法解之,即可得出输送带在整个驱动滚筒围包弧上,在不打滑的极限平衡状态下,趋入点的Sn与奔离点的Sk之间的关系

解上式,得
式中 e——自然对数的底,e=2.718;
μ——驱动滚筒与输送带之间的摩擦系数;
——输送带在驱动滚筒上趋入点的最大张力;
S1一一输送带在驱动滚筒奔离点的张力;
α——输送带在驱动滚筒上的围包角,弧度。
上式)即挠性体摩擦驱动的欧拉公式。根据欧拉公式可以绘出在驱动滚筒围包弧上输送带张力变化的曲线,见图l—23中的bca'。

从上述分析可知,欧拉公式只是表达了趋入点张力为最大极限值时的平衡状态。而实际生产中载荷往往是不均衡的;而且,在欧拉公式讨论中,将输送带看作是不变形的挠性体,实际上输送带(如橡胶带)是一个弹性体,在张力作用下,要产生弹性伸长,其伸长量与张力值大小成正比。因此,输送带沿驱动滚筒圆周上的分布规律见图1—23中bca曲线变化(而不是bca’)。在BC弧内,输送带张力按欧拉公式之规律变化;到c点后,张力达到Sn值,在CA弧内,Sn值保持不变。也就是说为了防止输送带在驱动滚筒上打滑,应使趋入点的实际张力Sn小于极限状态下的最大张力值,即

既然输送带是弹性体,那么,在受力后就要产生弹性伸长变形。这是弹性体与刚性体最本质的区别。受力愈大,变形也愈大,而输送带张力是由趋入点向奔离点逐渐减小,即在趋入点输送带被拉长的部分,在向奔离点运动过程中,随着张力的减小而逐渐收缩,从而使输送带与滚筒问产生相对滑动,这种滑动称为弹性滑动或弹性蠕动(它与打滑现象不同)。显然,弹性滑动只发生于输送带在驱动滚筒围包弧上有张力变化的一段弧内。产生弹性滑动的这一段围包弧,称为滑动弧,即图l-23中的BC弧,滑动弧所对应的中心角称为滑动角,即λ角;不产生弹性滑动的围包弧,称为静止弧(图中的CA弧),静止弧所对应的中心角,称为静止角,即图中γ角。滑动弧两端的张力差,即为驱动滚筒传递给输送带的牵引力。由此可见,只有存在滑动弧,驱动滚筒才能通过摩擦将牵引力传递给输送带;在静止弧内不传递牵引力,但它保证驱动装置具有一定的备用牵引力。
当输送机上负载增加时,趋入点张力Sn增大,滑动弧及对应的滑动角也相应均要增大,而静止弧及静止角则随之减小。图1—23中的C点向A点靠拢,当趋入点张力Sn增大至极限值Snmax时,则整个围包弧BA弧都变成了滑动弧,即C点与A点重合,整个围包角都变成了滑动角(λ=α,γ=0)。这时驱动滚筒上传送的牵引力达到最大值的极限摩擦力:
(1—4)
若输送机上的负荷再增加,即 ,这时.输送带将在驱动滚筒上打滑,输送机则不能正常工作。
二、提高牵引力的途径
根据库擦传动的理论及式(1—4)均可以看出,提高带式输送机的牵引力可以采用以下三种方法:
(1)增加奔离点的张力S1,以提高牵引力。具体的措施是通过张紧输送机的拉紧装置来实现。随着S1的增大,输送带上的最大张力也相应增大,就要求提高输送带的强度,这种做法是不经济的,在技术上也不合理。
(2)改善驱动滚筒表面的状况,以得到较大的摩擦系数μ,由表1—29可知,胶面滚筒的摩擦系数比光面滚筒大,环境干燥时比潮湿时大,所以,可以采用包胶、铸塑,或者采用在胶面上压制花纹的方法来提高摩擦系数。
(3)采用增加输送带在驱动滚筒上的围包角来提高牵引力。其具体措施是增设改向滚筒(即增面轮)可使包角由180°增至210°-240°必要时采用双滚筒驱动。
三、刚性联系双滚筒驱动牵引力及其分配比朗确定
刚性联系双滚筒和单滚筒相比,增加一个主动滚筒:当两个滚筒的直径相等时其角度是相同的(图1—24)。从图l—24中可以看出,输送带由滚筒②的C点到滚筒①的B点时,这两点之间除了一小段(BC段)胶带的臼重外,张力没有任何变化,故B点可看作C点的继续。因而刚性联系的双滚筒与单滚筒实质上是相同的,因为滑动弧随着张力增大而增大这一规律对它同样适用的。

