⑴ 消防水泵流量检测装置计量精度应为( )级,最大量程 75%应大于最大一台消防水泵设计流量值( )。
【答雹扒锋案】:A
根据《消防给水及消火栓系统技术规范》GB50974-2014
5.1.11 一组消防水泵应在消防水泵房内设置流此悔量和压力测试装置,并应符合下列规定:
2 消防水泵流量检测装置计量精度应为 0.4 级,最大量程 75%应源晌大于最大一台消防水泵设计流量值 175%; 3 消防水泵压力检测装置计量精度应为 0.5 级,最大量程 75%应大于最大一台消防水泵设计压力值 165%;
⑵ 井下跑车的防护装置是如何设计的
防护装置对汽车来说是不可缺少的配件,那么井下跑车的防护装置应该怎么设计呢?大家请看我接下来想详细地讲解。
一,跑车防护装置设计的原因
我公司井下矿板主要使用小型绞车吊装设备和物料进行运输。为防止操作过程中出现操作不当、产品质量等各种问题,钢丝绳与连接装置可能断裂或断开,造成跑车事故。因此,在原有的跑车保护装置上增加了气动跑车保护装置。我公司以前使用的电控反跑车装置主要由电控起动器、牵引电机、钢丝绳车阻挡装置组成。钢丝绳车拦阻装置通常是关闭的。车辆通过时,人操作控制按钮,启动电控起动器,控制牵引电机,提起钢丝绳停止装置使车辆通过;当车辆通过时,人操作控制按钮使牵引电机反向使钢丝绳停止装置下降,起到正常关闭反跑车的作用。电控反跑车装置成本高,各种保护故障和电气元件经常损坏。此外,产品设计复杂,不完善,在日常工作中需要花费大量的时间进行检查和维护。而且电控系统配件难买,容易引起爆炸。因此,我公司自主设计制造了气动跑车保护装置。
⑶ (懂阀门设计的朋友进来)API 6A 和 API 6D 分别是个什么标准他们有什么区别
区别:
1、内容区别:
(1)API 6A 是《井口装置和采油树规范》。
(2)API 6D是《管线阀门》。
2、针对对象区别:PI 6A主要针对的是井口装灶虚置和采油树。API 6D主要针对的是管线阀门。
3、标准区别:对井口装置和采油树要求的标准不能应用于管线阀门上。
(3)井下定量装置装置设计标准扩展阅读:
管线阀门的选择:
1、截止和开放介质用的阀门:
流道为直通式的阀门,其流阻较小,通常选择作为截止和开放介质用的阀门。向下闭合式阀门(截止阀、柱塞阀)由于其流道曲折,流阻比其他阀门高,故较少选用。在允许有较高流阻的场合,信灶可选用闭合式阀门。
2、控制流量用的阀门:
(1)通常选择易于调节流量的阀门作为控制流量用。向下闭合式阀门(如截止阀)适于这一用途,因为它的阀座尺寸与关闭件的行程之间成正比关系。
(2)旋转式阀门(旋塞阀、蝶阀、球阀)和挠曲阀体式阀门(夹紧阀、隔膜阀)也可用于节流控制,但通常只能在有限的阀门口径范围内适用。闸阀是以圆盘形闸板对圆形阀滑辩扮座口做横切运动,它只有在接近关闭位置时,才能较好地控制流量,故通常不用于流量控制。
3、换向分流用的阀门:
根据换向分流的需要,这种阀门可有三个或更多的通道。旋塞阀和球阀较适用于这一目的,因此,大部分用于换向分流的阀门都选取这类阀门中的一种。但是在有些情况下,其他类型的阀门,只要把两个或更多个阀门适当地相互连接起来,也可作换向分流用。
⑷ 电能计量装置设计与现场检查 课程设计
一、 计量装置设计
1、计量装置的设置
a) 发电站上网关口计量点一般设在产权分界处,如发电站与电网公司产权分界点在发电站侧的,应在发电站出线侧、发电机升压变高压侧(对三圈变增加中压侧)、启备变高压侧均按贸易结算的要求设置计量点。
b) 局考核所属各供电所供电量的关口点一般设在35kV变电站的主变高压侧;所属各供电所相互间供电量的计量关口点一般设置在产权分界处。
c) 其他贸易结算用计量点,设置在产权分界处。
d)考虑到旁路代供的情况,各关口计量点的旁路也作为关口计量点。
e) 10KV及以上电压供电的用户应配置防窃电高压计量装置,在用电客户配电线路高压计量装置前端T接口装设隔离刀闸,方便外校及处理计量装置的故障。
2、计量方式
对于非中性点绝缘系统的关口电能计量装置采用三相四线的计量方式,对于中性点绝缘系统的关口电能计量装置应采用三相三线的计量方式。
3、电能表的配置
a) 同一关口计量点应装设两只相同型号、相同规格、相同等级的电子式多功能电能表,其中一只定义为主表,一只定义为副表。
b) 安装于局所属变电站内电能表应具有供停电时抄表和通信用的辅助电源。
c) 关口计量点应装设能计量正向和反向有功电量以及四象限无功电量的电能表。
d) 电能表的标定电流值应根据电流互感器二次额定电流值进行选择,电能表的标定电流值不得大于电流互感器二次额定电流值。电能表的最大电流值应选择4倍及以上标定电流值。
e) 10kV及以上贸易结算计量点,应配置具有失压报警计时功能的电能表或失压计时仪。
4、互感器的配置
a) 电压互感器选型应满足《广西电网公司系统主要电气设备选型原则》要求,110kV及以下计量用电压互感器应选用呈容性的电磁式电压互感器。
b) 电压互感器二次应有独立的计量专用绕组。根据需要,宜选用具有四个二次绕组的电压互感器,即:计量绕组、测量绕组、保护绕组和剩余绕组。
c) 电压互感器二次额定容量的选择参考下表选择:
TV二次负荷核算值(VA) 0~10 10~20 20~30 30~50 50~70 70VA以上
TV额定二次负荷取值(VA) 20 30 50 75 100 按1.5倍取
对TV二次负荷处于0~10VA较小值时,考虑到选用过小的额定二次容量,不利于保证电压互感器的产品质量,电压互感器计量绕组的额定负荷宜选择20VA。一般情况下,电压互感器的计量、测量和保护绕组的额定负荷均应不大于50VA,如有充分的证据说明所接的负荷超过此值时,可按实际值确定。
d) 互感器在实际负载下的误差不得大于其基本误差限。
