导航:首页 > 装置知识 > 光轴锁紧装置设计思路

光轴锁紧装置设计思路

发布时间:2024-03-10 18:36:10

A. 光轴快速锁紧装置的价格是多少

是吗

B. 1.分光计主要由哪几部分组成各部分作用是什么

分光计各调节装置的名称和作用
代号 名称 作用 1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度 2 狭缝装置 3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。 4 平行光管 产生平行光 5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。 6 夹持待测物簧片 夹持载物台上的光学元件 7 载物台调节螺丝(3只) 调节载物台台面水平 8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动 9 望远镜 观测经光学元件作用后的光线 10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置 11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦) 12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰 13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度 14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动 15 望远镜支架 16 游标盘 盘上对称设置两游标 17 游标 分成30小格,每一小格对应角度 1’ 18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动 19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数 20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字 21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动 22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动 23 分光计电源插座 24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上 25 平行光管支架 26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动 27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动 28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动 29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角

C. 超高温高压失水仪研发设计思路

在泥浆液柱压力和储层压力之间的压差作用下,泥浆循环时的返流和钻柱旋转时的旋流会产生动态滤失,这种流动对井壁过滤面产生冲刷作用,影响了渗滤的过程。此外,还有钻井时钻柱旋转对泥饼的压实与刮切作用、划眼时破坏了老泥饼,重新开始新的渗滤过程、在起下钻过程中,井内液柱压力激动对泥浆渗滤的影响等。如果我们要模拟所有的这些因素来进行研究,则不仅难以实现,而且不容易得到规律性的结果。因此我们在研究中,把在钻井过程始终存在的比较有规律的泥浆冲刷作用和压差作为主要的影响因素来进行模拟。

6.3.1 仪器功能设计

1)动态模拟方式:为了真实模拟钻进过程中钻井液在井下的流动状态,使钻井液在井筒上返流动过程中既存在钻柱旋转剪切下的周向运动,又存在环空轴向上返运动,呈现复合流态。需设计搅拌器,使其在实验过程中搅拌钻井液,维持钻井液的复合流动状态,同时搅拌器的搅拌速度能实现无级调速。钻井环空剪切速度一般为200~300r/min,考虑到井下复杂情况及实验要求,设计转速调节范围应为0~1200r/min。

2)实验温度和压力:为真实模拟井底环境,仪器设计工作温度需达到300℃以上,工作压力需达到20MPa以上。而且在低温、低压、中温、中压、高温、高压三种复合温压条件下,均能够对压力和温度进行精确控制。

3)功能:根据高温深井钻井液测试要求,该仪器应具有高温高压动态滤失实验的功能,能够在模拟钻井液旋转剪切和循环剪切的动态流动条件下,进行高温高压滤失实验。

6.3.2 仪器结构

1)动力传动组件:由电机、皮带轮、横梁、锁紧手柄、皮带罩等组成,是仪器的动力传动系统。

2)主机:主机由底座、外壳、加热系统等组成。

3)实验釜体(压滤器):材质为不锈钢、哈氏合金,钛,钽,镍等,带自密封及C环的钳形闭合方式,简易安全;高温高压釜体(容积为300~400mL、承压40MPa)、过滤介质(采用人造岩心滤筒)、紧定螺钉等组成。带加热装置和冷却装置。滤液接收器能承受10MPa压力(图6.4)。

4)加压稳压系统:包括氮气瓶、泵、储油罐、压力转换器及管线。是一个高压减压装置,高压经减压稳压,以提供实验所需压力;管汇组件由调压手柄、高压胶管、压力表、放气阀等组成。可供压力为100MPa。

5)搅拌装置:磁力驱动搅拌器,在负载情况下转速为0~1200r/min,搅拌轴装有单个波形叶片,用不锈钢或耐腐蚀材料做成(图6.5)。

图6.4 高温高压反应釜

图6.5 磁力搅拌

6.3.3 工作原理

该仪器在模拟井下作业的实际状况而确定的参数进行工作的,它是将钻井液通过加热套部件加温并恒定于某一温度,其间由变速电机按规定的转速带动传动轴不停地搅拌,并由减压稳压装置提供压力作用于钻井液上,模拟现场工作状态,获其滤失量。如被温度大于90℃时为防止液体蒸发,应采用回压装置。

