导航:首页 > 装置知识 > 粒子散射实验装置有哪些

粒子散射实验装置有哪些

发布时间:2023-09-29 20:17:09

⑴ 如图所示为α粒子散射实验装置的示意图,图中R为被铅块包围的______(填“α”、“β”或“γ”)粒子源

如图所示为卢瑟福α粒子散射实验装置的示意图,图中的显微镜版可在圆周轨道上转动权,通过显微镜前相连的荧光屏可观察α粒子在各个角度的散射情况.
其中R为被铅块包围的 α粒子源,F为金箔.
因为多数射线基本不偏折,少数发生较大角度的偏转,个别的粒子几乎被反射回来.所以减小角度θ,从M中观察到的单位时间内的闪光次数 增大.
故答案为:α;金箔;增大.

⑵ 如图所示为卢瑟福α粒子散射实验装置的示意图,图中的显微镜可在圆周轨道上转动,通过显微镜前相连的荧光

(1)A、放在A位置时,相同时间内观察到屏上的闪光次数最多.说明大多数射线基本不偏折,可知金箔原子内部很空旷.故A错误;
B、放在B位置时,相同时间内观察到屏上的闪光次数较少.说明较少射线发生偏折,可知原子内部带正电的体积小.故B错误;
C、选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似.故C正确;
D、主要原因是α粒子撞击到金原子后,因库仑力作用,且质量较大,从而出现的反弹.故D错误.
故选:AD
(2)卢瑟福和他的同事们所做的α粒子散射实验装置示意图,此实验否定了汤姆逊的枣糕模型,据此实验卢瑟福提出了原子的核式结构模型.
故答案为:(1)C;(2)原子的核式结构.

⑶ 1911年,卢瑟福做的α粒子试验

结果:大多数散射角很小,约1/8000散射大于90°;
极个别的散射角等于180°。
结论:正电荷集中在原子中心。
卢瑟福从1909年起做了著名的α粒子散射实验,实验的目的是想证实汤姆孙原子模型的正确性,实验结果却成了否定汤姆孙原子模型的有力证据。在此基础上,卢瑟福提出了原子核式结构模型。
为了要考察原子内部的结构,必须寻找一种能射到原子内部的试探粒子,这种粒子就是从天然放射性物质中放射出的α粒子。卢瑟福和他的助手用α粒子轰击金箔来进行实验,图14-1是这个实验装置的示意图。
在一个铅盒里放有少量的放射性元素钋(Po),它发出的α射线从铅盒的小孔射出,形成一束很细的射线射到金箔上。当α粒子穿过金箔后,射到荧光屏上产生一个个的闪光点,这些闪光点可用显微镜来观察。为了避免α粒子和空气中的原子碰撞而影响实验结果,整个装置放在一个抽成真空的容器内,带有荧光屏的显微镜能够围绕金箔在一个圆周上移动。
实验结果表明,绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数α粒子发生了较大的偏转,并有极少数α粒子的偏转超过90°,有的甚至几乎达到180°而被反弹回来,这就是α粒子的散射现象。
发生极少数α粒子的大角度偏转现象是出乎意料的。根据汤姆孙模型的计算,α粒子穿过金箔后偏离原来方向的角度是很小的,因为电子的质量不到α粒子的1/7400,α粒子碰到它,就像飞行着的子弹碰到一粒尘埃一样,运动方向不会发生明显的改变。正电荷又是均匀分布的,α粒子穿过原子时,它受到原子内部两侧正电荷的斥力大部分相互抵消,α粒子偏转的力就不会很大[图14-2(a)]。然而事实却出现了极少数α粒子大角度偏转的现象。卢瑟福后来回忆说:“这是我一生中从未有的最难以置信的事,它好比你对一张纸发射出一发炮弹,结果被反弹回来而打到自己身上……”卢瑟福对实验的结果进行了分析,认为只有原子的几乎全部质量和正电荷都集中在原子中心的一个很小的区域,才有可能出现α粒子的大角度散射。由此,卢瑟福在1911年提出了原子的核式结构模型,认为在原子的中心有一个很小的核,叫做原子核(nucleus),原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。
按照这一模型,α粒子穿过原子时,电子对α粒子运动的影响很小,影响α粒子运动的主要是带正电的原子核。而绝大多数的α粒子穿过原子时离核较远,受到的库仑斥力很小,运动方向几乎没有改变,如图14-2(b)中的1、3、4、6、7、9,只有极少数α粒子可能与核十分接近,受到较大的库仑斥力,才会发生大角度的偏转,如图14-2(b)中的2,5,8。
根据α粒子散射实验,可以估算出原子核的直径约为10-15米~10-14米,原子直径大约是10-10米,所以原子核的直径大约是原子直径的万分之一,原子核的体积只相当于原子体积的万亿分之一。

