导航:首页 > 装置知识 > 钻孔动力头装置的控制设计制作

钻孔动力头装置的控制设计制作

发布时间:2024-05-20 08:54:07

① PLC在组合机床控制中的应用论文

PLC在组合机床控制中的应用

一.可编程控制器的定义
可编程控制器,简称PLC(Programmable logic Controller),是指以计算机技术为基础的新型工业控制装置。在1987年国际电工委员会(International Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义:“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。”
二.PLC的特点
1 可靠性高,抗干扰能力强
高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。
2 配套齐全,功能完善,适用性强
PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。
3 易学易用,深受工程技术人员欢迎
PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。
4 系统的设计、建造工作量小,维护方便,容易改造
PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。
5 体积小,重量轻,能耗低
以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。
三.在组合机床自动线中,一般根据不同的加工精度要求设置三种滑台
目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。
1 开关量的逻辑控制
这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。
2 模拟量控制
在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。
3 运动控制
PLC可以用于圆周运动或直线运动的控制。从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。
4 过程控制
过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。
5 数据处理
现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。
6 通信及联网
PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。新近生产的PLC都具有通信接口,通信非常方便。
7 PLC控制的数控滑台结构
一般组合机床自动线中的数控滑台采用步进电机驱动的开环伺服机构。采用PLC控制的数控滑台由可编程控制器、环行脉冲分配器、步进电机驱动器、步进电机和伺服传动机构等部分组成,

伺服传动机构中的齿轮Z1、Z2应该采取消隙措施,避免产生反向死区或使加工精度下降;而丝杠传动副则应该根据该单元的加工精度要求,确定是否选用滚珠丝杠副。采用滚珠丝杠副,具有传动效率高、系统刚度好、传动精度高、使用寿命长的优点,但成本较高且不能自锁。
8 控制系统的软件结构
软件结构根据控制要求而设计,主要划分为五大模块:即步进电机控制模块、定位控制模块、数据拨盘输入及数据传输模块、数码输出显示模块、元件故障的自动检测与报警模块。

由于整个软件结构较为庞大,脉冲控制器产生0.1秒的控制脉冲,使移位寄存器移位,提供六拍时序脉冲,通过三相六拍环形分配器使三个输出继电器Y430、Y431、Y432按照单双六拍的通电方式控制步进电机。为实现定位控制,采用不同的计数器分别控制粗定位行程和精定位行程,计数器的设定值依据行程而定。例如,设刀具或工作台欲从A点移至C点,已知AC=200mm,把AC划分为AB与BC两段,AB=196mm,BC=4mm,AB段为粗定位行程,采用0.1mm/步的脉冲当量快速移动,利用了6位计数器(C660/C661),而BC段为精定位行程,采用0.01mm/步的脉冲当量精确定位,利用了3位计数器C460,在粗定位结束进入精定位的同时,PLC自动接通电磁离合器输出点Y433以实现变速机构的更换。
9 PLC控制系统的接地方法
(1)由于PLC机柜和操作台、配电柜等用电设备的金属外壳及控制设备正常不带电的金属部分,由于各种原因(如腐蚀、绝缘破损等)而有可能带危险电压,所以应该进行保护接地,低于36V供电的设备,无特殊要求可不做接地保护。
(2)PLC控制系统中的基准电位是各回路工作的参考电位,基准电位的连接线称为系统地,通常是控制回路直流电源的零伏导线,系统接地的方式有浮地方式、直接接地方式和电容接地方式。
(3)为防止静电感应和磁场感应而设置的屏蔽接地端子应做屏蔽接地。其中信号回路接地和屏蔽接地又通称为工作接地。
一般以上接地方法的控制原则是:保护地和工作地不能混用,这是由于在每一段电源保护地线的两点间会有数毫伏,甚至几伏的电位差,这对低电平信号电路来说是一个非常严重的干扰。屏蔽地,当信号电路是单点接地时,低频电缆的屏蔽层也应单点接地,如果电缆的屏蔽层接地点有一个以上时,将产生噪声电流,形成噪声干扰源。
本系统采用的接地电阻都需要在规定的范围内,对于PLC组成的控制系统一般应小于4Ω,而且要有足够的机械强度,事前都需要进行防腐处理。PLC组成的控制系统进行单独设置接地系统,也可以利用现场条件进行“等电位联结”进行接地设计。
10 PLC控制梯形图:
梯形图是通过连线把PLC指令的梯形图符号连接在一起的连通图,用以表达所使用的PLC指令及其前后顺序,它与电气原理图很相似。它的连线有两种:一为母线,另一为内部横竖线。内部横竖线把一个个梯形图符号指令连成一个指令组,这个指令组一般总是从装载(LD)指令开始,必要时再继以若干个输入指令(含LD指令),以建立逻辑条件。最后为输出类指令,实现输出控制,或为数据控制、流程控制、通讯处理、监控工作等指令,以进行相应的工作。母线是用来连接指令组的。下图是三菱公司的FX2N系列产品的最简单的梯形图例:

