导航:首页 > 装置知识 > 托卡马克装置的作用

托卡马克装置的作用

发布时间:2023-11-16 19:12:02

① 托卡马克详细资料大全

托卡马克,是一种利用磁约束来实现受控核聚变的环形容器。它的名字Tokamak 来源于环形、真空室、磁、线圈。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的电浆加热到很高的温度,以达到核聚变的目的。

基本介绍

装置的主要部件和子系统,核聚变简介,结构原理,各国概况,历史发展,现状及前景,钢铁侠中的“方舟反应堆”,

装置的主要部件和子系统

托卡马克(Tokamak)是一环形装置,通过约束电磁波驱动,创造氘、氚实现聚变的环境和超高温,并实现人类对聚变反应的控制。它的名字Tokamak来源于环形(toroidal)、真空室(kamera)、磁(mag)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。 受控热核聚变在常规托卡马克装置上已经实现。但常规托卡马克装置体积庞大、效率低,突破难度大。上世纪末,科学家们把新兴的超导技术用于托卡马克装置,使基础理论研究和系统运行参数得到很大提高。据科学家估计,可控热核聚变的演示性的聚变堆将于2025年实现,商用聚变堆将于2040年建成。商用堆建成之前,中国科学家还设计把超导托卡马克装置作为中子源,用于环境保护、科学研究及其它途径。这一构想获得国内外专家较高评价。 包括磁体(环向场磁体及极向场磁体)、真空室及其抽气系统、供电系统、控制系统(装置控制和电浆控制)、加热与电流驱动系统(中性束和微波)、喷气及弹丸注入系统、偏滤器及孔阑、诊断和数据采集与处理系统、包层系统、氚系统、辐射防护系统、遥控操作与维修系统等部件(子系统)。虽然强磁场能提高约束性能,但受工程技术和材料限制,环向磁场一般为2~8T;为了获取稳定的核聚变能输出,托卡马克聚变堆最终要采用超导磁体(稳态运行要求),为此要增加杜瓦、冷屏和低温制冷系统。为将电浆加热至需要的温度,大型装置的总加热功率为几十兆瓦,国际热核实验堆装置的加热功率为73~130MW。

核聚变简介

核聚变(nuclear fusion),又称核融合、融合反应或聚变反应[1]核是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),只有在极高的温度和压力下才能让核外电子摆脱原子核的束缚,让两个原子核能够互相吸引而碰撞到一起,发生原子核互相聚合作用,生成新的质量更重的原子核(如氦),中子虽然质量比较大,但是由于中子不带电,因此也能够在这个碰撞过程中逃离原子核的束缚而释放出轿梁巧来,闭键大量电子和中子的释放所表现出来的就是巨大的能量释放。这是一种核反应的形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。核聚变是核裂变相反的核反应形式。科学家正在努力研究可控核聚变,核聚变可能成为未来的能量来源。 核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才能发生核聚变,比如氢的同位素氘(dāo)、氚(chuān)等。核聚变也会放出巨大的能量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的。 相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。 人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变。

结构原理

在托卡马克装置渣禅中,欧姆线圈的电流变化提 *** 生、建立和维持电浆电流所需要的伏秒数(变压器原理);极向场线圈产生的极向磁场控制电浆截面形状和位置平衡;环向场线圈产生的环向磁场保证电浆的巨观整体稳定性;环向磁场与电浆电流产生的极向磁场一起构成磁力线旋转变换的和磁面结构嵌套的磁场位形来约束电浆。同时,电浆电流还对自身进行欧姆加热。电浆的截面形状可以是圆形,也可以与偏滤器(位于真空室内部的边缘区域,通过产生磁分界面将约束区与边缘区隔离开来,具有排热、控制杂质和排除氦灰等功能的特殊部件)位形结合设计成D形。在托卡马克装置上,已可通过大功率中性束注入加热和微波加热使电浆达到和超过氘一氚有效燃烧所需的温度(>10K),最高已达4.4×10K。加大装置尺寸,约束时间大致按尺寸的平方增大。此外,还可通过提高环向磁场、最佳化约束位形和运行模式来提高 能量约束时间。实验结果表明,托卡马克装置已基本满足建立核聚变反应堆的要求。

各国概况

相比其他方式的受控核聚变,托卡马克拥有不少优势。1968年8月在苏联新西伯利亚召开的第三届电浆物理和受控核聚变研究国际会议上,阿齐莫维齐宣布在苏联的T-3托卡马克上实现了电子温度1keV,质子温度0.5keV,nτ=10的18次方m-3.s,这是受控核聚变研究的重大突破,在国际上掀起了一股托卡马克的热潮,各国相继建造或改建了一批大型托卡马克装置。其中比较著名的有:美国普林斯顿大学由仿星器-C改建成的ST Tokamak,美国橡树岭国家实验室的奥尔马克,法国冯克奈-奥-罗兹研究所的TFR Tokamak,英国卡拉姆实验室的克利奥(Cleo),西德马克斯-普朗克研究所的Pulsator Tokamak。 高1米4,半径0.785米 2006年9月28日,中国耗时8年、耗资2亿元人民币自主设计、自主建造而成的新一代热核聚变装置EAST首次成功完成放电实验,获得电流200千安、时间接近3秒的高温电浆放电。EAST成为世界上第一个建成并真正运行的全超导非圆截面核聚变实验装置