⑷ (1)如图是1909年英国物理学家卢瑟福和他的同事们所做的______实验装置示意图,据此实验卢瑟福提出了原

(1)卢瑟福和他的同事们所做的α粒子散射实验装置示意图,此实验否定了汤姆逊的枣糕模型,据此实验卢瑟福提出了原子的核式结构模型.在实验中,发现只有少数粒子发生大角度偏转,其原因是原子的正电荷及绝大部分质量都集中在一个很小的核上.
(2)根据玻尔原子理论,能级越高的电子离核距离越大,故电子处在n=2轨道上比处在n=4轨道上离氢核的距离近,
跃迁发出的谱线特条数为N=
C 2n
=
n(n-1)
2
,代入n=4,解得6条谱线,
因为 E 4 =
E 1
16
,当氢原子由第4能级跃迁到基态时,发出光子能量hν 1 =E 4 -E 1 = -
15 E 1
16

因为 E 2 =
E 1
4
,当氢原子由第2能级跃迁到基态时,发出的光子能量hν 2 =E 2 -E 1 = -
3
4
E 1
解得
ν 1
ν 2
=
5
4

故答案为:(1)α粒子散射;核式;绝大部分质量;(2)近;6;
5
4

⑸ 发现电子的装置是什么

A、图是阴极射线抄偏转袭,从而确定阴极射线是电子流,该装置是发现电子的实验装置.故A正确.
B、电子束衍射的实验,说明粒子具有波动性.故B错误.
C、图α粒子的散射实验,得出了原子的核式结构模型.故C错误.
D、图是光电效应现象的实验,该装置是提出原子的核式结构的实验装置.故D错误.
故选:A.

⑹ α粒子散射实验详细资料大全

α粒子散射实验( Geiger–Marsden experiment(s) )又称金箔实验、Geiger-Marsden实验或卢瑟福α粒子散射实验。是1909年 汉斯·盖革和恩斯特·马斯登(Jishi.Y)在欧内斯特·卢瑟福指导下于英国曼彻斯特大学做的一个著名物理实验。

基本介绍

发展历史,实验内容,实验理论,实验目的,实验结果,最终结论,

发展历史

实验用准直的α射线轰击厚度为微米的金箔,发现绝大多数的α粒子都照直穿过薄金箔,偏转很小,但有少数α粒子发生角度比汤姆生模型所预言的大得多的偏转,大约有1/8000 的α粒子偏转角大于90°,甚至观察到偏转角等于150°的散射,称大角散射,更无法用汤姆森模型说明。1911年卢瑟福提出原子的有核模型(又称原子的核式结构模型),与正电荷联系的质量集中在中心形成原子核,电子绕着核在核外运动,由此导出α粒子散射公式,说明了α粒子的大角散射。卢瑟福的散射公式后来被盖革和马斯登改进了的实验系统地验证。根据大角散射的数据可得出原子核的半径上限为 米,此实验开创了原子结构研究的先河。这个实验推翻了J.J.汤姆森在1903年提出的原子的葡萄干圆面包模型,认为原子的正电荷和质量联系在一起均匀连续分布于原子范围,电子镶嵌在其中,可以在其平衡位置作微小振动,为建立现代原子核理论打下了基础。