它有两组,第一组用以实现启动、停止控制。第二组仅一个END指令,用以 结束程序。
11 梯形图与助记符的对应关系:
助记符指令与梯形图指令有严格的对应关系,而梯形图的连线又可把指令的顺序予以体现。一般讲,其顺序为:先输入,后输出(含其他处理);先上,后下;先左,后右。有了梯形图就可将其翻译成助记符程序。上图的助记符程序为:
地址 指令 变量
0000 LD X000
0001 OR X010
0002 AND NOT X001
0003 OUT Y000
0004 END
反之根据助记符,也可画出与其对应的梯形图。
12 梯形图与电气原理图的关系:
如果仅考虑逻辑控制,梯形图与电气原理图也可建立起一定的对应关系。如梯形图的输出(OUT)指令,对应于继电器的线圈,而输入指令(如LD,AND,OR)对应于接点,互锁指令(IL、ILC)可看成总开关,等等。这样,原有的继电控制逻辑,经转换即可变成梯形图,再进一步转换,即可变成语句表程序。
有了这个对应关系,用PLC程序代表继电逻辑是很容易的。这也是PLC技术对传统继电控制技术的继承。
四、数控滑台的PLC控制方法
数控滑台的控制因素主要有三个:
1 行程控制
一般液压滑台和机械滑台的行程控制是利用位置或压力传感器(行程开关/死挡铁)来实现;而数控滑台的行程则采用数字控制来实现。由数控滑台的结构可知,滑台的行程正比于步进电机的总转角,因此只要控制步进电机的总转角即可。由步进电机的工作原理和特性可知步进电机的总转角正比于所输入的控制脉冲个数;因此可以根据伺服机构的位移量确定PLC输出的脉冲个数:
n= DL/d (1)
式中 DL——伺服机构的位移量(mm)
d ——伺服机构的脉冲当量(mm/脉冲)
2 进给速度控制
伺服机构的进给速度取决于步进电机的转速,而步进电机的转速取决于输入的脉冲频率;因此可以根据该工序要求的进给速度,确定其PLC输出的脉冲频率:
f=Vf/60d (Hz) (2)
式中 Vf——伺服机构的进给速度(mm/min)
3 进给方向控制
进给方向控制即步进电机的转向控制。步进电机的转向可以通过改变步进电机各绕组的通电顺序来改变其转向;如三相步进电机通电顺序为A-AB-B-BC-C-CA-A…时步进电机正转;当绕组按A-AC-C-CB-B-BA-A…顺序通电时步进电机反转。因此可以通过PLC输出的方向控制信号改变硬件环行分配器的输出顺序来实现,或经编程改变输出脉冲的顺序来改变步进电机绕组的通电顺序实现。
五.PLC的国内外状况
世界上公认的第一台PLC是1969年美国数字设备公司(DEC)研制的。限于当时的元器件条件及计算机发展水平,早期的PLC主要由分立元件和中小规模集成电路组成,可以完成简单的逻辑控制及定时、计数功能。20世纪70年代初出现了微处理器。人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。为了方便熟悉继电器、接触器系统的工程技术人员使用,可编程控制器采用和继电器电路图类似的梯形图作为主要编程语言,并将参加运算及处理的计算机存储元件都以继电器命名。此时的PLC为微机技术和继电器常规控制概念相结合的产物。
20世纪70年代中末期,可编程控制器进入实用化发展阶段,计算机技术已全面引入可编程控制器中,使其功能发生了飞跃。更高的运算速度、超小型体积、更可靠的工业抗干扰设计、模拟量运算、PID功能及极高的性价比奠定了它在现代工业中的地位。20世纪80年代初,可编程控制器在先进工业国家中已获得广泛应用。这个时期可编程控制器发展的特点是大规模、高速度、高性能、产品系列化。这个阶段的另一个特点是世界上生产可编程控制器的国家日益增多,产量日益上升。这标志着可编程控制器已步入成熟阶段。
20世纪末期,可编程控制器的发展特点是更加适应于现代工业的需要。从控制规模上来说,这个时期发展了大型机和超小型机;从控制能力上来说,诞生了各种各样的特殊功能单元,用于压力、温度、转速、位移等各式各样的控制场合;从产品的配套能力来说,生产了各种人机界面单元、通信单元,使应用可编程控制器的工业控制设备的配套更加容易。目前,可编程控制器在机械制造、石油化工、冶金钢铁、汽车、轻工业等领域的应用都得到了长足的发展。
我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。最初是在引进设备中大量使用了可编程控制器。接下来在各种企业的生产设备及产品中不断扩大了PLC的应用。目前,我国自己已可以生产中小型可编程控制器。上海东屋电气有限公司生产的CF系列、杭州机床电器厂生产的DKK及D系列、大连组合机床研究所生产的S系列、苏州电子计算机厂生产的YZ系列等多种产品已具备了一定的规模并在工业产品中获得了应用。此外,无锡华光公司、上海乡岛公司等中外合资企业也是我国比较著名的PLC生产厂家。可以预期,随着我国现代化进程的深入,PLC在我国将有更广阔的应用天地。
六.PLC未来展望
21世纪,PLC会有更大的发展。从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。目前的计算机集散控制系统DCS(Distributed Control System)中已有大量的可编程控制器应用。伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。
参考 文 献

