导航:首页 > 装置知识 > 带式运输机传动装置设计蜗杆传动

带式运输机传动装置设计蜗杆传动

发布时间:2024-04-10 08:37:21

『壹』 带式传输机传动装置的设计

设计—用于带式运输机上的单级直齿圆柱减速器,已知条件:运输带的工作拉力F=1350 N,运输带的速度V=1.6 m/s卷筒直径D=260 mm,两班制工作(12小时),连续单向运转,载荷平移,工作年限10年,每年300工作日,运输带速度允许误差为±5%,卷筒效率0.96

一.传动方案分析:
如图所示减速传动由带传动和单级圆柱齿轮传动组成,带传动置于高速级具有缓冲吸振能力和过载保护作用,带传动依靠摩擦力工作,有利于减少传动的结构尺寸,而圆柱齿轮传动布置在低速级,有利于发挥其过载能力大的优势

二.选择电动机:
(1)电动机的类型和结构形式,按工作要求和工作条件,选用一般用途的Y系列三相异步交流电动机。
(2)电动机容量:
①卷筒轴的输出功率Pw=FV/1000=1350×1.6/1000=2.16 kw
②电动机输出功率Pd=Pw/η
传动系统的总效率:η=
式中……为从电动机至卷筒之间的各传动机构和轴承的效率。
由表查得V带传动=0.96,滚动轴承=0.99,圆柱齿轮传动
=0.97,弹性连轴器=0.99,卷筒轴滑动轴承=0.96
于是η=0.96××0.97×0.99×0.96≈0.88
故:
Pd= Pw/η=2.16/0.88≈2.45 kw
③ 电动机额定功率由表取得=3 kw
(3)电动机的转速:由已知条件计算卷筒的转速
即:
=60×1000V/πD=60×1000×1.6/3.14×260=118 r/min
V带传动常用传动比范围=2-4,单级圆柱齿轮的传动比范围=2-4
于是转速可选范围为 ==118×(2~4)×(2~4)
=472~1888 r/min
可见同步转速为 500 r/min和2000 r/min的电动机均合适,为使传动装置的传动比较小,结构尺寸紧凑,这里选用同步转速为960 ×r/min的电动机
传动系统总传动比i= =≈2.04
根据V带传动的常用范围=2-4取=4
于是单级圆柱齿轮减速器传动比 ==≈2.04

『贰』 设计带式运输机传动装置

二、电动机选择1、电动机类型的选择:按已知的工作条件, 选用Y系列全封闭笼型三相异步电动机2、电睁孝动机功率选择:根据 Pd = Pw/η Pw = FV/1000ηw 式中: ηηw= η1η22η3η4η5 分别为带传动,齿轮传动的轴承,齿轮传动,联轴器,卷筒轴的轴承以及卷筒的效率.取η1=0.96 η2 =0.98 η3 =0.97 η4 =0.97 η5 =0.98 η6 =0.96 (1)传动装置的总功率: η总=η1×η22×η3×η4×η5×η6 =0.96× ×0.97×0.97×0.98×0.96=0.8161(2)电机所需的工作功率:P工作=FV/1000η总=(2000×1.8÷1000)×0.816=4.41 KW3、确定电动机转速:计算滚筒工作转速:n筒=60V÷(πd)悉仔稿=1.8×60÷(3.14×0.45)=76.43 r/min 按手册P7表1推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’a=3~5。取V带传动比I’1=2~4,则总传动比理时范围为I’a=6~20。故电动机转速的戚嫌可选范围为n’d=I’a×n筒=(6~20)×76.43r/min = 458.58­—1528.6r/minQ1477020800