实验内容

实验理论

直线运动的α 和β 粒子在碰到物质原子时,运动方向会发生偏转。β 粒子的散射数目要比α 粒子更多,因为β 粒子的动量和能量要小得多。似乎已没有疑问,如此迅速移动的粒子以其原来的路径穿过了原子,而观察到的偏转是由于遍布于原子系统内强电场作用的结果。一般假设,一束α 或β 粒子射线在通过薄片物质时的散射,是物质原子来回多次小散射的结果。然而,Geiger 和 Marsden 对α射线散射的观察显示,某些α 粒子在单次碰撞时,一定会发生大于正常角度的偏转。例如,他们发现,一小部分入射α 粒子,大约 20000 个中有1 个,在穿过厚度约为 0.00004cm的金箔时平均偏转了 90°的角度,如此厚度的金箔阻止α 粒子的能力相当于1.6mm厚度的空气。Geiger 接着指出,一束α 粒子穿过以上厚度金箔最可能偏转的角度是 0.87°。基于机率理论的一个简单计算表明,粒子偏转 90°的机会是微乎其微的。此外,稍后可以看出,如果这种大角度偏转是由许多小的偏转组成,那么,这种大角度偏转的α 粒子对各种角度的分布并不遵守预期的机率定律。大角度偏转是由于单次原子碰撞的构想似乎是有道理的,因为第二次同样碰撞而产生大角度偏转的机率在大多数情况下是很小的。一个简单的计算显示,原子必须具有强电场的核心,才能在单次碰撞中产生如此大的偏转。 钋元素散射实验 J. J. Thomson(汤姆森)提出了一种理论来解释带电粒子在通过很薄的物质时产生的散射。他假设原子是由带 N个负电荷的粒子构成,伴随着相同数量的正电荷,均匀地分布在整个球内。负电荷粒子(如β 粒子)在穿过原子时的偏转归结为两个原因——(1)分布在原子内负电荷的斥力, (2)原子内正电荷的吸引力。粒子在经过原子时的偏转假设是很小的,尽管在与一个很大质量m碰撞后的平均角度为 m θ ⋅ , 其中θ是对于单个原子的平均偏转。这表明,原子内部的电子数N可以通过观察带电离子的散射推断出来。这个混合散射理论的精确性在后来 Crowther 的一篇论文中做了实验检验。 Crowther 的实验结果明显地确认了Thomson(汤姆森)理论的主要结论,而且 Crowther 基于正电荷的连续性假设推导出,原子中的电子数大约是原子重量的三倍。 约瑟夫约翰汤姆森 J. J. Thomson(汤姆森)理论是基于“单次原子碰撞产生的散射是很小的”这个假设。而且对原子特殊结构的假设也不允许α 粒子在穿过单个原子时有很大的偏转,除非假设正电荷球的直径与原子球的直径相比是极小的。 由于α 和β 粒子穿过了原子,通过对偏转本质的密切研究而形成关于原子结构的某些看法,从而产生观察到的效应,这是很有可能的。事实上,高速带电粒子被物质原子散射就是解决这个问题最有希望的方法之一。开发出为单个α 粒子计数的闪烁法就提供了独特的研究优势,而 H.Geiger 正是通过这种方法的研究,已经为我们增加了很多关于α射线被物质散射的知识。

实验目的

卢瑟福从1909年起做了著名的α粒子散射实验,实验的目的是想证实汤姆孙原子模型的正确性,实验结果却成了否定汤姆孙原子模型的有力证据。在此基础上,卢瑟福提出了原子核式结构模型。 为了要考察原子内部的结构,必须寻找一种能射到原子内部的试探粒子,这种粒子就是从天然放射性物质中放射出的α粒子。卢瑟福和他的助手用α粒子轰击金箔来进行实验,如图是这个实验装置的示意图。 α粒子散射实验示意图 在一个铅盒里放有少量的放射性元素钋(Po),它发出的α射线从铅盒的小孔射出,形成一束很细的射线射到金箔上。当α粒子穿过金箔后,射到萤光屏上产生一个个的闪光点,这些闪光点可用显微镜来观察。为了避免α粒子和空气中的原子碰撞而影响实验结果,整个装置放在一个抽成真空的容器内,带有萤光屏的显微镜能够围绕金箔在一个圆周上移动。

实验结果

实验结果表明,绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数α粒子发生了较大的偏转,并有极少数α粒子的偏转超过90°,有的甚至几乎达到180°而被反弹回来,这就是α粒子的散射现象。 发生极少数α粒子的大角度偏转现象是出乎意料的。根据汤姆孙模型的计算,α粒子穿过金箔后偏离原来方向的角度是很小的,因为电子的质量不到α粒子的1/7400,α粒子碰到它,就像飞行着的子弹碰到一粒尘埃一样,运动方向不会发生明显的改变。正电荷又是均匀分布的,α粒子穿过原子时,它受到原子内部两侧正电荷的斥力大部分相互抵消,α粒子偏转的力就不会很大。然而事实却出现了极少数α粒子大角度偏转的现象。卢瑟福后来回忆说:“这是我一生中从未有的最难以置信的事,它好比你对一张纸发射出一发炮弹,结果被反弹回来而打到自己身上……”卢瑟福对实验的结果进行了分析,认为只有原子的几乎全部质量和正电荷都集中在原子中心的一个很小的区域,才有可能出现α粒子的大角度散射。由此,卢瑟福在1911年提出了原子的核式结构模型,认为在原子的中心有一个很小的核,叫做原子核(nucleus),原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。 铜原子结构 按照这一模型,α粒子穿过原子时,电子对α粒子运动的影响很小,影响α粒子运动的主要是带正电的原子核。而绝大多数的α粒子穿过原子时离核较远,受到的库仑斥力很小,运动方向几乎没有改变,只有极少数α粒子可能与核十分接近,受到较大的库仑斥力,才会发生大角度的偏转。 根据α粒子散射实验,可以估算出原子核的直径约为10^-15米~10^-14米,原子直径大约是10-10皮米,所以原子核的直径大约是原子直径的万分之一,原子核的体积只相当于原子体积的万亿分之一。