e) 对于非中性点绝缘系统的电压互感器,应采用Y0/y0的连接方式。对于中性点绝缘系统的电压互感器,35kV及以上的应采用Y/y的连接方式;35kV以下的 宜采用V/V的连接方式。
f) 贸易结算用的计量点设置在统调上网电厂侧的,在出线侧及主变高压侧均应安装计量装置。
5、电流互感器配置
a) 电能计量装置宜采取独立的电流互感器,除在局所属35kV仅作为核计损耗电量用的计量点可采用套管式电流互感器外,其他计费用计量点不宜采用主变套管式的电流互感器。
b) 电流互感器应具有计量专用的二次绕组,如果二次绕组具有中间抽头的,每一个抽头的误差都应符合准确度等级要求。
c) 每一个计量绕组只能对应一个计量点。
d) 电流互感器应保证其在正常运行时的实际负荷电流达到额定值的60%左右,至少应不小于20%,否则应更换变比。
e) 对二次额定电流为5A的电流互感器,其计量绕组的额定二次负载下限为3.75VA,额定二次负载最大值应不大于50VA(cosφ=0.8),一般地,当电能表与互感器安装在同一地点时(如开关柜),CT计量二次绕组的额定二次容量选10VA,对于二次绕组有中间抽头的电流互感器,两个抽头的额定二次容量均应满足上述要求。如有充分的证据说明所接的负荷超过以上值时,可按实际值确定。
f) 对于二次绕组有中间抽头的电流互感器,两个抽头的额定二次容量均应满足上述要求。
6、互感器二次回路配置
a) 电压、电流互感器装置端子箱内,以及电能表屏(柜)内电能计量二次回路应安装试验接线盒。
b) 电流和电压互感器二次回路的连接导线宜使用铜质单芯绝缘线,如果使用多股导线时,其连接接头处应烫焊,再使用压接的连接接头。二次回路导线截面的选择,对整个电流二次回路,连接导线截面积应按电流互感器的二次回路计算负荷确定,至少应不小于4.0mm²。对电压二次回路,互感器出线端子至接电能表前接线盒间的连接导线截面应按机械可靠性及允许的电压降计算确定,非就地计量的至少应不小于4mm²,就地计量的至少应不小于2.5mm²。
c) 主、副表应使用同一个电压和电流互感器二次绕组。
d) 计量二次回路应不装设可分离二次回路的插拔式插头接点。35kV以上的电压互感器二次回路宜装设空气开关或熔断器,电压互感器二次回路采用熔断器的,应采用螺栓压接的熔断器。35kV及以下,除局所属变电站外,电压互感器二次回路不得装设任何空气开关、熔断器。
e) 对单母分段、双母带母联接线方式的母线电压互感器,为防止电压反馈,计量用电压二次回路可接入经隔离开关辅助接点重动的继电器切换回路,其他计量二次回路应不装设隔离开关辅助接点。
f) 电压互感器每相二次回路电压降应不得大于其额定二次电压的0.2%。
g) 互感器二次回路上除了装设电能表、电力负荷管理终端和失压计时仪外,原则上不得接入任何与计量无关的其他仪器、仪表等负载。
h) 计量装置二次接线应顺按一次设备所定的正向接线。
i) 互感器二次回路导线(包括电缆芯线)各相必须以不同的颜色进行区分,其中:L1、L2、L3、N相导线分别采用黄、绿、红、黑色,接地线为黄绿双色导线。
j) 电压、电流二次回路的电缆、端子排和端子编号顺序应按正相序自左向右或自上向下排列。
k)高压计量用的电流、电压互感器二次回路应一点接地。电压互感器二次回路接地点一般设在主控室内;就地计量的电流互感器二次回路接地点宜设置在计量柜内的专用接地桩;非就地计量的电流互感器二次回路接地点宜设置在端子箱处
二、电能计量装置的安装
1、电能表的安装
a)电能表应垂直安装在电能计量柜(开关柜、计量屏、计量箱)内,不得安装在活动的柜门上,安装电能表空间应满足要求:电能表与电能表之间的水平间距不应小于80mm,单相电能表相距的最小距离为30mm,电能表与屏边的最小距离应大于40mm,与接线盒垂直间距至少80mm,电能表宜装在对地0.8m~1.8m的高度(表水平中心线距地面尺寸),电能表距地面不应低于600mm。
b)电能表应垂直、牢固安装,电能表所有的固定孔须采用镙栓固定,固定孔应采用螺纹孔或采用其他方式确保单人工作就能在屏柜正面紧固螺栓。表中心线向各方向的倾斜不大于1。
C)安装在计量屏的电能表,应贴“××kV××线路电能表”;设置有主副表的,应以误差较小的电能表设定为主表。
d)对安装于客户端的计量装置,应在其安装位置贴有用电分类的标签。
2、互感器的安装
a)为了减少三相三线电能计量装置的合成误差,安装互感器时,宜考虑互感器合理匹配问题,即尽量使接到电能表同一元件的电流、电压互感器比差符号相反,数值相近;角差符号相同,数值相近。当计量感性负荷时,宜把误差小的电流、电压互感器接到电能表的C相元件。
b)同一组的电流(电压)互感器应采用制造厂、型号、额定电流(电压)变比、准确度等级、二次容量均相同的互感器。
C)除特殊技术要求外,电流互感器一次电流的L1(P1)端、二次K1(S1)端应与所确定的电能计量正向保持一致,即当正向的一次电流自L1(P1)流向L2(P2)端时,二次电流应自K1(S1)端流出,经外部回路流回到K2(S2)端。在影响互感器二次回路查、接线的情况下,可同时调整互感器一次、二次安装方向,确保与所确定的电能计量正向保持一致。同一个计量点各相电流(电压)互感器进线端极性应一致。
3、接线盒的安装
a)计量屏(柜、箱)内各计量点的电能表与联合接线盒相邻上下布置,联合接线盒安装在电能表的下方,且与电能表安装在同一个垂直平面上,每个电能表应对应安装一个接线盒,安装在就地计量柜的接线盒受到空间位置的影响,两个以上的电能表可共用一个接线盒。接线盒应安装端正;接线盒所有的固定孔须采用镙栓固定,固定孔应采用螺纹孔或采用其他方式确保单人工作就能在屏柜正面紧固螺栓。接线盒向各方向的倾斜不大于1。
b)试验接线盒与周围壳体结构件之间的间距不应小于40mm,与电能表垂直间距至少80mm,接线盒下边缘离地面距离不得小于300mm。
4、接线要求