『叁』 带式输送机传动装置毕业设计的每一步骤做简要说明(怎么完成)。

参考如下: 机械设计基础课程设计任务书………………………………. 题目名称带式运输机传动装置 学生学院 专业班级 姓 名 学 号 一、课程设计的内容设计一带式运输机传动装置(见图1)。设计内容应包括:传动装置的总体设计;传动零件、轴、轴承、联轴器等的设计计算和选择;减速器装配图和零件工作图设计;设计计算说明书的编写。图2为参考传动方案。 二、课程设计的要求与数据已知条件: 1.运输带工作拉力: F = 2.6 kN; 2.运输带工作速度: v = 2.0 m/s; 3.卷筒直径: D = 320 mm; 4.使用寿命: 8年; 5.工作情况:两班制,连续单向运转,载荷较平稳; 6.制造条件及生产批量:一般机械厂制造,小批量。三、课程设计应完成的工作1.减速器装配图1张;2.零件工作图 2张(轴、齿轮各1张);3.设计说明书 1份。四、课程设计进程安排序号设计各阶段内容地点起止日期一设计准备: 明确设计任务;准备设计资料和绘图用具教1-201第18周一二传动装置的总体设计: 拟定传动方案;选择电动机;计算传动装置运动和动力参数传动零件设计计算:带传动、齿轮传动主要参数的设计计算教1-201第18周一至第18周二 三减速器装配草图设计: 初绘减速器装配草图;轴系部件的结构设计;轴、轴承、键联接等的强度计算;减速器箱体及附件的设计教1-201第18周二至第19周一四完成减速器装配图: 教1-201第19周二至第20周一五零件工作图设计教1-201第20周周二六整理和编写设计计算说明书教1-201第20周周三至周四七课程设计答辩工字2-617第20周五五、应收集的资料及主要参考文献1 孙桓, 陈作模. 机械原理[M]. 北京:高等教育出版社,2001.2 濮良贵, 纪名刚. 机械设计[M]. 北京:高等教育出版社,2001.3 王昆, 何小柏, 汪信远. 机械设计/机械设计基础课程设计[M]. 北京:高等教育出版社,1995.4 机械制图、机械设计手册等书籍。发出任务书日期: 年 月 日 指导教师签名: 计划完成日期: 年 月 日 基层教学单位责任人签章:主管院长签章:目录一、传动方案的拟定及说明………………………………….3二、电动机的选择…………………………………………….3三、计算传动装置的运动和动力参数……………………….4四、传动件的设计计算………………………………………..6五、轴的设计计算…………………………………………….15六、滚动轴承的选择及计算………………………………….23七、键联接的选择及校核计算……………………………….26八、高速轴的疲劳强度校核……………………………….….27九、铸件减速器机体结构尺寸计算表及附件的选择…..........30十、润滑与密封方式的选择、润滑剂的选择……………….31参考资料目录

『肆』 带式输送机传动装置设计

仅供参考

一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW

3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.

六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm

II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N?m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm

(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N?m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危险截面C的强度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。

主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N?m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够

(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min

(1)已知nII=121.67(r/min)

两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够

二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够

七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。

八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳.

放油螺塞
选用外六角油塞及垫片M18×1.5
根据《机械设计基础课程设计》表5.3选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12
(4)箱座凸缘厚度b=1.5z=1.5×8=12
(5)箱座底凸缘厚度b2=2.5z=2.5×8=20

(6)地脚螺钉直径df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)
(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位销直径d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距离C1
(15) Df.d2

(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>9.6 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3

D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.

九、润滑与密封
1.齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2.滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4.密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。

十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。

十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

『伍』 设计一带式运输机上用的蜗杆减速器。

------蜗杆减速器传动(单级)
1.设计参数
传动装置简图如右图所示。
(1) 带式运输回机数据
运输带工答作拉力F= 2200 N
运输带工作速度v= 1.0 m/s
运输带滚筒直径D= 380 mm
(2)工作条件
两班制工作,单向、连续运转,工作中有轻微振动。运输带速度允许速度误差为±5%。
(3)使用期限
工作期限为十年,检修期间隔为三年。
(4)生产批量及加工条件
小批量生产。
2.设计任务(具体见基本要求)
1)选择电动机型号;
2)设计减速器;
3)选择联轴器。
3.成果要求(具体见基本要求)
1)减速器装配图一张;
2)零件工作图三张;
3)设计说明书一份。
我设计了一部分,不知道数据正不正确!请高手帮忙!
问题补充:减速器里就只有一个蜗轮蜗杆,外面一端连电动机,一端连传送带.图不知道怎么粘上来.