D. 滚动轴承如何进行固定

两边支撑板摆动:一对人字形齿轮啮合时,因生产制造和安装偏差,会造成轻度的径向晃动。为避免传动齿轮卡住,常将奸险小人字轴套上两只承设计方案成摆动方法,成年人字轴套上两只承为移动式。当轴的支撑板为滚动轴承时,轴借助轴肩径向精准定位。当必须一端固定不动时,则固定不动端电动机轴两边都作出轴肩或轴环,或是用轴向滚动轴承与扭力滚动轴承的组成。

两边单边固定不动:这类精准定位方法是滚动轴承内孔靠过渡配合拧紧在电动机轴上,且用轴肩遮挡,滚动轴承外侧用滚动轴承轴承端盖遮挡。两边滚动轴承各自阻拦轴的单边晃动。为避免轴遇热伸展将滚动轴承卡住,对向心轴承,滚动轴承轴承端盖与滚动轴承外侧内孔中间留出0.2~0.2mm的空隙。

滚动轴承注意事项

小心谨慎地使用:在使用中给轴承强烈冲击,会产生伤痕或压痕,诱发事故。严重时会引起裂缝、断裂,必须加以注意。

保持轴承及其周围环境的清洁:即使是肉眼看不到的微小灰尘,也会给轴承带来不良影响。所以要保持周围清洁,使灰尘不会侵入轴承。

使用轴承专用工具:必须使用专用工具,不可随意替代。

避免轴承生锈:操作轴承时手汗会造成生锈。要注意用干净的手操作,尽量带手套,留意腐蚀性气体。

以上内容参考网络-滚动轴承

E. 帮忙找点资料~~

概括回答如下:

1,让光线通过狭缝和聚焦透镜形成一束平行光线,经过光学元件的反射或折射后进入望远镜物镜并成像在望远镜的焦平面上,通过目镜进行观察和测量各种光线的偏转角度,从而得到光学参量例如折射率、波长、色散率、衍射角等

2,望远镜聚焦平行光,且其光轴与分光计中心轴垂直。
载物台平面与分光计中心轴垂直。

3,主要是调节平行光管
调整平行光管
(1)去掉双面反射镜,打开钠光灯光源。
(2)打开狭缝,松开狭缝锁紧螺丝3。从望远镜中观察,同时前后移动狭缝装置2,直至狭缝成像清晰为止。然后调整狭缝宽度为1毫米左右(用狭缝宽度调节手轮 1 调节)。
(3)调节平行光管的倾斜度。将狭缝转至水平,调节平行光管光轴仰角调节螺丝29,使狭缝像与望远镜分划板的中心横线重合。然后将狭缝转至竖直方向,使之与分划板十字刻度线的竖线重合,并无视差。最后锁紧狭缝装置锁紧螺丝3。此时平行光管出射平行光,并且平行光管光轴与望远镜光轴重合。至此分光计调整完毕。

F. 三菱伺服电机有一款是不带键槽的输出轴,没有键槽用什么传动啊

三菱的伺服电机标配是光轴!就是任何东西都不带的!
可选连接形式有:光轴,普通键槽,D型轴, 锥形轴,齿轮轴。
光轴,所有电机默认都是此链接方法,用胀紧轮抱死,优点可以快速正反转,不需要对周进行加 工,拆卸也不需要很大的外力,
普通键槽,大电机不频繁的启动,单一方向旋转,
D型轴,小功率电机上才会出现,正常是100W以下,
锥形轴,是特殊轴,安装精度高,配合好,CNC上比较常见,
齿轮轴,是特殊轴,定制品,是为了配合特殊用途的,