基本要求是按图施工、接线正确;导线无损伤、无裸露、绝缘良好;接线可靠、接触良好;布线要横平竖直,连接到各接线桩处的导线要做弯成一定的弧度,整齐美观,线长充裕,接头处不应受到拉力;各种接线标志齐全、不褪色。
a)引入盘、柜的电缆标志牌清晰,正确,排列整齐,避免交叉,并应安装牢固,不得使所接的接线盒受到机械应力。
b)盘、柜内的电缆芯线,应按垂直或水平有规律地配置,不得任意歪斜交叉连接。备用芯长度应留有适当余量。
c)三相电能表应按正相序接线。
d)用螺丝连接时,弯线方向应与螺钉旋入的方向一致,并应加垫圈。
e)盘、柜内的导线不应有接头,导线芯线应无损伤。
f)经电流互感器接入的低压三线四线电能表,其电压引入线应单独接入,不得与电流线共用,电压引入线的另一端应接在电流互感器一次电源侧,并在电源侧母线上另行引出,禁止在母线连接螺丝处引出。电压引入线与电流互感器一次电源应同时切合。
g) TA装置端子箱内电流回路专用接线盒中电流进线与出线间应不经过电流连接片,采用直通连接方式;计量屏(柜、箱)内,联合接线盒中电流进线和出线间的连接应经过电流连接片。
h)主控室内计量柜上下相邻布置的电能表与接线盒之间导线的连接,应穿过面板上的穿线孔,每个穿线孔为圆形,孔径适宜,与每根连接导线一一对应。穿线孔应打磨钝化,并用塑料套套好,以保护导线不受损伤,塑料套粘贴牢靠,不应脱落。
i)压接电流回路、电压回路导线金属部分的长度为25mm~30mm,确保接线桩的两个螺丝皆能牢靠压接导线且不得外露,各接线头须按照施工图套号编号套,编号套标志应整洁、正确、耐磨、不褪色。
三、电能计量装置的验收和实验
1、验收的技术资料
a) 电能计量装置的计量方式原理接线图,一、二次接线图,设计和施工变更资料。
b) 电能表和电流、电压互感器的安装和使用说明书,出厂检验报告,计量检定机构的检定证书或测试报告。
c) 二次回路导线或电缆的型号、规格及长度。
d) 高压电气设备的接地及绝缘试验报告。
e) 施工过程中需要说明的其他资料。
2、现场核查内容
a) 计量器具型号、规格、计量法定标志、生产厂、出厂编号应与计量检定证书、测试报告和技术资料的内容相符。
b) 产品外观质量应无明显瑕疵和受损。
c) 安装工艺质量应符合有关标准要求。
d) 电能表、互感器及其二次回路接线情况应和竣工图一致。
3、验收实验
a) 电能表
电能表安装前应在试验室进行检定,电能表应满足公司《三相电子式多功能电能表订货及验收技术标准》要求。
b) 电压互感器
电磁式电压互感器可在试验室或现场进行误差测试,电容式电压互感器应在现场进行误差测试。电压互感器在额定负荷和实际负荷时的误差都应合格。
c) 电流互感器
电流互感器可在试验室或现场进行误差测试,电流互感器在额定负荷时和实际负荷时的误差都应合格。
d) 二次回路
应在现场检查电压、电流互感器二次回路接线是否正确;二次回路中间触点、熔断器、试验接线盒的接触情况。
4、验收结果的处理
a) 投产前的试验项目必须合格方能投产,投产后的试验如有不合格的必须在一个月内进行整改。
b) 经验收合格的电能计量装置应由验收人员及时实施封印,并由运行人员或客户对铅封的完好签字认可。封印的位置为互感器二次回路的各接线端子、电能表接线端子、计量柜(箱)门等。
c) 经验收合格的电能计量装置应由验收人员填写验收报告,注明“计量装置验收合格”或者“计量装置验收不合格”及整改意见,整改后再行验收。
d) 验收不合格的电能计量装置禁止投入使用,更改后再进行验收,直至合格。
e) 验收报告及验收资料及时归档以便于管理。
电能计量装置现场检查的意义
供电企业的用电检查人员根据《用电检查办法》到电能计量装置的安装地点进行检查,能及时发现窃电、 电能计量装置接线错误、 缺相 、倍率不符、 电能计量器具故障 、电能计量器具配置不合理等问题。对提高电能计量装置的可靠性 ,减少计量差错,降低线损,维护供电企业和客户的经济效益都具有实际意义,也是对客户负责,优质服务的具体体现。
进行电能计量装置现场检查的准备工作
1.确定检查工作人员,办好必要的手续,带好《用电检查证》;
2.准备好交通工具;
3.带好常用的电工工具,小备件等;并自带简单负荷;
4.带好必需的电工仪表:万用表、钳形电流表、相序测定仪等;
5.带好电表箱锁匙、封表钳、铅封、封表线等;
6.带好《电能计量装置现场检查卡》(包括上次的检查卡)、秒表、手电筒、计算器、记录本、笔等;
7.如果对计量装置计量的正确性有怀疑,先查阅有关资料,并询问有关人员,了解情况;
8.检查期间不要对待检查户停电,联系客户要求其带正常负荷。
电能计量装置现场检查注意事项
1.实施检查时检查人员不得少于二人,检查人员应主动向客户出示《用电检查证》;注意语言文明;
2.把电能表行度记录在《电能计量装置现场检查卡》上;
3.实施检查时要求客户派员观察,协助检查;检查结束请客户在《电能计量装置现场检查卡》客户签名栏上签名,表示对这次检查程序和评价的认可;
4.不得在检查现场替代客户进行电工作业;
5.检查人员不得打开电能表外壳及其铅封,更不能自行调整电能表的误差调整装置;打开按规定可以打开的封印后,应用专门的铅封重新加封,并在《电能计量装置现场检查卡》上记录新封印的号码;
6.注意安全,防止触电;防止误操作引起开关跳闸;一次有电流时电流互感器二次严禁开路,电压互感器二次严禁短路。
电能计量装置现场检查的内容
一、检查外部
1.不应有绕越电能计量装置用电的情况;
2.不应存在影响电能计量装置正确计量的因素。
二、检查封印以及与计量有关的接线
1.电表箱、电能表接线盒、电能表罩壳、电能计量专用接线盒盖、电流互感器箱、电流互感器二次接线端钮封盖等供电部门或计量器具检定部门所加的封印不应有被开启或伪造,所有封印编号应是上次检查或安装时的编号;
2.电能表的进出线不应在表前被短路或被烧焦、破损;电能表接线盒和电能计量专用接线盒应没有被烧焦的痕迹;