② 钻孔轨迹控制关键技术

(一)钻孔轨迹控制机具

随着钻探难度的增大和技术不断进步,传统的钻孔造斜机具(如偏心楔、机械式连续造斜器)已不能满足全孔或长孔段钻孔轨迹控制要求。液动孔底马达(螺杆钻具、涡轮钻具)成为钻孔轨迹控制最理想的机具。

1.液动孔底马达工作原理及结构

(1)液动螺杆钻具

液动螺杆钻具的核心是螺杆马达。螺杆马达是一种正排量容积式液压马达,是“莫诺泵”(moyno pump)即单螺杆泵原理的逆应用。螺杆马达由两个表面带有螺旋齿和槽的零件(转子和定子)组成(图7-2)。定子内表面是一层有螺旋齿和槽腔的橡胶,处于定子包容之中的钢制转子表面也有螺旋齿和槽腔,通常与定子之间处于静配合状态,并形成由若干连续密封线划分成的若干个封闭腔。当有一定压力的液体输入到达定子、转子时,一部分密封腔中充满高压液体,而且它们周期性地与高压室或低压室相通。这样在工作液体压力作用下,每个工作空腔横断面上产生不平衡液压力dF1。这个力的分力dFZ和dFy可造成旋转力矩M=dFZ·R(R是平均半径)及作用于定子上的径向力k。因此沿着转子螺距长度上,就造成一个总的旋转力矩M。这就是螺杆马达进行机械动力传递的基本过程。

图7-2 螺杆马达转子和定子横断面作用力图

图7-3为i=9/10波齿螺杆马达转子和定子啮合时形成的一系列密封腔。可以看出,转子和定子在每个截面上至少有10个接触点,从而形成10个大小不同相互分隔的密封腔。当x=0时,低压腔面积为零,随后容积高度逐渐增大;x=0.5T时达最大值(T为定子导程),然后逐渐减小;x=T时,低压腔完全封闭,形成一个完整的密封腔。对于有K级螺杆马达者,其密封腔(或密封接触线)数如下:

∑=K(Z1+1)-Z1space@ (7-1)

密封腔的移动是发生能量转换的条件。当转子在定子中转动时,密封腔将沿轴向移动。在转子、定子传动副中,定子波齿数Z1比转子波齿数Z2多一个。

Z1=Z2+1 (7-2)

定子导程T及转子导程t与波齿数成比例,其旋向也应相同。

深部岩心钻探技术与管理

转子和定子螺旋表面的波齿数比通常称为传动比i。

深部岩心钻探技术与管理

图7-3 螺杆马达工作机构内液体压力分布

1—高压液体腔;2—低压液体腔

(a)x=0,φ2=0;(b)x=T/10,φ2=40°;(c)x=2T/10,φ2=80°;(d)x=3T/10,φ2=120°;(e)x=4T/10,φ2=160°;(f)x=4.5T/10,φ2=180°;(g)x=5T/10,φ2=2000°;(h)x=6T/10,φ2=240°;(i)x=7T/10,φ2=280°;(j)x=8T/10,φ2=320°;(k)x=9T/10,φ2=360°;(l)x=T,φ2=400°