『陆』 机械设计课程设计设计带式运输机传动装置其中运输带工作拉力F=2900N V=1. 5滚筒直径D=400滚筒效率0....

课程设计 带式运输机传动装置设计,共31页,6698字
目录
第一章 设计任务版书 1
第二章 传动装置的总体设权计 2
2.1 电动机的选择 2
2.2 传动装置的总传动比和传动比分配 3
2.3传动装置的运动和动力参数计算 3
第三章 传动零件的设计计算 5
3.1 V带传动的设计计算 5
3.2蜗轮轮蜗杆传动的设计计算 6
第四章 轴的结构尺寸计算 8
4.1蜗轮转轴的机构尺寸计算 8
4.2蜗杆轴的结构尺寸设计 8
第五章 轴的强度校核 10
5.1 蜗轮转轴的强度校核 10
5.2 蜗杆轴的强度校核 12
第六章 滚动轴承的选择和校核 16
6.1 蜗轮转轴轴承选择和校核 16
6.2蜗杆轴轴承选择和校核 16
第七章 平键的选择计算以及联轴器的选择 18
7.1 蜗杆转轴与蜗轮接触的键的选择计算 18
7.2 周转定向连轴起的键的选择计算 18
7.4 联轴器的选择 19
第八章 减速器箱体设计及附件的选择和说明 20
8.1箱体主要尺寸设计 20
8.2附属零件的设计 20
第九章 润滑与密封 21
第十章 课程设计小结 22
参考文献 22

『柒』 机械设计基础课程设计的题目是带式运输机传动装置设计

是指一个传送带吗,是横卧,还是有角度的。

『捌』 带式输送机传动装置的设计

一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW

3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m

五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.

六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm

II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N•m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm

(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N•m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危险截面C的强度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。

主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N•m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够

(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min

(1)已知nII=121.67(r/min)

两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够

二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够

七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。

八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳.

放油螺塞
选用外六角油塞及垫片M18×1.5
根据《机械设计基础课程设计》表5.3选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12
(4)箱座凸缘厚度b=1.5z=1.5×8=12
(5)箱座底凸缘厚度b2=2.5z=2.5×8=20

(6)地脚螺钉直径df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)
(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位销直径d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距离C1
(15) Df.d2

(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>9.6 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3

D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.

九、润滑与密封
1.齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2.滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4.密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。

十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。

十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

阅读全文

与带式运输机传动装置设计蜗杆传动相关的资料

热点内容
东莞市敏胜五金制品有限公司招聘 浏览:735
韩国电影爱情片 浏览:53
铁西广场附近五金市场 浏览:523
湖北省海岚数控机床怎么样 浏览:530
乒乓球辅助器材怎么购买 浏览:965
最适合两个人看的爱情电影 浏览:510
数据仓库工具箱第四版 浏览:751
怎么在电脑上qq开设备锁 浏览:162
金立f100a怎么更换设备 浏览:623
欧美最刺激性片 浏览:688
学校气象观测站有哪些仪器 浏览:541
超声波买什么样的 浏览:181
无音频设备怎么办 浏览:745
阀驱动装置重力式机械驱动装置 浏览:497
啄木鸟全系列名字 浏览:453
苏州电动工具外资企 浏览:520
生产洗衣液的设备多少钱 浏览:449
玩坏男孩2017完整版下载 浏览:656
在线观看网 浏览:438
电影可以下载到手机相册吗 浏览:481