3.电能表接线盒内电压连片连接应良好可靠;电能计量专用接线盒内电流、电压连接片的位置应正确并连接良好可靠;
4.经电流互感器接入式电能表的电流二次连线不应在表前被短路或开路,绝缘不应破损,并且与电能表(或电能计量专用接线盒)连接正确良好可靠;
5.低压计量的电压线同电源线接触应良好可靠,不应断线或绝缘破损,连接点所包扎的绝缘应完好;高压计量的二次电压线同接线端子接触应良好可靠;计量电压线同电能表(或电能计量专用接线盒)的连接应正确,良好可靠。
三、检查电能表的外观
1.电能表铭牌上的厂家编号与抄表本上记录的编号应一致;
2.电能表铭牌和玻璃不应有被熏黄的痕迹;
3.电能表外壳不应有变形或损坏;
4.电能表安装的垂直情况应合符要求;
5.电能表不应被私自移动了安装位置。
四、带负荷检查电能表的接线
用万用表测量电能表接线盒内电压接线端的电压,应与电源相应电压(经电压互感器接入式是相应二次电压)相符;用钳形电流表测量进入电能表电流接线端的电流,应与相应负荷电流(经电流互感器接入式是相应二次电流)相符(当客户的负荷太轻或者无负荷时,可以接入自带的简单负荷);电能表的转盘应不停地正向转动。
各种计量方式电能表接线的检查:
1.单相电能表
1)直接接入式单相电能表电源的火线应在接线盒的1孔接入,零线应在接线盒的3孔接入;
2)经电流互感器接入式电能表接线盒1、2孔分别是电流互感器K1、K2的进线,3、4孔分别是计量电压的火线、零线;
3)三块单相电能表计量三相负荷时零线应正确接入电能表;带三相负荷时三块电能表的转盘都应正向不停地转动。(负荷是单相380V电焊机,当功率因数低于0.5时有一个电表计量反转,属正常情况);
2.三相四线有功电能表
1)直接接入式三相四线电能表在带三相负荷时,用断开电压连接片(缺两相)的方法来分相检查每个元件能否使转盘正向不停地转动(负荷是单相380V电焊机,当功率因数低于0.5时有一个元件使转盘反转,属正常情况);
2)经电流互感器接入式的电能表无电压连接片,在带三相负荷时可利用电能计量专用接线盒的电压或电流连接片来分相检查每个元件能否使转盘不停地正向转动;若未装有电能计量专用接线盒时,应拆计量电压线来进行分相检查。
3.三相三线有功电能表
在负荷稳定时,可作以下的检查,若转盘的转向和转速全部符合下列三点预期的情况,就表明电能表的接线正确。
1)转盘应正向转动;
2)用秒表测转盘的转速,缺B相电压时转盘仍应正向转动并且转速是不缺B相电压时的一半;
3)将任两相电压对调时,转盘应不转或微转。
4.三相无功电能表
用相序仪在无功电能表的接线盒测量相序应为正相序,若是逆相序可将任两相(包括电压、电流)的进表线对调就变为正相序了(最好停电后在互感器进电能计量专用接线盒的接线调)。当负荷为感性时(若客户有补偿电容应先把电容退出运行),转盘应正向转动;负荷为容性时转盘会反转,若表内装了止逆器则转盘不转。
在感性负荷稳定时,作以下的检查,若转盘转向和转速全部符合下列预期的情况,就表明电表的接线正确。
1)对于三相四线无功电能表,用秒表测转盘的转速,任意缺一相电压时转盘仍应正向转动并且转速比不缺相时慢一半;将任两相电压对调时,转盘应不转或微转;
2)对于三相三线无功电能表,用秒表测转盘的转速 ,缺C相电压时转盘仍应正向转动并且转速比不缺C相电压时慢一半;将A相电压和B相电压对调时,转盘应不转或微转。
五、检查电能表的运行情况
1.若所带负荷电流达到电能表的起动电流时,电能表转盘应不停地正向转动,不带负荷时转盘转动应不超过一圈;
2.在负荷稳定时用秒表测量转盘的转速来计算电能表计量的平均功率,与实际功率相比较,以估计电表的计量误差。
电能表计量平均功率的计算式:
平均功率=3600×迭定转盘转数×倍率÷电能表常数÷时间
平均功率:单位(千瓦);
迭定转盘转数:根据转盘转速来确定(转);
倍率:电压、电流互感器的合成倍率;
电能表常数:电能表铭牌上已标明(转/千瓦时);
时间:转盘转完迭定转盘转数所需的时间(秒)。
(电能表的误差应由经授权的计量机构检定,现场检查的数据只能作为分析参考。)
3.校核计度器系数
1)计算计度器末位改变一个数字时的转盘转数:
(计算转盘转数)=电能表常数÷计度器小数位数
2)在电能表转盘转动时数转盘转数,当转盘转完(计算转盘转数)时,计度器末位应改变一个数字。
六、检查电流互感器
二次电流线与电流互感器K1、K2端钮接触应良好可靠,并且与电能表及电能计量专用接线盒的连接应正确并接触良好可靠;电流互感器铭牌所标电流比和抄表本上记录的电流比应一致(穿芯式电流互感器还应根据导线穿芯匝数确定电流比);用钳形电流表分别测量电流互感器的一次电流值和二次电流值,以确定电流互感器的倍率(倍率=一次电流值/二次电流值),所确定的倍率应和抄表本所记录的倍率一致。
七、检查电压互感器
八、二次电压线与电压互感器二次端钮(或接线端子)接触应良好可靠,电压互感器铭牌所标电压比和抄表本上记录的电压比应一致。
九、检查电能计量器具容量的配置
检查应在用户带正常负荷时进行,测量进入电能表的电流以确定电能表和电流互感器容量的配置是否合理。《电能计量装置技术管理规程》规定了配置的原则:
1.低压供电,负荷电流为50A及以下时,宜采用直接接入式电能表;负荷电流为50A以上时,宜采用经电流互感器接入式的接线方式;
2.直接接入式电能表的标定电流应按正常运行负荷电流的30%左右进行迭择;
3.进入电能表的电流宜不小于电能表的30%,不大于电能表的额定最大电流
4.经电流互感器接入的电能表,其标定电流宜不超过电流互感器额定二次电流的30%,其额定最大电流应为电流互感器额定二次电流的120%左右;
5.电流互感额定一次电流的确定,应保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少不小于30%.