G. 压机光轴锁紧螺母为什么有厚薄

区别在于螺母的高度不同,厚型的要比薄型的厚度大,GB3098.2有明确的尺寸规定。

厚型代表产品GB6170,薄型代表产品GB6175。

锁紧螺母它的功能主要是防松、抗振。用于特殊场合。锁紧螺母一般是靠摩擦力自锁。有嵌尼龙圈的、带颈收口的、加金属放松装置的。它们都属于有效力矩型。

第一,优越的抗振性能:螺纹在拧紧时,螺栓的牙顶螺纹线度紧紧进入螺母的30°楔形斜面被卡紧,并且施加于楔形斜面上所产生的法向作用力与螺栓的轴线成60°夹角,而不是30°夹角,因此,防松螺母紧固时产生的法向作用力远大于普通标准螺母,具有极大的防松抗振能力。

第二,耐磨损和抗剪切能力强:螺母螺纹牙底30°斜面能使螺母锁紧力均匀分布在所有各牙的螺纹上,由于各牙螺纹面上的压紧力分配均匀,所以螺母能较好地解决螺纹磨损和剪切变形的问题。

第三,重复使用性能好:大量使用表明,防松螺母经过多次反复紧固和拆卸,其锁紧力仍不减小,能保持原有锁紧
2、

普通螺母,时间长了容易松动。耐磨损性,抗震性和重复使用性都比锁紧螺母要差得多

H. 分光计的结构

分光计是测量角度的仪器,如图1。
如图2所示,分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用如下:

1——狭缝宽度调节螺丝。调节狭缝宽度,改变入射光宽度
2——狭缝装置。
3——狭缝装置锁紧螺丝。松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。 4——平行光管,产生平行光。
5——载物台。放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。
6——夹持待测物簧片。夹持载物台上的光学元件。
7——载物台调节螺丝(3只)。调节载物台台面水平。
8——载物台锁紧螺丝。松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动
9——望远镜。观测经光学元件作用后的光线。
10——目镜装置锁紧螺丝。松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置。
11——阿贝式自准目镜装置。可伸缩和转动(望远镜调焦)。
12——目镜调焦手轮。调节目镜焦距,使分划板、叉丝清晰。
13——望远镜光轴仰角调节螺丝。调节望远镜的俯仰角度。
14——望远镜光轴水平调节螺丝。调节该螺丝,可使望远镜在水平面内转动。
15——望远镜支架。
16——游标盘。盘上对称设置两游标。
17——游标。分成30小格,每一小格对应角度 1’
18——望远镜微调螺丝。该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动。
19——刻度盘。分为360°,最小刻度为半度(30′),小于半度则利用游标读数。
20——目镜照明电源。打开该电源20,从目镜中可看到一绿斑及黑十字。
21——望远镜支架制动螺丝。该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动。
22——望远镜支架与刻度盘锁紧螺丝。锁紧后,望远镜与刻度盘同步转动。
23——分光计电源插座。
24——分光计三角底座。它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上。
25——平行光管支架。
26——游标盘微调螺丝。锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动。
27——游标盘制动螺丝。锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动。
28——平行光管光轴水平调节螺丝。调节该螺丝,可使平行光管在水平面内转动。
29——平行光管光轴仰角调节螺丝。调节平行光管的俯仰角。

I. 跪求大学物理演示实验报告——光学

这是以前我们写的 你看看可不可以
用透射光栅测定光波波长
08物理 杨贵宏
云南省红河学院物理系 云南 蒙自 661100

摘 要:这篇文章讲述了怎样利用透射光栅测量光波波长,以及测量时的细节,测量前的实验准备。
关键词:光栅,主极大,次极大,分光计,单色光,复色光

引言:
我们的生活离不开阳光,通常我们认为阳光是一种单色光[1](单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。
广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意[2]。
分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。
分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。

分光计基本结构示意图
表1 分光计各调节装置的名称和作用
代号 名称 作用
1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度
2 狭缝装置
3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。
4 平行光管 产生平行光
5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。
6 夹持待测物簧片 夹持载物台上的光学元件
7 载物台调节螺丝(3只) 调节载物台台面水平
8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动
9 望远镜 观测经光学元件作用后的光线
10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置
11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)
12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰
13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度
14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动
15 望远镜支架
16 游标盘 盘上对称设置两游标
17 游标 分成30小格,每一小格对应角度 1’
18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动
19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数
20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字
21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动
22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动
23 分光计电源插座
24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上
25 平行光管支架
26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动
27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动
28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动
29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角

