㈠ 铣床夹具对刀装置的组成及作用
铣床夹具对刀装置由对刀块与塞尺组成。作用是对刀时,在刀具与对刀块之间一塞尺,避免刀具与对刀块直接接触而损坏刀刃或造成对刀块过早磨损。
铣床夹具主要用于加工平面、凹槽及各种成型表面。它主要由对刀装置(对刀块与塞尺)、定位元件、夹紧机构、定位键和夹具体组成。
铣床专用夹具的设计特点和要求
1)由于铣削过程不是连续切削,极易产生铣削振动,铣削的加工余量一般比较大,铣削力也较大,且方向是变化的,因此设计时要注意:
①夹具要有足够的刚度和强度;
②夹具要有足够的夹紧力,夹紧装置自锁性要好;
③夹紧力应作用在工件刚度较大的部位上,且着力点和施力方向要恰当;
④夹具的重心应尽量低,高度与宽度之比不应大于1-2.5;
⑤要有足够的排屑空间。切屑和冷却液能顺利排出,必要时可设计排屑孔。
㈡ 铣床对刀块怎么用,它是放在加工面上还是在夹具上总之怎么个使法还有个定向键它又是怎么个使法
铣床对刀块放在工作台上或是夹具上对刀,定向键安装在夹具底面的纵向槽中,专一般使用两个。属通过定向键与铣床工作台U形槽的配合,使夹具上定位元件的工作表面放置正确。
对刀基准是对专用夹具来讲,就是确定刀具与夹具相对位置的基准,X(Y)向的对刀基准,一般选X(Y)向与定位基准重合的定位元件上的要素,即为确定对刀、导引装置位置的尺寸基准。
对刀装置的位置尺寸为X(Y)向对刀基准到对 刀块工作表面或钻套中心线(理解为钻模板底孔中心线)的位置尺寸,简称对刀尺寸。 对应加工零件。上的尺寸为直接保证的尺寸。
(2)对刀装置设计可行性分析扩展阅读:
在对刀操作过程中需注意以下问题
1、根据加工要求采用正确的对刀工具,控制对刀误差;
2、在对刀过程中,可通过改变微调进给量来提高对刀精度;
3、对刀时需小心谨慎操作,尤其要注意移动方向,避免发生碰撞危险;
4、对刀数据一定要存入与程序对应的存储地址,防止因调用错误而产生严重后果。
㈢ 轧辊磨床的技术改造情况有什么简单分析
一、轧辊磨床的改造原因
1、数控系统技术落后
原磨床控制系统是8088和8086中央处理器,软件水平很低,操作界面差,无图形显示,不能随时察看磨削偏差。原机床位置精度闭环系统无自动辊型偏差补偿,影响磨削精度的提高。硬件无扩展功能,不能联网通信上传数据,也不能实现磨床集中控制。
2、传动系统技术落后
原磨床采用直流传动系统,缺点是稳定性和维护性差、工作效率低、维护成本高。
3、导轨和驱动轴精度下降
原机床经长期高负荷使用,其主轴、导轨及各伺服系统精度均出现劣化,已影响磨削精度。
4、测量系统精度降低
原C型测量系统结构复杂,已出现机械磨损和精度降低问题。
5、无自动探伤设备。
随着自动轧辊探伤技术的成熟,工艺需要在磨床上装备自动探伤设备,来检测轧辊。
二、改造内容
1、数控系统
采用基于Windows XP的数控系统ILC2000R;采用适合磨床自动化磨削应用软件,对基础自动化部分进行全面升级更新,CNC系统与机床基础自动化之间采用现场总线结构,数据传送采用Ethernet网络结构。
应用全数字控制交流伺服电动驱动系统(五轴)和主轴直流驱动系统(二轴);PLC系统采用S7-400,STEP7软件编程;用德国IBSO公司研制的ILC2000Editor磨削编程软件编制磨床专用控制程序,实现全自动磨削加工循环及轧辊的自动测量和探伤;较原系统增加更多适合现场使用的专有画面,以实现辊形曲线的显示、编辑、测量结果多点显示、局部图形放大、打印、存贮及传输功能。
采用15″彩色液晶薄型双冗余显示器,同时监控多个界面,配备中文人机接口,配备双硬盘和双数控系统电源的自动冗余技术,提高系统稳定性。
具有基于Wince的在线诊断系统。在进行磨削作业及磨床维护时可通过在线诊断系统得到对当前操作的指示及相关解释;存储有丰富的操作维护在线帮助资料。