十、把检查的情况填写在《电能计量装置现场检查卡》上。
对电能计量装置进行现场检查还不只限于以上列举的内容,应根据实际情况采取其它的检查办法。
附:用专用仪器对电能计量装置进行现场检查
对电能计量装置进行现场检查的专用仪器主要有:电能表现场校验仪、电流互感器校验仪、电压互感器二次压降测试仪等。
1.用电能表现场校验仪在电能表接线盒(如果确定了电能表的接线正确,也可以在电能计量专用接线盒)测定进入电能表电压的相序,测量电压、电流以及相位、功率;分析电压、电流相量图,确定电能表接线是否正确;校准电能表的测量误差
2.用电流互感器校验仪测定电流互感器的实际二次负荷,应在25%∽100%额定二次负荷范围内;校准电流互感器带实际二次负载时的比差和角差;
3.用电压互感器二次压降测试仪测定电压互感器二次回路电压降,Ⅰ、Ⅱ类电能计量装置应不大于其额定二次电压的0.2%,其它类电能计量装置应不大于其额定二次电压的0.5%
⑸ 装置设备布置设计的一般要求是什么
答:(1)满足工艺流程要求,按物流顺序布置设备;
(2)工艺装置的设备、建筑物、构筑物平面布置的防火间距应满足表5.1.10的要求,符合安全生产和环境保护要求;
(3)应考虑管道安装经济合理和整齐美观,节省用地和减少能耗,便于施工、操作和维修;
(4)应满足全厂总体规划的要求;装置主管廊和设备的布置应根据装置在工厂总平面图上的位置以及有关装置、罐区、系统管廊、道路等的相对位置确定,并与相邻装置的布置相协调;
(5)根据全年最小频率风向条件确定设备、设施与建筑物的相对位置;
(6)设备应按工艺流程顺序和同类设备适当集中相结合的原则进行布置。在管廊两侧按流程顺序布置设备、减少占地面积、节省投资。处理腐蚀性、有毒、粘稠物料的设备宜按物性分别紧凑布置;
(7)设备、建筑物、构筑物应按生产过程的特点和火灾危险性类别分区布置。为防止结焦、堵塞、控制温降、压降,避免发生副反应等有工艺要求的相关设备,可靠近布置;
(8)设备基础标高和地下受液容器的位置及标高,应结合装置的坚向布置设计确定;
(9)在确定设备和构筑物的位置时,应使其地下部分的基础不超出装置边界线;
(10)输送介质对距离。角度、高差等有特殊要求的管道布置,应在设备布置设计时统筹规划。
⑹ 煤矿设计的安全专篇
安全专篇是指在煤矿初步设计的基础上对煤矿安全设施和条件的设计,包括煤矿初步设计安全专篇说明书和附图两部分。
3 基本规定
3.1 矿井初步设计安全专篇必须在以下资料基础上编制:
a) 经国土资源部门评审备案的相应级别的井田勘查地质报告;
b) 省级及以上政府有关主管部门项目核准(审批)的批复文件;
c) 国土资源部门划定井田范围批复文件或颁发的采矿许可证;
d) 安全预评价报告。
3.2 矿井初步设计安全专篇编制必须符合《煤炭产业政策》、《煤炭工业矿井设计规范》、《煤矿安全规程》等政策、法规、标准要求。
3.3 矿井初步设计安全专篇必须在初步设计的基础上进行编制,矿井初步设计及其安全专篇应由同一个设计单位进行编制,编制单位必须具有相应设计资质。
4 编制内容
4.1 概况
4.1.1 矿区开发情况。包括矿区总体规划,现有生产、在建矿井的分布和开采情况,小窑分布及开采情况;属于非新建项目的,要介绍其建设、安全生产情况。
4.1.2 项目设计依据。包括建设单位提出的要求和目标、提供的主要技术资料与审批文件,设计编制的主要原则和指导思想,国家有关安全法律法规、规范和标准等。
4.1.3 建设单位基本情况。项目建设单位的组成、主营业务、煤炭建设与生产业绩、近年安全生产状况。
4.1.4 设计概况
4.1.5.1 地理概况。矿区、矿井所在地理位置、交通情况、地形地貌、水系河流、气象与地震、环境状况等情况。附:交通位置图。
4.1.5.2 主要自然灾害。井田所在区域洪水、泥石流、滑坡、岩崩、不良工程地质、灾害性天气等方面。
4.1.5.2 工程建设性质,新建、改建、扩建。
4.1.5.3 井田开拓与开采。井田境界、储量、设计能力及服务年限;井田开拓方式、采区布置、采煤工艺及主要设备,建设工期等。
附:井筒特征表。
附插图:开拓方式平、剖面图。
4.1.5.4 提升、排水、压缩空气系统。主要设备型号和主要技术参数。
4.1.5.5 井上下主要运输设备。地面铁路、公路及其它运输方式,井下主要、辅助运输方式及设备。
4.1.5.6 供电及通讯。供电电源、电压、电力负荷、送变电方式、地面供配电、井下供配电、安全监控与计算机管理,通讯及铁路信号等。
4.1.5.7 地面辅助生产系统。包括原煤进仓装车、洗选加工、矸石排放,以及供排水、污水处理、井口降温采暖等系统。
4.1.5.8 地面设施。工业场地及周边用于生产生活的重要建筑物与构筑物。
附:工业场地总平面布置图。
4.1.5.9 技术经济。劳动定员汇总表,主要技术经济指标。
4.2 矿井开拓与开采
4.2.1 煤层埋藏及开采条件
4.2.1.1 地质构造及特征。地层、煤系地层及含煤性。煤系地层走向、倾向、倾角及其变化规律;断层、褶曲、陷落柱、剥蚀带发育情况及其分布规律;火成岩侵入情况及对煤层和煤层顶底板的影响;构造类型。
附表:主要断层特征表
4.2.1.2 煤层及煤质。煤层赋存情况(包括可采煤层层数、厚度、倾角、结构、节理、层理发育情况等)、煤层顶底板岩性特征、物理力学性质、结构及变化规律;煤层露头(含隐露头)及风化带情况;煤质及煤种。
附:可采煤层特征表。煤质特征表。
附:煤层柱状图。
4.2.2 矿井主要灾害因素及安全条件。
煤层瓦斯赋存及规律,煤层瓦斯含量、压力,矿井瓦斯等级,矿井煤(岩)与瓦斯(二氧化碳)突出危险性,其它有毒有害气体情况;各煤层煤尘爆炸指数及爆炸危险性;煤层自燃发火期和自燃倾向性;煤层顶、底板情况;冲击地压危险性;地温情况。