S1及μ值在一定的情况下,而且μl=μ2,只有当滚筒②传递的牵引力达到极限值时,滚筒①才开始传递牵引力。设λ1、λ2、γ1、γ2、α1、α2分别为第①及第②滚筒的滑动角,静止角及围包角、则在λ2=α2,λ1=0的情况下,静止弧仅存在于滚筒①上。当λ2=α2时,λ1=α1-γ1时,输送带在两个主动滚筒上张力变化曲线如图1—24所示。
滚筒②可能传递的最大牵引力为

滚筒①可能传递的最大牵引力为

式中 S’——两滚筒间输送带上的张力。
驱动装置可能传递总的最大牵引力为

式中 α——总围包角
两滚筒可能传递的最大牵引力之比为

在一般情况下: 因而
(1-5)
显然,当第①滚筒上传递的牵引力未达到极限时,即 时,则两驱动滚筒传递的牵引力之比为

由上式可知,当总的牵引力W0和张力S1一定时,若μ值增加,则第⑧个驱动滚筒传递的牵引力WII增大,而WI减小。反之,若μ值减小时,则WI增大(因W0=WI+WII为一定值)。
由此可以看出:刚性联系的双滚筒驱动装置,其滚筒牵引力的分配比值随摩擦系数的变化而改变。但由式(1-5)可知,驱动滚筒①可能传递的最大牵引力等于滚筒⑨的 倍这一比值是不变的。
刚性联系的双驱动滚筒缺点是已设计的牵引力分配比值,只适用于一定的荷载和一定的摩擦系数。当荷载变化,其比例也就被破坏了。此外,还由于大气潮湿程度的变化,两滚筒的表面清洁程度的不同,摩擦系数也发生了变化,其分配比实际上不可能保持定值。

⑧ 带式输送机装置中的二级圆柱齿轮减速器设计说明书

设计参数:

1、运输带工作拉力: ;

2、运输带工作速度: ;

3、滚筒直径: ;

4、滚筒工作效率: ;

5、工作寿命:8年单班制工作,所以, ;

6、工作条件:连续单向运转,工作时有轻微振动。

传动装置设计

一、传动方案:展开式二级圆柱齿轮减速器。

二、选择电机:

1、类型:Y系列三相异步电动机;

2、型号:

工作机所需输入功率: ;

电机所需功率: ;

其中, 为滚筒工作效率,0.96

为高速级联轴器效率,0.98

为两级圆柱齿轮减速器效率,0.95

为高速级联轴器效率,0.98

电机转速 选:1500 ;

所以查表选电机型号为:Y112M-4

电机参数:

额定功率: 4Kw

满载转速: =1440

电机轴直径:

三、 传动比分配:

( )

其中: 为高速级传动比, 为低速级传动比,且 ,

取 ,则有: ;

四、传动装置的运动和动力参数

1、电机轴: ;





2、高速轴: ;





3、中间轴: ;





4、低速轴: ;





5、工作轴: ;





传动零件设计:

一、齿轮设计(课本p175)

高速级(斜齿轮):

设计参数:

1、选材:

大齿轮:40Cr,调质处理,硬度300HBS;

小齿轮:40Cr,表面淬火,硬度40~50HRC。

2、确定许用应力:

1)许用接触应力:

而:

因为 ,所以,只需考虑 。

对于调质处理的齿轮, 。



查表(HBS为300)有循环基数 ,故, ,所以, 。

2)许用弯应力:

查表有:

取 ,单向传动取 ,因为,

所以取 ,则有:

3)齿轮的工作转矩:

4)根据接触强度,求小齿轮分度圆直径:

其中, (钢制斜齿轮), 。

所以,取 ,则有

5)验算接触应力:

其中,取

而,齿轮圆周速度为:

故, (7级精度),

所以,最终有,

6)验算弯曲应力:

其中, (x=0)

,所以应验算大齿轮的弯曲应力

低速级(直齿轮):

设计参数:

1、选材:

大齿轮:40Cr,调质处理,硬度300HBS;

小齿轮:40Cr,表面淬火,硬度40~50HRC。

2、确定许用应力:

1)许用接触应力:

而:

因为 ,所以,只需考虑 。

对于调质处理的齿轮, 。



查表(HBS为300)有循环基数 ,故, ,所以, 。

2)许用弯应力:

查表有:

取 ,单向传动取 ,因为,

所以取 ,则有:

3)齿轮的工作转矩:

4)根据接触强度,求小齿轮分度圆直径:

其中, (钢制直齿轮), 。

所以,取 ,则有

5)验算接触应力:

其中,取

(直齿轮),

而,齿轮圆周速度为:

故, (7级精度),

所以,最终有,

6)验算弯曲应力:

其中, (x=0)