螺杆钻具的输出扭矩M取决于螺杆马达的工作压力降和有关结构参数:

M=M0·ΔP·Dp·t·e (7-5)

式中:M0为转子机械单位力矩(代表转子机械类型的量值),N·m;ΔP为螺杆马达工作压力降,Pa;Dp为机械设计直径(Dp=2eZ1),m;e为转子机械的偏心矩,m。

深部岩心钻探技术与管理

式中:Ce为偏心距与螺旋表面齿半径比例的无量纲参数。

螺杆钻具轴的旋转速度,理论上不取决于压力降,而取决于通过螺杆马达截面的液体流量Q和有关结构参数。

深部岩心钻探技术与管理

式中:Q为工作液体流量,L/min;n0为螺杆马达轴的单位旋转速度,在不计算液体漏失情况下由下式确定。

深部岩心钻探技术与管理

由n0计算公式可以看出,螺杆马达的单位转速与波齿数成反比,在同等工作流量情况下,波齿数越多,转速越低。

液动螺杆钻具及侧向力控制组合系统主要由定向接头、上接头、溢流阀、螺杆马达(定子、转子)、万向联轴节、弯外壳、驱动轴、异径接头等组成(图7-4)。若不作为钻孔轨迹控制之用时,可以不接定向接头,弯外壳换成直外壳。

图7-4 螺杆钻具结构示意图

(2)液动涡轮钻具

液动涡轮钻具的核心是将高压液体能转换成机械能的涡轮马达,其物理基础是液力传动的欧拉方程式。涡轮水力单元由定子和转子叶片组成(图7-5),转子和定子叶片形状相同但弯曲方向相反。定子起到导流作用,将高压液体导向转子,推动转子旋转;转子将旋转力传递到传动轴带动钻头破碎岩石。涡轮马达由多级(多达百级)涡轮水力单元组成。

图7-5 单级涡轮结构图

液动涡轮钻具及侧向力控制组合系统主要由定向接头、涡轮钻具上接头、涡轮马达、弯外壳、万向接头、止推轴承、传动轴、下扶正轴承、下接头等部分组成,钻具结构如图7-6所示。

图7-6 涡轮钻具结构示意图

涡轮钻具叶片主要参数(图7-7)有:叶片平均直径,叶片高度,定、转子轴向高度、叶片结构角等。

涡轮叶片的平均计算直径D:

深部岩心钻探技术与管理

叶片高度:

深部岩心钻探技术与管理

级高:

l=l1+l2+Δ (7-11)

式中:l1、l2分别为涡轮定、转子的轴向高度;Δ为涡轮定、转子间的轴向间隙。

叶片结构角(图7-8)为涡轮叶片骨线与叶片水平断面的夹角。定子出口和进口角:α1k、α2k。转子出口和进口角:β1k、β2k

多级(K级)涡轮的理论压头HK、理论扭矩MK、理论功率NK可由下式计算:

深部岩心钻探技术与管理

图7-7 涡轮叶片的结构参数

图7-8 涡轮叶片结构角

MK=KQγmR(C1u-C2u) (7-13)

NK=KQγmu(C1u-C2u) (7-14)

深部岩心钻探技术与管理

式中:K为涡轮级数;u为转子叶轮计算直径D上的圆周速度;n为涡轮主轴转速;Q为通过涡轮的体积流量;γm为冲洗液密度;R为转子叶轮计算半径(R=D/2);C1u为转子叶轮进口处绝对速度的切向分量;C2u为转子叶轮出口处绝对速度的切向分量;g为重力加速度。

2.液动孔底动力钻具工作特性

(1)液动螺杆钻具

反映螺杆钻具工作方式的工作特性有:输出轴每分钟的转速n,输出扭矩M,有效功率N,压力降ΔP和水力效率η。通过大量试验台测试数据绘制成的螺杆钻具工作特性曲线如图7-9和图7-10所示。可以看出,输出轴载荷愈小转速愈高。转速等于零时扭矩达最大值,称为制动方式;输出轴转速最大时扭矩等于零,称为空转方式。