邻近矿井瓦斯、煤尘、煤的自燃、煤与瓦斯突出、地温等实际情况及鉴定研究成果。
4.2.3 矿井开拓系统
4.2.3.1 井筒
井筒的设置及功能。井筒和工业场地工程地质条件、防洪设计标准、保护煤柱的留设等;进、回风井口的安全性。
4.2.3.2 采区(或盘区、下同)划分、采区及煤层开采顺序、采区接替关系,划分依据及其合理性分析;煤层下行开采的顺序确定;煤层上行开采的分析论证。
4.2.3.3 主要巷道
主要巷道布置层位、安全煤柱、安全间隙、支护方式、安全风速、其它安全措施等。
插图:井筒、开拓、采区主要巷道断面图。
附:开拓方式平、剖面图。
4.2.3.4 竣工投产应具备标准条件,采区包括盘区大巷应贯穿整个采(盘)区。
4.2.4 采煤方法及采区巷道布置
4.2.4.1 采煤方法的合理性分析。
应对综合机械化采煤、放顶煤采煤法、水文地质条件复杂、煤层自燃、高瓦斯矿井、煤(岩)与瓦斯突出矿井、冲击地压矿井、薄煤层、大倾角煤层和特厚煤层等难采煤层的适应性和安全性进行分析。
4.2.4.2 采掘设备的安全性
液压支架的支护强度、防倒、防滑措施;倾斜和急倾斜煤层开采时的防飞矸措施等。
4.2.4.3 采区巷道布置。
采区上、下山、采煤工作面顺槽等巷道布置方式。
对有冲击地压、煤层自燃和煤与瓦斯突出等条件下巷道层位的选择与分析。
高瓦斯矿井、有煤(岩)与瓦斯(二氧化碳)突出危险矿井采区和开采容易自燃煤层的采区以及低瓦斯矿井开采煤层群和分层开采采用联合布置的采区,其专用回风巷的设置情况。
采区及工作面加强支护的要求等。
附:采(盘)区巷道布置及机械配备平、剖面图;井下运输系统图。
4.2.5 顶板管理及冲击地压
4.2.5.1 顶板灾害防治及装备
影响矿山压力显现基本因素分析:煤层顶板岩性、顶底板类别、物理力学性质对可能产生顶板事故的影响分析;断层与褶曲、挤压带与破碎带、冲刷、节理、裂隙、煤层倾角、开采深度、采高、控顶距对矿山压力显现的影响。
一般顶板冒落灾害的防治措施及装备:回采工作面顶板管理方式的选择,回采工作面支架的选择论证,采区顺槽巷道支护的选择论证;沿空掘(留)巷的安全措施。掘进工作面支护选择论证、交叉点支护的选择论证。
矿山压力观测设备:综采工作面、高档普采工作面、其它采煤工作面及掘进工作面各种矿山压力观测设备。
坚硬顶板跨落灾害的防治措施:顶板岩石特性、物理力学性质、顶板岩层厚度、临近矿井顶板冒落情况等。
预防措施及装备:顶板高压注水、强制放顶等措施分析。岩石钻机、高压注水泵、矿山压力观测设备(如:微震仪、地音仪、超声波地层应力仪等)。
4.2.5.2 冲击地压
矿区或邻近矿井或本矿冲击地压发生的历史资料;影响本矿冲击地压发生的因素分析(地质因素、开拓开采因素);冲击地压预测(冲击地压预测方法、预测仪器仪表和设备选型);冲击地压防治措施(设计原则、防治措施等)。
附:上下煤层对照图、冲击地压的预测和防治工程图(必要时附)。
4.2.6 井下主要硐室
井下架线式电机车修理间及变流室、井下蓄电池式电机车修理间及充电变流室、井下防爆柴油机车修理间及加油(水)站、井下换装硐室、井下消防材料库、防水闸门硐室、井下急救站、避灾硐室、井下降温系统硐室等的规格、要求(装备)、服务范围、层位位置选择、支护形式、通风方式等。
4.2.7 井上、下爆炸材料库
位置、库房型式、支护、通风、照明、通讯;距主要井巷(建构筑物)距离;爆炸材料库采取的安全防范措施。
4.2.8 安全出口
矿井、采区、工作面安全出口设置及保证措施。
4.2.9 矿山压力及地质测量类仪表、设备配置
4.3 瓦斯灾害防治
4.3.1 瓦斯灾害因素分析
4.3.1.1 瓦斯赋存状况
瓦斯成分、瓦斯参数(瓦斯风化带、瓦斯压力、各煤层瓦斯含量及梯度等)、煤层逶气性系数、煤(岩)与瓦斯(二氧化碳)突出危险性、其它有毒有害气体情况。
4.3.1.2 瓦斯涌出量预测及变化规律分析
根据不同水平的瓦斯参数预测矿井不同水平或开采区域的瓦斯涌出量、矿井瓦斯等级,从不同区域不同埋深分析研究矿井瓦斯涌出的变化规律等。
4.3.1.3 瓦斯灾害治理措施选择
研究确定降低矿井瓦斯浓度的可能途径,对风排、抽排比例关系进行定性、定量分析。
4.3.2 防爆措施
4.3.2.1 防止瓦斯积存的措施。健全稳定、合理、可靠的通风系统;保证工作面有充足的风量和合理的风速;确定瓦斯异常区装备、管理标准。
4.3.2.2 控制和消除引爆火源。防止爆破引燃瓦斯;防治自燃措施;电气防爆措施;防止撞击产生火花的措施;防止产生引燃(爆)火源(明火)的措施。
4.3.2.3 地面储、装、运等辅助生产系统防爆措施
4.3.3 隔爆措施(见4.5.5)
4.3.4 瓦斯抽采
4.3.4.1 矿井瓦斯储量
瓦斯储量、可抽量及瓦斯涌出量计算。
4.3.4.2 抽采系统和方法
瓦斯抽采系统的选择及合理性分析;地面集中抽采(预抽)的预抽量、预抽时间、预抽效果分析。
本煤层瓦斯抽采方法;临近层抽采方法;采空区抽采方法;抽采巷道的选择和布置;钻场布置和钻孔参数。
4.3.4.3 抽采管路及其设备
抽放系统的主、干、支管管径、材质、连接方式,主管路的趟数;抽放管路的布设和敷设方式,安全间距;管路的附属设施(如阀门、计量装置、放水器、除渣装置、管路瓦斯参数测定孔等)及其布设原则;井下管路的阻燃性和防砸、防静电、防腐、防漏气、防下滑措施,地面管路的防冻和防雷电、静电措施;
矿井不同时期的抽放流量、负压及时间界限;瓦斯储存、利用方式及所需正压,抽放设备选型及工况点(应考虑抽放设备实际工况与标准工况的换算),设备富裕能力(≮15%)校验,设备工作及备用台数;
瓦斯抽放站的辅助设施(起重、冷却、采暖、通风、测量及计量)、安全设施(防爆器、防回火装置、放空管、避雷、灭火器具),安装布置方式,防火间距,机房安全出口;抽放设备及设施选型合理性和运行安全、可靠性分析;