最终结论

结果:大多数散射角很小,约1/8000散射大于90°; 极个别的散射角等于180°。 结论:正电荷集中在原子中心。 大多数α粒子穿透金箔:原子内有较大空间,而且电子质量很小。 一小部分α粒子改变路径:原子内部有一微粒,而且该微粒的体积很小,带正电。 极少数的α粒子反弹:原子中的微粒体积较小,但质量相对较大。

⑺ 如图所示是卢瑟福的α粒子散射实验装置,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的

A、α粒子散射实验的内容是:绝大多数α粒子几乎不发生偏转;少数α粒子发生了较大的角度偏转;极少数α粒子发生了大角度偏转(偏转角度超过
90°,有的甚至几乎达到180°,被反弹回来),故A正确,D错误;
B、α粒子散射实验现象卢瑟福提出了原子核式结构模型的假设,从而否定了汤姆孙原子模型的正确性,故B错误.
C、发生α粒子偏转现象,主要是由于α粒子和原子核发生碰撞的结果,故C错误;
故选:A.

⑻ 求高中物理史实

你好,
一.力学中的物理学史
1、前384年—前322年,古希腊杰出思想家亚里士多德:在对待“力与运动的关系”问题上,错误的认为“维持物体运动需要力”。
2、1638年意大利物理学家伽利略:最早研究“匀加速直线运动”;论证“重物体不会比轻物体下落得快”的物理学家;利用著名的“斜面理想实验”得出“在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去即维持物体运动不需要力”的结论;发明了空气温度计;理论上验证了落体运动、抛体运动的规律;还制成了第一架观察天体的望远镜;第一次把“实验”引入对物理的研究,开阔了人们的眼界,打开了人们的新思路;发现了“摆的等时性”等。
3、1683年,英国科学家牛顿:总结三大运动定律、发现万有引力定律。另外牛顿还发现了光的色散原理;创立了微积分、发明了二项式定理;研究光的本性并发明了反射式望远镜。其最有影响的著作是《自然哲学的数学原理》。
4、1798年英国物理学家卡文迪许:利用扭秤装置比较准确地测出了万有引力常量G=6.67×11-11N·m2/kg2(微小形变放大思想)。
5、1905年爱因斯坦:提出狭义相对论,经典力学不适用于微观粒子和高速运动物体。即“宏观”、“低速”是牛顿运动定律的适用范围。
二.热学中的物理学史
1、1827年英国植物学家布朗:发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
2、1661年英国物理学家玻意耳发现:一定质量的气体在温度不变时,它的压强与体积成反比( ,即为玻意耳定律。
3、1787年法国物理学家查理发现:一定质量的气体在体积不变时,它的压强与热力学温度成正比( )即为查理定律。
4、1802年法国物理学家盖·吕萨克发现:一定质量的气体在压强不变时,它的体积与热力学温度成正比( )即为盖·吕萨克定律。
三.电、磁学中的物理学史
1、1785年法国物理学家库仑:借助卡文迪许扭秤装置并类比万有引力定律,通过实验发现了电荷之间的相互作用规律——库仑定律。
2、1826年德国物理学家欧姆:通过实验得出导体中的电流跟它两端的电压成正比,跟它的电阻成反比即欧姆定律。
3、1820年,丹麦物理学家奥斯特:电流可以使周围的磁针发生偏转,称为电流的磁效应。
4、1831年英国物理学家法拉第:发现了由磁场产生电流的条件和规律——电磁感应现象。
5、1834年,俄国物理学家楞次:确定感应电流方向的定律——楞次定律。
6、1864年英国物理学家麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,并从理论上得出光速等于电磁波的速度,为光的电磁理论奠定了基础。
7、1888年德国物理学家赫兹:用莱顿瓶所做的实验证实了电磁波的存在并测定了电磁波的传播速度等于光速并率先发现“光电效应现象”。
四.光学、原子物理中的物理学史
1、历史上关于光的本质有两种学说:一种是牛顿主张的微粒说——认为光是光源发出的一种物质微粒;一种是荷兰物理学家惠更斯提出的波动说——认为光是在空间传播的某种波。
2、1800年,英国物理学家赫谢尔发现红外线。红外线具有明显的热效应。应用:红外遥感和红外高空摄影。
3、1801年,英国物理学家托马斯·杨:通过“杨氏双缝干涉实验”观察到了光的干涉现象,证实了光的波动性。
4、1801年,德国物理学家里特发现紫外线。紫外线具有明显的化学作用、荧光效应。应用:杀菌、消毒、黑光灯灭害虫。
5、1818年,法国科学家泊松:观察到光的圆板衍射——泊松亮斑。
图1光电效应实验
6、1895年,德国物理学家伦琴:发现比紫外线频率还要高的电磁波——X射线(伦琴射线)。具有很强的穿透本领,能使荧光物质发出荧光,还能使照相底片感光。高速电子流射到任何固体上都能产生这种射线。