图7-9 YL-54型螺杆钻具特性曲线

(Q=150L/min)

深部岩心钻探技术与管理

螺杆钻具属于容积式马达,其输出轴转速与泵量成正比;扭矩与压力降ΔP成正比而与泵量无关。操作者可根据螺杆钻具的特性曲线来优选钻具的合理工作范围,通过泵压表读数的变化来判断螺杆钻具在孔底的工作状况。

(2)液动涡轮钻具

分析由式(7-12)~(7-15)得出的涡轮钻具工作特性曲线(图7-11)可知:

1)涡轮钻具压降在流量、涡轮结构尺寸、级数确定后即为定值,不会随工况(钻压、扭矩)的变化而变化。

图7-11 涡轮钻具工作特性的理论曲线

2)涡轮钻具的扭矩与流量、冲洗液密度、涡轮级数成正比。

3)涡轮钻具的转速与输出扭矩成反比。扭矩超过涡轮钻具的额定扭矩就会停止旋转,即涡轮钻具没有过载能力。

4)涡轮钻具的输出功率与流量、涡轮结构尺寸、涡轮级数、冲洗液密度有关,随输出扭矩、转速的变化而变化,并存在最大值——涡轮钻具的理想工作负载点。

3.液动孔底动力钻具控制钻孔轨迹的特点

1)钻杆不回转可以精确控制钻孔轨迹,配合定向随钻系统利于遥控钻进。

2)钻杆不回转有利于控制垂直孔的孔斜。

3)钻孔纠(造)斜强度均匀,可根据需要任意调节造斜强度,可施工大中曲率半径的受控定向钻孔。

4)可在任何地层中控制钻孔轨迹。

4.液动孔底动力钻具性能差异

(1)工作特性的差异

螺杆钻具有较硬的机械特性,过载能力强;而涡轮钻的机械特性较软,过载能力差,随着钻压增大导致切削阻力矩增大时,会引起转速下降,易被“压死”而制动。因此,螺杆钻具用于地质岩心钻探作业更为适用。另一方面,螺杆钻具的压降随扭矩而变化,因而可通过泵压变化来检测螺杆钻具工作情况。而涡轮钻具的压降不因载荷而变化,对其在孔底的工作状况无法在地表直接检测。

(2)转速差异

涡轮钻具的转速明显高于螺杆钻具。一般涡轮钻具空转转速多在1200r/min以上,其工作转速(即空载转速的一半)也多在600r/min以上,而单头螺杆钻具的转速一般只在400r/min左右,多头螺杆钻具转速一般在200r/min左右。

(3)压降差异

外径相近、工况参数(排量、冲洗液密度)相同的两种钻具,涡轮钻具的压降远远大于螺杆钻具的压降。例如:Φ165mm的多头螺杆钻具,其额定工作压降Δp一般为3MPa(空载起动压降一般小于1MPa),而尺寸相近的涡轮钻具,其压降一般可达5~7MPa,涡轮钻具对于深孔小环状间隙钻孔钻进影响较大。

(4)耐温性能差异

螺杆钻具的定子衬里是耐油丁腈橡胶,过高的工作温度会使定子橡胶脆化而造成先期破坏,橡胶部件造成了钻具承温能力的极限值。一般的螺杆钻具工作温度不超过125℃;涡轮钻具内部没有橡胶件,不受高温的限制。

(5)直径影响的差异

涡轮钻具与螺杆钻具相比,涡轮钻具的功率和扭矩受直径的影响甚大,而直径对螺杆钻具的影响较小,地质岩心钻探一般多选用螺杆钻具。

(6)横振差异

螺杆钻具的转子在定子型腔内作平面行星运动,产生离心惯性力造成钻具横向振动。而涡轮钻具的转子作定轴转动不会引起离心惯性力和横向振动。

(7)长度差异

在外径相近、扭矩相近的条件下,涡轮钻具的长度明显大于(甚至成倍于)螺杆钻具长度,长度过大对钻孔造斜作业不利,而进行中小曲率半径钻孔轨迹控制选用螺杆钻具比较有利。

(二)钻孔轨迹控制定向测量技术

定向测量技术是实现钻孔轨迹控制的基础。目前主要有单点定向测量和随钻测量两大类。

1.单点定向测量技术

单点定向测量是在造斜机具下孔后,钻进前用仪器测量机具的方向,钻进过程中不再测量。目前单点定向测量方法有直接定向和间接定向两种。

(1)直接定向法

直接定向有两种情况。一是直孔中只需测量和确定造斜工具定向标记在孔内(相对子午线或坐标已知点)的方位。二是斜孔中需同时测量和确定造斜部位的方位角以及造斜工具所需的安装角(或安装方位)。