附:抽放管路系统图、抽放泵特性曲线图。
4.3.4.4 安全保障措施
抽放系统及抽放泵站安全措施:抽放站场、钻孔施工防治瓦斯措施;管路及抽放瓦斯站防雷电、防火灾、防洪涝、防冻措施;抽放瓦斯浓度规定;安全管理措施。
监测监控子系统的组成、功能及设置。
4.3.5 防突措施
4.3.5.1 煤与瓦斯突出的危险性分析
煤层赋存、顶底板等情况;瓦斯特征;煤层的物理力学性质;矿井或邻近矿井煤与瓦斯突出情况;各煤层瓦斯突出危险性鉴定结果。
4.3.5.2 综合防突措施(开拓方式和开采顺序;采煤方法和巷道布置;采区巷道和顶板管理;通风等)。
4.3.5.3 煤层注水防突(煤层注水的布孔形式、位置、长度、注水量等参数结合防尘、防突等因素综合考虑,详见4.5.2)。
4.3.5.4 开采保护层:保护层的确定;保护层作用有效范围的圈定;开采保护层的几个技术问题—主要巷道布置、井巷揭突出煤层地点的选择、预抽被保护层的瓦斯、保护层的有效保护范围及有关参数确定、保护层的回采工作面与被保护层的掘进工作面超前距离的确定、防止应力集中的影响、留煤柱时采取的措施、掘进通风和局部扇风的选择、井巷揭煤前通风系统和通风设施及采区上山布置方式、其它应注意的问题。
4.3.5.5 预抽煤层瓦斯;石门和井巷揭煤的防突措施;煤巷掘进防突措施;回采工作面防突措施。
4.3.5.6 预测预报措施,煤与瓦斯突出预测仪器。
4.3.5.7 安全防护措施
井巷揭穿突出煤层和在突出煤层中进行采掘作业时的安全防护措施;压风自救系统(压风自救硐室;压风自救点;自救系统需风量校验,管路设施);个人防护措施等。
附:压风自救系统图。
4.3.6 矿井瓦斯及其它气体检测仪器、设备配置
4.4 矿井通风
4.4.1 通风系统
矿井通风方式和通风方法。
矿井初、后期进回风井数目及位置、功能、服务的范围及时间;改扩建矿井增加和弃用的井筒情况。
附插图:通风系统图(初、后期)、通风网络图(初、后期)。
4.4.2 矿井风量、风压及等积孔
矿井不同时期的需风量计算及风量分配、风压、等积孔计算及通风难易程度评价,应考虑自然风压及海拔高度影响。
附表:初、后期风压计算表。
4.4.3 掘进通风
掘进通风方法、通风设备、防止产生循环风的安全措施。
4.4.4 硐室通风
井下独立通风硐室的通风系统及安全措施,采用扩散通风的硐室及通风要求。
4.4.5 井下通风设施及构筑物
井下各种风门、挡风墙、风帘和风桥、调节风门、测风站的设置及技术要求。
4.4.6 矿井主通风机及矿井反风
矿井通风设备选型及正常、反风工况点(应考虑自然风压影响及海拔高度对特性曲线的修正),通风设备的余量及电机功率(包括反风功率)校验;工况调节方式,辅助设施(防爆门、风硐、风门、起重、润滑、液压、冷却散热、消音、测压、灭火器具),安装布置方式,机房安全出口,风门防冻措施,性能测试方式;反风方式、反风系统及设施;多风机联合运转时的性能匹配及工况点稳定性;通风设备及设施选型合理性和运行安全、可靠性分析。
多风井实施反风的技术措施和方法。
附:初、后期风机工作和反风特性曲线图。
4.4.7 井筒防冻
井筒防冻方式、计算参数、设备选型及相应的安全措施。
4.4.8 降温措施及设备选型
4.4.8.1 矿井致热因素
热害种类、热害程度及致热因素分析。
4.4.8.2 矿井地热、热水分布状况及岩石热物理性质
可采煤层上下主要层段岩石热物理性质及参数;热水型矿井的热水形成、运移、水温及水量等主要参数;地热型矿井的原始岩温、干湿球温度等主要参数。
4.4.8.3 矿井热源散热量计算
地温情况及热害对职工的影响;风温预测计算及采取的降温措施。
4.4.8.4 降温措施及设备选型
开拓、采掘布置措施;通风系统及通风管理措施;地热及热水型矿井封堵、疏干措施;人工制冷、降温等措施;降温设备选型;采用各种措施的经济技术比较;降温措施及预期效果。
4.4.9 矿井通风检测类设备配置
4.5 粉尘灾害防治
4.5.1 粉尘危害及防尘措施
4.5.1.1 粉尘种类和危害程度分析
粉尘的种类、游离二氧化硅含量、煤尘的爆炸性、粉(煤)尘的危害性等。
4.5.1.2 防尘措施的确定
各采掘工作面、装载点、卸载点、运输、仓储......等产生粉尘的尘源地点,采用的降尘、除尘、捕尘以及对沉淀在巷道中的煤尘所采取的综合防尘措施。
回采、掘进工作面除尘。
4.5.2 煤层注水
4.5.2.1 煤层注水设计依据
煤层的物理特性、煤层顶底板的物理特性、煤层的结构特征等;论述煤层注水的必要性。
4.5.2.2 注水工艺、参数及设备
注水方式的选择、注水参数及水质的确定;注水系统的选择、注水设备和仪表的选择。
4.5.3 井下消防、洒水(给水)系统
井下消防洒水系统:水源及水处理、水量、水压、水质、给水系统(系统选择、水池、蓄水仓、加压、减压、管网)、用水点装置(灭火装置、给水栓、喷雾装置)、管道、加压泵站、自动控制。
4.5.4 粉尘监测及个体防护设备
4.5.4.1 粉尘检测
主要检测方法及频率,粉尘传感器布置及检测仪表。
4.5.4.1 个体防护设备
个体防护设备的选择及配置。
4.5.5 防爆措施(有煤尘爆炸危险矿井)
防尘降尘措施、电气设备及保护、撒布岩粉、防止火源引起煤尘爆炸的措施等。
4.5.6 隔爆措施(有煤尘爆炸危险或有瓦斯涌出矿井)
防止爆炸由局部扩大为全矿性的灾难所采取的措施。
4.5.6.1 隔爆水棚(水槽、水袋)
水棚的结构、选型、计算与布置以及水棚给水系统。
4.5.6.2 隔爆岩粉棚
粉棚的结构、布置、计算,对岩粉的要求与岩粉原料。
附:隔爆水棚、岩粉棚布置图。
4.5.7 矿井地面生产系统防尘