历史发展

二战末期,前苏联和美、英各国曾出于军事上的考虑,一直在互相保密的情况下开展对核聚变的研究。几千万、几亿摄氏度高温的聚变物质装在什么容器里一直是困扰人们的难题。二十世纪五十年代初期,前苏联科学家提出托卡马克的概念。托卡马克(TOKAMAK)在俄语中是由“环形”、“真空”、“磁”、“线圈”几个词组合而成,这是一种形如面包(多纳)圈的环流器,依靠电浆电流和环形线圈产生的强磁场,将极高温等离子状态的聚变物质约束在环形容器里,以此来实现聚变反应。 托卡马克内部 1954年,第一个托卡马克装置在原苏联库尔恰托夫原子能研究所建成。当人们提出这种磁约束的概念后,磁约束核聚变研究在一些方面的进展顺利,氢弹又迅速试验成功,这曾使不少国家的核科学家一度对受控核聚变抱有过分乐观的态度。但人们很快发现,约束电浆的磁场,虽然不怕高温,却很不稳定。另外,电浆在加热过程中能量也不断损失。 1985年,美国里根总统和前苏联戈巴契夫总统,在一次首脑会议上倡议开展一个核聚变研究的国际合作计画,要求“在核聚变能方面进行最广泛的切实可行的国际合作”。后来戈巴契夫、里根和法国总统密特朗又进行了几次高层会晤,支持在国际原子能机构(IAEA)主持下,进行国际热核实验堆(ITER)概念设计和辅助研究开发方面的合作。这是当时也是当前开展核聚变研究的最重大的国际科学和技术合作工程项目。1987年春,IAEA总干事邀请欧共体、日本、美国和加拿大、前苏联的代表在维也纳开会,讨论加强核聚变研究的国际合作问题,并达成了协定,四方合作设计建造国际热核实验堆。 1990年,中国国家科学院等离子所兴建大型超导托卡马克装置,得到俄、美、欧盟等机构、专家大力的支持。特别是俄罗斯科学家,世界聚变研究最具权威的俄罗斯国家研究中心卡多姆采夫教授,成为装置建设的“经常性技术指导”。 1993年HT-7建成,中国成为世界上俄、法、日(法国的Tore-Supra,俄罗斯的T-15,日本的JT-60U)之后第四个拥有同类大型装置的国家。中国在装置相关的超导、低温制冷、强磁场等研究都登上新的台阶。 1993年12月9日和10日,美国在TFTR装置上使用氘、氚各50%的混合燃料,使温度达到3亿至4亿摄氏度,两次实验释放的聚变能分别为0.3万千瓦和0.56万千瓦,大约为JET输出功率的2倍和4倍,能量增益因子Q值达0.28。与JET相比,Q值又得到很大提高。 1997年9月22日,联合欧洲环JET又创造输出功率为1.29万千瓦的世界纪录,能量增益因子Q值达0.60,持续时间2秒。仅过了39天,输出功率又提高到1.61万千瓦,Q值达到0.65。 1997年12月,日本方面宣布,在JT-60上成功进行了氘-氘反应实验,换算到氘-氚反应,Q值可以达到1.00。后来,Q值又超过了1.25。在JT-60U上,还达到了更高的等效能量增益因子,大于1.3,它也是从氘-氘实验得出的结果外推后算出的。 2000年,HT-7实验放电时间超过10秒,标志中国在这重大基础理论研究领域中进入世界先进行列。 2002年1月28日,在中国成都的核工业西南物理研究院与合肥西郊的中国科学院等离体物理研究所,基于超导托卡马克装置HT-7的可控热核聚变研究再获突破,实现了放电脉冲长度大于100倍能量约束时间、电子温度2000万摄氏度的高约束稳态运行,中心密度大于每立方米1.2×1019,运行参数居世界前两位。本轮实验有来自美、日等14个研究机构的18位外籍专家参与。 2006年,中国新一代“人造太阳”实验装置(EAST)实现了第一次“点火”——激发等离子态与核聚变。很快,它就实现了最高连续1000秒的运行,这在当时是前所未有的成就。 EAST 2012年04月22日,中国新一代“人造太阳”实验装置(EAST)中性束注入系统(NBI)完成了氢离子束功率3兆瓦、脉冲宽度500毫秒的高能量离子束引出实验。本轮实验获得的束能量和功率创下中国国内纪录,并基本达到EAST项目设计目标。这标志著中国自行研制的具有国际先进水平的中性束注入系统基本克服所有重大技术难关。