直接定向法采用专用测斜定向仪(如照相测斜定向仪、直读式测斜定向仪、环测法测斜定向仪等,详见第十章第二节)下孔对造斜工具进行井下定向。根据仪器所测参数数目,可分为全测仪和非全测仪。全测仪既可测量造斜工具定向标记的方位或安装角(面向角),又可测量钻孔方位与顶角。非全测仪只能测量造斜工具定向标记方位。根据读取参数的方法,还可分为测量型和记录型仪器。前者可在地表显示工具安装角和孔斜参数,后者则在孔内记录,延迟读数。

(2)间接定向法

间接定向以造斜点原斜孔方向为基准,在已知造斜部位倾斜平面方向的基础上(即先用测斜仪测定造斜部位钻孔倾斜平面的方位)只需测量或确定造斜工具在孔内的安装角。由于各种重力敏感元件(如钢球、重锤、摆锤、偏重块、水银球、气泡、玻璃管中装酸液等)容易制作,并在倾斜钻孔中能正确反应钻孔倾斜平面方向,所以仪器结构比直接定向仪器简单。常用的有钢球定向仪、摆锤定向仪、偏重块定向器等。根据间接定向仪确定工具安装角方法的不同,可分为测量型、指示型、自动型。测量型仪器可在地表显示造斜工具的安装角;指示型只能在地表指示造斜工具的面向是否处于预定位置,不能显示安装角的具体数值;自动型可使造斜工具在孔内自动到达预定的面向位置,地表不显示。其中指示型间接定向仪种类最多。根据敏感元件孔内发出的信息及地表显示方式,指示型间接定向仪又分为机械指示型、电指示型、液力指示型、声及光指示型等。

2.随钻测量技术

随钻测量技术(Measurement While Drilling,简称MWD)可以不间断导向钻进并测量某些近钻头孔底信息,实时传至地表。获取的信息包括:导向钻进数据(孔斜角、方位角、工具面向角等),地层特征(伽马、电阻率等),钻进参数(钻压、扭矩、转速等)。目前,地质钻探随钻测量以钻孔轨迹参数为主。

如图7-12所示,随钻测量系统包括装在下部钻具组合中的井下仪器和发射器,通过遥测信道将信号发送到地表,再经译码和处理显示所需的信息。MWD的最大优点是使钻探和地质工作者能实时地“看”到孔内情况,从而改进决策过程。随钻测量主要包括有线随钻MWD和无线随钻MWD两大类。有线系统有钻杆传输和电缆传输;无线系统有电磁波、地震(声)波、泥浆脉冲传输方式。

图7-12 MWD系统示意图

(1)钻杆传输法

该方法的传感器装在特制钻铤内,用铠装电缆(或跨接线)将该钻铤与钻杆下端连接起来。跨接线的长度必须与BHA(孔底钻具组合)的总长相等并维持一定的张力。系统的另一端,在方钻杆顶部安装一个与地面设备相连的绝缘滑环,地面设备完成处理信号和显示最终结果的功能。这种系统的主要缺点是:制造特殊钻杆柱费用高,在接头处形成可靠的连续电路比较困难。

(2)电缆传输法

该方法往钻杆内下入铠装电测电缆传输信号。但加接单根时必须提出电缆和仪器,或预先将电缆线套入钻杆内孔,非常麻烦,有时甚至是不可行的。解决这一问题的方法一是:在钻柱中段加接一个类似三通接头的侧入式密封装置,将预装入钻柱的仪器电缆线附着在钻柱外壁上,可用于钻柱不回转的钻孔,只需防止电缆线的磨损与挤压;方法二是:在钻杆内卷轴上存放一段额外长度的电缆。加新单根时,系统内的电机锁销可使电缆暂时中断。但起钻前须先把整段电缆全部收回。电缆传输法的优点是操作较方便,信号传输速率高,可实现双向通讯,井底不需附加动力源,因为不存在信号减弱问题,传输效果不受深度限制。