7、1896年,法国物理学家贝克勒尔:发现天然放射现象,说明原子核也有复杂的内部结构即原子核也是可分的。之后居里夫人于1898年7月发现放射性元素钋(Po)同年12月又发现了镭(Ra)。
8、1900年,德国物理学家普朗克:解释物体热辐射规律时提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界。
图2 α粒子散射实验装置
9、1905年爱因斯坦:在德国物理学家赫兹首先发现“光电效应”实验(如图1)的基础上提出了“光子说”,成功地解释了光电效应规律。

10、1897年,英国物理学家汤姆生:利用阴极射线管发现了电子,说明原子可分、有复杂内部结构,并提出原子的枣糕模型。
图3 α粒子散射实验结果演示图
11、1909年,英国物理学家卢瑟福为了验证汤姆生提出的原子结构模型做了著名的“α粒子散射实验”。(如图2)

实验结果:(如图3)①绝大多数α粒子穿过金箔后,跟原来的运动方向偏离不多(平均2°一3°)②少数α粒子产生较大的偏转③极少数α粒子产生超过90°的大角度偏转,个别α粒子被弹回。据此卢瑟福提出了原子的核式结构模型,由实验结果估计原子核直径数量级为10 -15 m 。
显微镜
银箔

氮气
氮气
图4 粒子轰击氮核装置
12、1909年-1911年,英国物理学家卢瑟福:用α粒子轰击氮核,(如图4)第一次实现了原子核的人工转变,并发现了质子。 。

13、1913年,美国物理学家密立根:测出元电荷的电量 ,即著名的“密立根油滴实验”。
14、1924年,法国物理学家德布罗意:预言了一切微观粒子包括电子、质子、和中子都具有波粒二象性。
15、1932年查德威克:在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成。 。其用中子轰击石蜡打出了质子(如图5)。
Po
粒子

石蜡
质子
图5 粒子轰击铍实验

中子
16、1934年,约里奥·居里夫妇:用 粒子轰击铝箔时观察到正电子。反映方程 。可见,正电子是由磷30衰变发射出来的。像磷30这种具有放射性的同位素称之为放射性同位素。放射性同位素的应用:机械探伤、消菌杀毒、作为示踪原子等。

17、1971年国际计量大会规定的7个基本单位:长度:米(m ),质量:千克(Kg),时间:秒(s),电流:安[培](A),热力学温度:开[尔文](K),物质的量:摩[尔](mol),发光强度:坎[德拉](cd)。

阅读全文

与粒子散射实验装置有哪些相关的资料

热点内容
半自动节电开关装置 浏览:347
楼房进水阀门用什么材质的好 浏览:833
高基配电室都有什么设备 浏览:419
空调制冷为什么有气雾 浏览:716
自动末端试水装置系统 浏览:936
阀门垫圈的作用是什么 浏览:555
怎么重新设置机床原点 浏览:730
砂光机自动定厚装置 浏览:291
皮带轮卸荷装置的作用 浏览:647
删除工具箱 浏览:586
怎么确定网关设备是哪个 浏览:881
除了氟利昂制冷还有什么办法 浏览:35
苹果手机如何找回忽略设备 浏览:92
广东臭气处理设备哪个质量好 浏览:663
360手机工具箱 浏览:197
汽车轮轴用什么数控机床好 浏览:952
南海远益机械设备有限公司怎么样 浏览:925
安装分离轴承的时候用什么油 浏览:445
瑞纳仪表盘背景灯怎么常亮 浏览:500
轴承瓦温异常升高应如何处理 浏览:52