现状及前景

只有同时达到密度(>10cm)、温度(>10K)及能量约束时间(>1s)三个条件(或聚变三重积>10cm·K·s)时,才能实现氘一氚自持核聚变反应。这三个条件已经在不同的装置上分别达到或超过,但还没有在一个装置上同时达到或超过。JET(见图)和JT-60U装置基本达到能量得失相当条件(Q≈1),JET的氘一氚实验还得到17MW聚变功率输出。 欧洲联合环JET装置结构简图 实验研究还发现多种改善约束的模式,根据这些模式,托卡马克型核聚变反应堆的经济性能还可以进一步提高。基于50多年来在电浆理论、物理实验研究和工程技术上取得的重大进展,由七方共同参与的超大型国际合作项目国际热核实验堆(ITER)计画已经进入工程建造阶段。

钢铁侠中的“方舟反应堆”

电影《钢铁侠》中的方舟反应堆与托卡马克极为相似,有可能是根据托卡马克改编的。

② 超导技术是什么托卡马克为什么要用超导技术

他是一个动力源 ,托卡马克是一种可以实现可控核聚变的装置,它是人造太阳,可以产生非常大的清洁能源,并且具有极低的核辐射。风险系数远低于核裂变,原则上类似于氢弹,但氢弹瞬间释放!在不久前的新闻中,这是我国东部的东西,属于低温超导托卡马克装置,它是目前世界上第一个,达到 5000万度的实验温度,稳定运行 100 多秒。

超导性现象中的迈斯纳效应,使人们能够利用这一原理制造超导性火车和超导性船,因为这些车辆将在悬浮和无摩擦状态下运行,这将大大提高它们的速度和安静度,并有效减少机械磨损。通过使用超导悬架可以制造无磨损轴承,并且轴承的转速可以提高到每分钟 100,000 转以上。超导列车于 20世纪70年代成功进行了载人可行性试验。自 1987 以来,日本开始试运行,但经常失败。这种现象可能是由高速驾驶引起的颠簸引起的。

③ 中国人造太阳正式诞生,不过这个“太阳”到底有什么用

ITER主要目的在于模拟太阳产生能量的核聚变过程,因此其核心装置“托卡马克”被称为“人造太阳”。

ITER是当前世界规模最大、耗时最长、影响最深远的国际大科学计划之一。ITER是当前世界规模最大、耗时最长、影响最深远的国际大科学计划之一。

根据协议,欧盟、中国、美国、日本、韩国、印度和俄罗斯共同资助ITER项目,其中欧盟承担约45%,其他6方各承担约9%,资助包括资金和实物两个部分。

(3)托卡马克装置的作用扩展阅读

28日的安装启动仪式标志着ITER进入安装阶段,由此前接收成员国部件等前期筹备工作正式转换到组装工作。到2024年年底,ITER施工方将按照工作进度表接收和安装托克马克装置的各主要大型部件及辅助设施。

完成主要部件安装后,计划2024年年底到2025年年底开始进行冷测试调试工作,并在2025年12月实现第一束等离子体,这将标志着ITER由安装阶段转入运行阶段。

④ 全超导托卡马克核聚变实验装置的应用学科

HT-7和EAST两大装置,瞄准核聚变能研究前沿,开展稳态、安全、高效运行的先进托卡马克聚变反应堆基础物理和工程问题的国内外联合实验研究,为核聚变工程试验堆的设计建造提供科学依据,推动等离子体物理学科其他相关学科和技术的发展。
HT-7是一个比较成熟和稳定的实验装置,有比较完善的实验和测量手段,可以开展超长脉冲条件下等离子体与壁相互作用、等离子体稳态控制、等离子体驰豫演化等一系列稳态物理和技术问题,可在高功率密度条件下研究稳定性、输运、先进运行模式等与未来聚变堆密切相关的物理前沿问题。开展一些目前尚未成熟但未来EAST必需的物理和工程技术前期研究。
EAST作为HT-7的升级装置,不仅规模更大,其独有的非圆截面、全超导及主动冷却内部结构三大特性,将更有利于探索等离子体稳态先进运行模式,其工程建设和物理研究可为 ITER项目的建设提供直接经验,并为未来聚变实验堆提供重要的工程和物理实验基础。

⑤ “人造太阳”是什么它有什么用

所谓“人造太阳”,即先进超导托卡马克实验装置,也即国际热核聚变实验堆计划(ITER)建设工程,是当今世界迄今为止最大的热核聚变实验项目,旨在在地球上模拟太阳的核聚变,利用热核聚变为人类提供源源不断的清洁能源。核聚变能以氘氚为燃料,具有安全、洁净、资源无限3大优点,是最终解决我国乃至全人类能源问题的战略新能源。