实验原理:
图1中给出几条不同缝数缝间干涉因子的曲线.为了便于比较,纵坐标缩小了 它们有以下特点:
(1)主极强峰值的大小、位置和数目
当 ( )时, , ,但它们的比值 ,这些地方是缝间干涉因子的主极大(多缝衍射图样中出现一些新的强度极大和极小,其中那些较强的亮线叫主极大,较弱的亮线叫次极大)。 意味着衍射角满足下列条件:
(1)
(1)式说明,凡是在衍射角满足(1)式的方向上出现一个主极大,主极大的强度是单缝在该方向强度的 倍。主极强的位置与缝数N无关。主极强的最大级别|k|<d/λ。
(2)零点的位置、主极强的半角宽度和次极强的数目
当Nβ等于π的整数倍但β不是π整数倍时,sinNβ=0,sinβ≠0,这里是缝间干涉因子的零点。零点在下列位置:
sinθ=(k+m/N)λ/d (2) 其中k=0,±1,±2,…;m=1,…,N-1.
所以每个主极强之间有N-1条暗线(零点),相邻暗线间有一个次极强,故共有N-2个次极强。
半角宽度公式为: △θ=λ/Nd•cosθk。 (3)
主极强的半角宽度△θ与Nd成反比,Nd越大,△θ越小,这意味着主极强的锐度越大。反映在幕上,就是主极强亮纹越细。
上面我们只分析了缝间干涉因子的特征,实际的强度分布还要乘上单缝衍射击因子.在图1中所示 缝间干涉因子上乘以图1所示的单缝衍射因子,就得到图2[(a),(b),(c)]中所示的强度分布.从这里可以看出,乘上单缝衍射因子后得到的实际强度分布中各级说极强的大小不同,特别是刚好遇到单缝衍射因子零点的那几级主极强消失了,这现象叫做缺级.
在给定了缝的间隔d之后,主极强的位置就定下来了,这时单缝衍射因子并不改变主极强的位置和半角宽度,只改变各级主极强的强度.或者说,单缝衍射因子手作用公在影响强度在各级主极强间的分配.

如图3所示,设S为位于透镜L1物方焦面上的细长狭缝光源,G为光栅,光栅上相邻狭缝两对应之间的距离d 称为光栅常量,自L1射出的平行光垂直地照射在光栅G上。透镜L2将与光栅法线成θ角的衍射光会聚于其像方焦面上的Pθ点,由(1)式的光栅分光原理得
(3)
上式称为光栅方程.式中θ是衍射角,λ是光波波长,k是光谱级数(k=0、±1、±2…)。衍射亮条纹实际上是光源加狭缝的衍射像,是一条锐细的亮线。当k=0时,在θ=0的方向上,各种波长的亮线重叠在一起,形成明亮的零级像。对于k的其它数值,不同波长的亮线出现在不同的方向上形成光谱,此时各波长的亮线称为光谱线。而与k 的正、负两组值相对应的两组光谱,则对称地分布在零级像的两侧。因此,若光栅常量d为已知。当测定出某谱线的衍射角θ和光谱级k,则可由(1)式求出该谱线的波长λ;反之,如果波长λ是已知的。则可求出光栅常量d 。