改造后数控系统实现了以下自动功能:(1)自动寻找各轴参考点;(2)自动夹紧轧辊;(3)自动驱进轧辊(自动对刀);(4)自动高速轧辊偏中心校准;(5)自动测量臂精度校准;(6)机床固有偏差自动补偿;(7)辊形偏差自动补偿;(8)测量曲线任意调用显示;(9)恒电流磨削;(10)砂轮线速度自动补偿;(11)自动磨削量和直径值磨削;(12)自动砂轮修磨;(13)智能短行程磨削和边磨削边探伤;(14)坐标轴工作区域安全限定。
2、测量系统
测量系统机电全面更新。使用更适合热轧轧辊磨削的带校准环的CP型测量臂:通过测量滑架X1轴、刀架X轴和内外两测量脚上X1T2、X1T1测量头实现轧辊直径、辊形、圆度、圆柱度、同轴度的测量,并自动检测轧辊装卡精度。
测量滑架X1轴由一个伺服电机驱动蜗轮、蜗杆、齿轮、齿条以实现快、慢速移动;滑架位置由一根LS 186直线光栅检测。
刀架X轴由伺服电机驱动滚珠丝杠及直线滚动导轨副实现直线运动;由一根LS186直线光栅检测。
X1T1、X1T2测量头光栅均安装在封闭的测量臂内,通过杠杆机构和气动虹吸原理进行非接触测量,以有效保护光栅探头。X1T1跟随X1轴移动,取轧辊外侧测量数据,其上装有涡流探伤探头,可实现测量系统与探伤系统同时工作而不发生干涉。XIT2跟随X轴移动,取轧辊内侧测量数据,并能检测砂轮表面实际位置,以实现砂轮自动趋近功能。
在磨床尾架上装有一标准校准环,其尺寸已输入控制系统,一旦需要进行测量臂校准,机床将自动测量校准环,并用标准尺寸进行软件修补。
该测量臂系统结构较原C型测量臂和X2轴测量系统有着明显优点:(1)机械结构简单,便于维护,故障率低;(2)动作简单,效率高;(3)便于实时校准,准确度高。
3、床身、导轨面精度恢复
对机床各导轨副进行精度修复,并更新所有驱动轴的磨损部件,如蜗轮蜗杆、滚珠丝杠、砂轮主轴、导向轴、轴承、皮带等;更新刀架静压系统。
4、中心架
仍用原有中心架并恢复精度。取消原测头电动校瓦机构,改为人工深度尺校瓦以提高校瓦速度和精度。
将尾中心架原机械式中心位置检测装置改进成光栅探头定位的自动高速校偏心装置。缩短了轧辊调偏心时间,提高了磨削效率。
中心架上的四片托瓦的润滑油道采用迷走式油槽,瓦内出油。大大提高托瓦自动润滑的有效性,同时在侧瓦上新增了温度传感器,保证运行安全。
5、砂轮动平衡
砂轮平衡原设计采用手动调节平衡块的方式,操作复杂,且极易损坏。在此次改造中,我们采用新型平衡装置,并配备动平衡检测仪M5100,可随时进行砂轮自动动平衡操作,方便可靠。
6、增加部分新功能
随着计算机、通信和无损探伤技术的发展,对磨床增加了部分新功能。
(1)磨床集中控制系统。新增磨床集中控制室,内置各台磨床的远端操作面板,并安装工业监视系统,操作人员可在中控室对多台磨床进行操作。远端操作面板数控信号直接取自数控计算机,PLC信号通过Pofibus总线送给S7-400,实现磨床的人机对话。
(2)磨削数据采集系统。新增磨削数据采集服务器,安装W1ndows2000Serve操作系统、Ora-c1e9.0数据库软件和Waldrich RMS应用软件。通过构建Ethernet网络,与各台磨床的数控系统进行数据交换,将获取的轧辊数据专用RMS软件进行分析和管理。同时,新增磨削数据采集服务器内预留数据采集系统的交接点,采用Ethernet网TCP/IP协议,可进一步将其他有关轧辊的数据传至该服务器管理或将轧辊数据上传至公司级轧辊管理系统。
(3)远程诊断系统。新增一套远程诊断装置,通过专用线、选择开关和调制解调器,Waldrich公司可在德国对用户指定的数采服务器、磨床数控系统、GDS系统等中央处理器进行访问,以提供远程技术服务。
(4)轧辊涡流探伤系统。新增与磨床数控高度集成的Lismar涡流探伤装置。可直接运用磨床操作站编辑探伤程序块对探伤数据进行管理。但该系统由于和数控系统集成,数据交换量增加,产生了探伤显示精度低(0.1V)和滤波频率不稳定的问题。