(3)电磁波传输法

该方法把一个电磁波发射器装在孔内仪器中,孔内仪器作为BHA的一个组成部分,通过仪器中的传感器采集近钻头孔底信息,电磁波发射器产生可调制信号,以二进制码形式沿电磁波通道传输信号。通过插入钻场附近地面的天线接收并解码、显示这些信号。最具典型的是俄罗斯已研制成功的电磁波孔底遥测系统。近年来中国地质科学院勘探技术研究所开发的“慧磁”钻井中靶引导系统是电磁波信号传输与电缆传输法的结合(图7-13),已在盐田对接井中推广应用。

电磁波法传输系统的特点是数据传输速度快,载波信息量大,受泥浆和水泵特性的影响小,即使在提下钻过程中也能检测数据,系统安装比其他方法简便。

(4)声波传输法

该方法利用声波(或地震波)传播机理来工作。钻进过程中,声波沿钻杆、地层等介质传播到地表。地表监测仪器接收到信号,经处理得到有价值的相关数据。声波通道传送的信息量小。因为钻杆和接头直径的变化使声波产生反射、干涉、强度降低,从而很难在干扰噪声中分辨出有用信号。

图7-13 “慧磁”钻井中靶引导系统原理图

声波通道的主要缺点是信号随深度衰减很快。所以,钻柱中每隔400~500m要装一个中继站,使系统很复杂,其使用的最大孔深为3000~4000m。

(5)冲洗液压力脉冲传输法

目前国内外广泛应用的是基于钻孔冲洗液脉冲遥测技术,信号传播的载体是冲洗液。孔内仪器借助孔底涡轮发电机或电池组供电;孔内传感器将物理量转变为模拟电信号,经过孔内MWD组件处理转换为数字信号,被送到信号发射器,经编码、压缩处理后,控制孔内仪器阀门的开闭产生断续或连续泥浆压力脉冲信号;压力脉冲信号通过水力通道到达地表,由MWD接收器(即压力传感器)转变为电信号,经过解码、滤波等处理得到孔内测量数据。

冲洗液压力脉冲遥测法的优点在于比较简单,不需要特殊的钻杆,只需对正常钻探作业作很小改变。压力脉冲在冲洗液中以大约1200~1500m/s的速度传输,不受地层电磁特性、孔内振动波干扰,信号衰减小。但实时传送的速度与信息量有限,孔内仪器对冲洗液有严格要求:含砂量<1%~4%,含气量<7%。

(三)钻孔轨迹计算机智能控制技术

通过计算机智能控制钻孔轨迹属于尖端钻探技术,可望在21世纪中得以实现。它主要包括由可调造斜装置、MWD和微电脑构成的孔底自动钻孔轨迹控制系统(图7-14)。下钻前将钻孔孔身剖面设计参数存入微电脑,钻进过程中MWD随时测定钻头空间位置,同时将结果送入微电脑计算处理并与设计剖面对比,作出智能分析和决策,并发出指令调节造斜装置的状态,校正钻进方向的偏差,保证钻头按预置轨迹自动钻进。当孔内控制系统失灵时,还可以通过双向通信子系统启动孔底造斜装置和地面伺服装置,调节钻压、转速及泥浆排量等钻进参数。

目前,钻孔轨迹控制系统还很不成熟,还必须在物理模型、智能软件、执行机构及计算机测控系统等方面进行大量的多学科交叉研究工作。

图7-14 自动钻孔轨迹控制示意图

阅读全文

与钻孔动力头装置的控制设计制作相关的资料

热点内容
路由器上有unknown连接是什么设备 浏览:525
启辰D50分离轴承多少钱 浏览:386
牙机雕刻机与电动工具 浏览:208
外汇期货交易实验装置 浏览:791
设备投资怎么算 浏览:95
好的摄影器材有哪些 浏览:463
温州新五金制品有限公司怎么样 浏览:293
锦州五金机电城出租出售 浏览:417
卡尔蔡司公司有哪些医学器材 浏览:261
重庆市机械凿打岩石套什么定额 浏览:557
阀门外面加个框是什么意思 浏览:756
会议设备系统哪里有 浏览:340
打印室需要哪些设备多少钱 浏览:577
通用型机床设备加工用于什么 浏览:290
书画工具箱套装 浏览:772
燃烧固体需要哪些仪器 浏览:969
2213ktn1是什么轴承 浏览:640
电脑固体硬盘怎么加机械硬盘 浏览:197
昆山汽车门板超声波焊接机怎么样 浏览:787
发说说怎么隐藏设备 浏览:804