实验进行步骤:
1.实验时分光计调节,
(1)粗调。
A,旋转目镜手轮,尽量使叉丝和绿十字清晰。
B,调节载物台,使下方的三只螺钉的外伸部分等高,使载物台平面大致与主轴垂直(目测)。
C,调整望远镜光轴俯仰调节螺钉,使望远镜光轴尽量调成水平(目测)。
粗调应达到的要求:在载物台上放一个三棱镜。当三棱镜的一个光学面与望远镜光轴接近垂直时,应可以看到反射回来的十字像,十字像一般与分划板上的交点并不重合,至此粗调完成。
(2)细调。
A,使分光计望远镜适应平行光(对无穷远调焦),望远镜、准直管主轴均垂直于仪器主轴,准直管发出平行光。
B,使望远镜对准准直管,从望远镜中观察被照亮的准直管狭缝的像,使其和叉丝的竖直线重合,固定望远镜。参照图3放置光栅,点亮目镜叉丝照明灯(移开或关闭夹缝照明灯),左右转动载物平台,看到反射的“绿十字”,调节b2或b3使“绿十字”和目镜中的调整叉丝重合。这时光栅面已垂直于入射光。
用汞灯照亮准直管的狭缝,转动望远镜观察光谱,如果左右两侧的光谱线相对于目镜中叉丝的水平线高低不等时(如图3),说明光栅的衍射面和观察面不一致,这时可调节平台上的螺钉b1使它们一致。最终使 光栅面衍射面应调节到和观测面度盘平面一致。
2. 测光栅常量d:只要测出第k可级光谱中的波长λ已知的谱线的衍射角 ,就可以根据(3)式求出d值。
(1).调节分光计按(1)步骤
(2).调节光栅位置
(3).用汞灯照亮准直管,转动望远镜到光栅的一侧,使叉丝的竖直线对准已知波长的第k级谱线的中心,记录二游标值。
(4). 将望远镜转向光栅的另一侧,使叉丝的竖直线对准已知波长的第k级谱线的中心,记录二游标值。
(5).重复第4、5步两次,得到3组数据。
3.光谱级数k由自己确定,由于光栅常量d已测出,因此只要未知波长的第k级谱线的衍射角 ,就可以求出其波长值 。
以知波长可以用汞灯光谱中的绿线( nm),也可以用钠灯光谱中二黄线 )之一。
3. 测量未知波长
(1). 用汞灯照亮准直管,转动望远镜到光栅的一侧,使叉丝的竖直线对准已知波长的第k级谱线的中心,记录二游标值。
(2).转动望远镜到光栅的一侧,使叉丝的竖直线对准以知波长的第k级谱线的中心,记录两游标值;将望远镜转向光栅的另一侧,同上测量,同一游标的两次读熟之差是衍射角 的两倍。
(3).重复第1、2步两次,得到3组数据。
实验数据:见实验数据记录表
实验数据记录表
表二 测光栅常量d实验数据
测量次序( )

1

2

3

表三 测量未知波长实验数据
测量次序( )

1

2

3

实验结果:
1.测量光栅常量
根据 ,由表二得到 的平均值

= (1)
由光栅原理 ,
因此有
又因为在此实验中 ,绿光的波线 nm,衍射角的平均值 ,因此得d的平均值
(nm) (2)
2.测量蓝紫光的波长
根据 ,由表三得到 的平均值

= (3)
由于 ,得到

又因为在此实验中 ,光栅常量 nm,衍射角的平均值 ,因此得 的平均值
(nm) (4)
参考文献:
[1],赵凯华.新概念物理教程——光学.高等教育出版社,2004
[2],进清理, 黄晓虹主编. 基础物理实验.浙江大学出版社2006
[3],杨述武主编,王定兴编. 普通物理实验(光学部分).高等教育出版社,1993

阅读全文

与光轴锁紧装置设计思路相关的资料

热点内容
仪表盘10码是多少公里 浏览:958
想买机床去什么网站好 浏览:380
设备开出率如何计算 浏览:250
机械运输费计入什么科目 浏览:425
仪器仪表火灾用什么扑灭 浏览:346
压铸铸造面积怎么计算 浏览:8
简述自锁装置的作用 浏览:976
消防主机没有设备类型怎么 浏览:50
链条式电动工具论文 浏览:520
电脑上怎么下载疯狂机械手 浏览:79
自来水主管道阀门怎么更换 浏览:248
生产水设备一套多少钱 浏览:824
怎么在电脑上阻止其他设备偷网 浏览:991
青岛五金机电批发市场在哪里 浏览:413
深圳市精能达五金制品有限公司 浏览:897
迷你世界放工具箱 浏览:624
全自动喷雾装置价格 浏览:665
广州昌隆五金制品厂 浏览:717
gdmssplus怎么添加设备 浏览:609
水泵不用拆卸怎么才能知道轴承型号 浏览:447