⑥ 钢铁侠反应堆是什么原理

钢铁侠反应堆是根据“托卡马克装置”的原理,制作成的。

托卡马克是一环形装置,通过约束电磁波驱动,创造氘、氚实现聚变的环境和超高温,并实现人类对聚变反应的控制。它的名字Tokamak来源于环形、真空室、磁、线圈。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。

(6)托卡马克装置的作用扩展阅读:

历史发展:

二战末期,前苏联和美、英各国曾出于军事上的考虑,一直在互相保密的情况下开展对核聚变的研究。几千万、几亿摄氏度高温的聚变物质装在什么容器里一直是困扰人们的难题。二十世纪五十年代初期,前苏联科学家提出托卡马克的概念。

1954年,第一个托卡马克装置在原苏联库尔恰托夫原子能研究所建成。当人们提出这种磁约束的概念后,磁约束核聚变研究在一些方面的进展顺利,氢弹又迅速试验成功,这曾使不少国家的核科学家一度对受控核聚变抱有过分乐观的态度。

1990年,中国国家科学院等离子所兴建大型超导托卡马克装置,得到俄、美、欧盟等机构、专家大力的支持。特别是俄罗斯科学家,世界聚变研究最具权威的俄罗斯国家研究中心卡多姆采夫教授,成为装置建设的“经常性技术指导”。

1993年HT-7建成,中国成为世界上俄、法、日(法国的Tore-Supra,俄罗斯的T-15,日本的JT-60U)之后第四个拥有同类大型装置的国家。中国在装置相关的超导、低温制冷、强磁场等研究都登上新的台阶。

1993年12月9日和10日,美国在TFTR装置上使用氘、氚各50%的混合燃料,使温度达到3亿至4亿摄氏度,两次实验释放的聚变能分别为0.3万千瓦和0.56万千瓦,大约为JET输出功率的2倍和4倍,能量增益因子Q值达0.28。与JET相比,Q值又得到很大喊悄埋提高。

1997年9月22日,联合欧洲环JET又创造输出功率为1.29万千瓦的世界纪录,能量增益因子Q值达0.60,持续时间2秒。仅过了39天,输出功率又提高到1.61万千瓦,Q值达到0.65。

1997年12月,日本方面宣布,在JT-60上成功进行了氘-氘反应实验,换算到氘郑蚂-氚反应,Q值可以达到1.00。后来,Q值又超过了1.25。在JT-60U上,还达到了更高的等效能量增益因子,大于1.3,它也是从氘-氘实验得出的结果外推后算出的。

2000年,HT-7实验放电时间超过10秒,标志中国在这重大基础理论研究领域中进入世界先进行列。

2002年1月28日,在中国成都的核工业西南物理研究院与合肥西郊的中国科学院等离体物理研究所,基于超导托卡马克装置HT-7的可控热核聚变研究再获突破。

实现了放电脉冲长度大于100倍能量约束时间、电子温度2000万摄氏度的高约束稳态运行,中心密度大于每立方米1.2×1019,运行参数居世界前两位。本轮实验有来自美、日等14个研究机构的18位外籍专家参与。

2006年,中国新一代“人造太阳”实验装置(EAST)实现了第一次“点火”——激发等离子态与核聚变。很快,它就实现了最高连续1000秒的运行,这在当时是前所未有的成就。

2012年04月22日,中国新一代“人造太阳”实运碰验装置(EAST)中性束注入系统(NBI)完成了氢离子束功率3兆瓦、脉冲宽度500毫秒的高能量离子束引出实验。本轮实验获得的束能量和功率创下中国国内纪录,并基本达到EAST项目设计目标。

与托卡马克装置的作用相关的资料

热点内容
中压自动切换控制装置 浏览:48
空调不制冷为什么还有臭味 浏览:945
直线轴承小开口是什么意思 浏览:445
北京优良轴承价格如何计算 浏览:138
暖气开关阀门s和t怎么关 浏览:619
奥启盛机械工业上海有限公司怎么样 浏览:956
现在的阀门行情怎么样 浏览:25
水射泵井点设备有什么组成 浏览:234
国外阀门客户怎么找 浏览:35
辅助仪器检测费用进什么会计科目 浏览:211
高压密闭煎药机排气阀门配件 浏览:235
挖掘机自动快换装置 浏览:841
轴承cakw33什么意思 浏览:580
桩超声波怎么看有问题 浏览:521
铸造怎么配45号钢 浏览:848
混凝土实验仪器设备检测项目是什么 浏览:995
好莱客五金件怎么讲解 浏览:28
盐电阀门是什么 浏览:941
东莞机床展是什么公司 浏览:271
用图所示的实验装置研究 浏览:645