地面生产系统防尘;排矸系统防尘;喷雾洒水除尘措施及装备。
4.5.8 矿井总粉尘、呼吸性粉尘检查、检测类仪器仪表配置
4.6 防灭火
4.6.1 煤层自然发火危险性及防灭火措施
4.6.1.1 煤层自然发火危险性
煤层自燃发火危险性参数及矿井的火灾特点。邻近矿井煤层自燃发火的特点和规律、煤层的发火期。
4.6.1.2 煤的自燃分析预测
从煤的化学成分及变质程度、孔隙率、地质构造和内生裂隙、水分、炭化程度、煤岩组分、硫磷含量、瓦斯含量、吸氧速度、温度及开拓方式、采煤方法、通风方式等等方面分析。
4.6.1.3 煤层的自燃预防措施
应根据矿井煤层自然发火的特点、开拓开采方式、先进适用的科技成果,选择适宜的开拓开采和通风方式,确定预测预报自然发火的方法,火灾监测系统设置等。
4.6.2 防灭火方法
4.6.2.1 灌浆防灭火:设计依据及主要技术资料、灌浆系统的选择、灌浆方法的选择、灌浆参数的计算及选择、灌浆材料的选择、泥浆制备、注浆管道和泥浆泵选择。
附:灌浆系统图。
4.6.2.2 氮气防灭火:设计依据及主要技术要求、注氮工艺系统及设备、注氮参数。
附:注氮工艺系统图。
4.6.2.3 阻化剂防灭火:设计依据、阻化剂的选择、喷洒压注工艺系统、参数计算、喷洒压注设备。
4.6.2.4 凝胶防灭火:主料、基料及促凝剂的选择、参数计算、压注、喷洒设备选择等。
4.6.2.5 其它防灭火方法:泡沫灭火技术、均压通风等。
4.6.3 井下外因火灾防治
4.6.3.1 电气事故引发的火灾防治措施
井下机电设备硐室防火措施、井下电气设备的防火措施、井下电缆、井下电气设备的各种保护。
4.6.3.2 带式输送机着火的防治措施
井下阻燃输送带选择、巷道照明、驱动轮防滑保护、烟雾保护、温度保护和堆煤保护装置,自动洒水装置和防胶带跑偏装置,机头机尾硐室自动灭火系统、火灾报警装置以及监测监控装置。
4.6.3.3 其它火灾的防治措施
防止地面明火引发井下火灾的措施;防止地面雷电波及井下、防止井下爆破引发火灾的措施;空压机的防火与防爆措施;防止机械摩擦、撞击等引燃可燃物的措施等。
4.6.4 井下防火构筑物
井下防火门硐室、消防材料库、防火墙、采区和工作面密闭等。
4.7 矿井防治水
4.7.1 矿井水文地质
4.7.1.1 水文地质情况
井田水文地质条件,主要含(隔)水层类型,矿井水文地质条件、水文地质类型;井田临近矿井和小(古)窑涌水及积水情况以及地表水体、废弃的矿井、小窑老塘积水情况、地质构造的导水性;第四系含(隔)水层特征及积水情况;封闭不良钻孔情况;矿井主要含水层或积水区与主要开采煤层之间的关系;矿井正常涌水量和最大涌水量。
4.7.1.2 矿井水文地质特点、水患类型及威胁程度分析、可能发生突水的地点和突水量预计。
4.7.2 矿井防治水措施的确定
4.7.2.1 矿井开拓开采所采取的安全保证措施。矿井开拓工程位置及层位选择、采掘工程所采取的防治水措施。
4.7.2.2 防治水煤(岩)柱的留设。防治水煤(岩)柱的种类、防治水煤(岩)柱的留设原则、计算依据、方法与结果。
4.7.2.3 区域、局部探放水措施及设备。探放水原则、探放水方法的确定、探放水设备的选择、探放水时的安全措施。
4.7.2.4 疏水降压。根据矿井具体水文地质条件确定:疏水降压地点、方法和降低水头值的确定,疏水工程设计,疏水降压设备选择。
4.7.2.5 防水闸门。分析设置防水闸门的必要性,防水闸门规格,防水闸门硐室位置及设计计算结果,施工及管理要求。
4.7.2.6 井下排水。矿井不同时期井下正常、最大涌水量;排高及时间界限,地面所需附加扬程,排水方式;排水设备选型及管路淤积前、后的工况点(应考虑海拔高度对参数进行修正,以及并联运行);排水泵的工作、备用、检修台数,预留预设情况,排水能力校验,电机功率和吸上真空高度校验,泵与管路的运行组合,水泵的充水方式和起动、调节方式;排水管路管径、材质、连接方式和壁厚校验,阀门,管路趟数及敷设井巷和方式;水质pH<5时的防酸措施,管路的防腐,排水系统防水力冲击措施,管路预留位置;泵房附属设施[引水、起重、运输、配水井/阀及硐室,大功率泵房的通风散热和降噪措施;配水井、联轴器的安全防护;排水设备及设施选型合理性和运行安全、稳定性分析。
水泵房位置及通道,水仓布置及容量。
附:水泵特性曲线图、排水系统图。
4.7.2.7 地表水防治。设计依据、地面水防治、地面水防治工程及装备。
4.7.2.8 小窑、老窑水防治。小窑、老窑分布范围、积水情况,与矿井的开拓开采之间的关系、影响程度,提出其积水区域实现安全开采的防治水技术途径和安全技术措施。
4.8 电气安全
4.9 提升、运输、空气压缩设备
4.10 矿井监控系统
4.11 矿井救护、应急救援与保健
4.12 安全管理机构与安全定员、培训
4.13 待解决的主要问题及建议
施工图阶段和施工中应注意和解决的问题。
对于改扩建矿井,改扩建期间的安全措施和新老系统转换的说明。
对需要进行专项安全设计的说明。
⑺ 流量测量节流装置的设计安装和使用
需要说明两个问题:
(1)你说的《流量测量节流装置的设计安装和使用》是一本书,我也在找;
(2)GB中没有GB2624,只有GB/T 2624.1-2006~GB/T 2624.4-2006,以此对应的名称是:
《GB/T2624.1-2006 用安装在圆形截面管道中的差压装置测量满管流体流量:一般原理和要求》
《GB/T2624.2-2006 用安装在圆形截面管道中的差压装置测量满管流体流量:孔板》
《GB/T2624.3-2006 用安装在圆形截面管道中的差压装置测量满管流体流量:喷嘴和文丘里喷嘴》
《GB/T2624.4-2006 用安装在圆形截面管道中的差压装置测量满管流体流量:文丘里管》