三、改造效果
改造后磨床精度、效率和稳定性明显提高,辊型磨削精度达到原出厂保证值。全自动集成化磨削、数据自动采集传送和故障自诊断的投入,降低了人力资源的投入,提高了系统可靠性,方便了维护,为提高产品质量打下了坚实基础,同时也为其它磨床的技术改造提供了成功经验。
㈣ 数控机床对刀详细的过程
方法是多种的,而且互有联系,没办法只介绍一种。
1、对刀方法:数控加工的对刀,对其处理的好坏直接影响到加工零件的精度,还会影响数控机床的操作。
所谓对刀,就是在工件坐标系中使刀具的刀位点位于起刀点(对刀点)上,使其在数控程序的控制下,由此刀具所切削出的加工表面相对于定位基准有正确的尺寸关系,从而保证零件的加工精度要求。在数控加工中,对刀的基本方法有试切法、对刀仪对刀、ATC对刀和自动对刀等。
2、试切法:根据数控机床所用的位置检测装置不同,试切法分为相对式和绝对式两种。在相对式试切法对刀中,可采用三种方法:
一是用量具(如钢板尺等)直接测量,对准对刀尺寸,这种对刀方法简便但不精确;
二是通过刀位点与定位块的工作面对齐后,移开刀具至对刀尺寸,这种方法的对刀准确度取决于刀位点与定位块工作面对齐的精度;
三是将工件加工面先光一刀,测出工件尺寸,间接算出对刀尺寸,这种方法最为精确。在绝对式试切法对刀中,需采用基准刀,然后以直接或间接的方法测出其他刀具的刀位点与基准刀之间的偏差,作为其他刀具的设定刀补值。以上试切法,采用“试切——测量——调整(补偿)”的对刀模式,故占用机床时间较多,效率较低,但由于方法简单,所需辅助设备少,因此广泛被用于经济型低档数控机床中。
3、对刀仪对刀:对刀仪对刀分为机内对刀仪对刀和机外对刀仪对刀两种。机内对刀仪对刀是将刀具直接安装在机床某一固定位置上(对车床,刀具直接安装在刀架上或通过刀夹再安装在刀架上),此方法比较多地用于车削类数控机床中。
而机外对刀仪对刀必须通过刀夹再安装在刀架上(车床),连同刀夹一起,预先在机床外面校正好,然后把刀装上机床就可以使用了,此方法目前主要用于镗铣类数控机床中,如加工中心等。
采用对刀仪对刀需添置对刀仪辅助设备,成本较高,装卸刀具费力,但可节省机床的对刀时间,提高了对刀精度,一般用于精度要求较高的数控机床中。
4、ATC对刀:AIC对刀是在机床上利用对刀显微镜自动计算出刀具长度的方法。由于操纵对刀镜以及对刀过程还是手动操作和目视,故仍有一定的对刀误差。
与对刀仪对刀相比,只是装卸刀具要方便轻松些。自动对刀是利用CNC装置的刀具检测功能,自动精确地测出刀具各个坐标方向的长度,自动修正刀具补偿值,并且不用停顿就直接加工工件。
与前面的对刀方法相比,这种方法减少了对刀误差,提高了对刀精度和对刀效率,但需由刀检传感器和刀位点检测系统组成的自动对刀系统,而且CNC系统必须具备刀具自动检测的辅助功能,系统较复杂,投入资金大,一般用于高档数控机床中。
5、自动对刀:自动对刀是利用CNC装置的刀具检测自动修正刀具补偿值功能,自动精确地测出刀具各个坐标方向的长度,并且不用停顿就直接加工工件。自动对刀亦称刀尖检口功能。
在加工中心上一次安装工件后,需用刀库中的多把刀具加工工件的多个表面。为提高对刀精度和对刀效率,一般采用机外对刀仪对刀、ATC对刀和自动对刀等方法,其中机外对仪对刀一般广泛用于中档铿铣类加工中心上。
在采用对刀仪对刀时,一般先选择基准芯棒对准好工件表面,以确定工件坐标原点,然后选择某一个方便对刀的面,采用动态(刀转)对刀方式。
(4)对刀装置设计可行性分析扩展阅读
例子如下:
例如,当加工零件时,如果按φ38㎜→φ36㎜→φ34㎜的次序安排车削,不仅会增加刀具返回对刀点所需的空行程时间,而且还可能使台阶的外直角处产生毛刺(飞边)。
对这类直径相差不大的台阶轴,当第一刀的切削深度(图中最大切削深度可为3㎜左右)未超限时,宜按φ34㎜→φ36㎜→φ38㎜的次序先近后远地安排车削。