,所以应验算大齿轮的弯曲应力

所以,计算得齿轮的参数为:

高速级

184.5
2
90
112.75
45

1
0.25


41
20
50

低速级

210
2.5
84
140
55



70
28
62

二、联轴器选择

高速级: ,电机轴直径: ,所以,选择 ;

低速级: 所以,选择 ;

三、初算轴径

(轴的材料均用45号钢,调质处理)

高速轴: ,(外伸轴,C=107),根据联轴器参数选择 ;

中间轴: ,(非外伸轴,C=118),具体值在画图时确定;

低速轴: ,(外伸轴,C=107),根据联轴器参数选择 。

四、轴承的润滑方式选择:

高速级齿轮的圆周速度为:

所以,轴承采用油润滑。高速级小齿轮处用挡油板。

五、箱体的结构尺寸:(机械设计课程设计手册p173)

箱座壁厚: ,而 ,

所以,取 。

箱盖壁厚: ,所以,取 。

箱座、箱盖、箱底座凸缘的厚度:

箱座、箱盖的肋厚:

轴承旁凸台的半径:

轴承盖外径: (其中,D为轴承外径, 为轴承盖螺钉的直径)。

中心高:

取: ;

地脚螺钉的直径: (因为: );数目:6。

轴承旁联接螺栓的直径: ;

箱盖、箱座联接螺栓的直径:

轴承盖螺钉的直径: 数目:4;

窥视孔盖板螺钉的直径: 。

至箱外壁的距离:

至凸缘边缘的距离: 。

外箱壁到轴承座端面的距离: 。

齿轮顶圆与内箱壁距离: ,取: 。

齿轮端面与内箱壁距离: ,取: 。

六、初选轴承:

高速轴:205, ;

中间轴:306, ;

低速轴:2209, ;

轴承端盖外径:

高速轴: ;

中间轴: ;

低速轴:

七、轴的强度核算:

轴所受的力:

高速级: ;

;



低速级: ;



轴的受力分析:

高速轴:

由力平衡有:

受力如图:







选材为45号钢调质处理,所以

查表有:





所以,危险截面为截面C



而此处 ,

所以,此处满足强度要求,安全。

中间轴:

由力平衡有:

受力如图:









可见B处受力更大,



选材为45号钢调质处理,所以

查表有:





所以,危险截面为截面B



而此处 ,所以,此处满足强度要求,安全。

低速轴:

由力平衡有:

受力如图:



选材为45号钢调质处理,所以查表有:





所以,危险截面为截面B



而此处 ,

所以,此轴满足强度要求,安全。

八、轴承使用寿命计算:( )

高速轴:

选用205,则有: 。

计算步骤和结果如下:

计算项目
计算结果

0.0317

0.225

1.1

942.2N



结论
(满足寿命要求)

中间轴: ;

选用306,则有: 。

计算步骤和结果如下:

计算项目
计算结果

0.015

0.192

1.1

1727N



结论
(满足寿命要求)

低速轴:选用2 209,则有: 。

径向当量动负荷 ;

径向当量静负荷 ;

所以, 。

九、齿轮详细参数:

高速级大齿轮:

低速级大齿轮:

⑨ 带式输送机传动装置设计

一、带式输送机传动装置,可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,不过增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
二、设计安装调试:

1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。
2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。
3.螺旋张紧行程为机长的1%~1.5%。
4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。
5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50~70mm。
6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。
7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查:
(1)各托辊应与输送带接触,转动灵活。
(2)各润滑处无漏油现象。
(3)各紧固件无松动。
(4)轴承温升不大于40°C,且最高温度不超过80°C。
(5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。

阅读全文

与设计胶带运送机的传动装置相关的资料

热点内容
路由器上有unknown连接是什么设备 浏览:525
启辰D50分离轴承多少钱 浏览:386
牙机雕刻机与电动工具 浏览:208
外汇期货交易实验装置 浏览:791
设备投资怎么算 浏览:95
好的摄影器材有哪些 浏览:463
温州新五金制品有限公司怎么样 浏览:293
锦州五金机电城出租出售 浏览:417
卡尔蔡司公司有哪些医学器材 浏览:261
重庆市机械凿打岩石套什么定额 浏览:557
阀门外面加个框是什么意思 浏览:756
会议设备系统哪里有 浏览:340
打印室需要哪些设备多少钱 浏览:577
通用型机床设备加工用于什么 浏览:290
书画工具箱套装 浏览:772
燃烧固体需要哪些仪器 浏览:969
2213ktn1是什么轴承 浏览:640
电脑固体硬盘怎么加机械硬盘 浏览:197
昆山汽车门板超声波焊接机怎么样 浏览:787
发说说怎么隐藏设备 浏览:804