❶ 研究皮带输送机有何意义
输送机用来输送产品 方便 缩短距离 省工省力
❷ 带式输送机传动装置设计
一、带式输送机传动装置,可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,不过增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
二、设计安装调试:
1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。
2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。
3.螺旋张紧行程为机长的1%~1.5%。
4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。
5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50~70mm。
6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。
7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查:
(1)各托辊应与输送带接触,转动灵活。
(2)各润滑处无漏油现象。
(3)各紧固件无松动。
(4)轴承温升不大于40°C,且最高温度不超过80°C。
(5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。
❸ 带式输送机设计
下面是带式输送机的设计:
①原煤上料运输②皮带运输机运输能力为(700 - 学号版×5)吨/时③皮带权运输机出料端高度为(70 -
学号)米④皮带运输机入料端高度为平面开阔地,皮带长度和倾角可以自由选择.
设计条件如下:
原煤上料运输
①皮带运输机运输能力Q为(700-18×5)=610t/h;
②皮带运输机出料端高度为(70-18)=52 m;
③皮带长度为240m;
④输送机安装倾角为12.5133°;
⑤物料的堆积密度为331.0/1000/tmkgm;
⑥物料的颗粒度为0-300mm;目前国内采用的是《DTⅡ型固定式带式输送机》系列。
该系列输送机由许多标准件组成,各个部件的规格也都成系列。故本设计中也采用DTⅡ型固定式带式输送机系列。
DTII(A)型带式输送机简图:
❹ 机械传动系统方案设计的主要目的是什么
机械传动方案设计,说白了就是建立运动输入和输出的关系,其目的主要是运动学角度的。主要包括两个方面:1)获得需要的运动形式,如移动、转动、摆动、或其他有规律的运动;2)获得所需要的运动速度,此处的速度应该是广义的,即可以是线速度、也可以是角速度。
由于传动方案确定后,机械的骨骼也就基本定了。所以它也和具体的布置方式,结构尺寸的要求,甚至是成本等都有关系。
❺ 设计胶带输送机的传动装置
一、摩擦传动理论
带式输送机所需的牵引力是通过驱动装置中的驱动滚筒与输送带间的摩擦作用而传递的,因而称为摩擦传动。为确保作用力的传递和牵引构件不在驱动轮上打滑,必须满足下列条件:
(1)牵引构件具有足够的张力;
(2)牵引带与驱动滚筒的接触表面有一定的粗糙度;
(3)牵引带在驱动轮上有足够大的围包角。
图l—22为一台带式输送机的简图。当驱动滚筒按顺时针方向转动时,通过它与输送带间的摩擦力驱动输送带沿箭头方向运动。
在输送带不工作时,带子上各点张力是相等的。当输送带运动时,各点张力就不等了。其大小取决于张紧力P0、运输机的生产率、输送带的速度、宽度、输送机长度、倾角、托辊结构性能等等。故输送带的张力由l点到4点逐渐增加,而在绕经驱动滚筒的主动段,由4点到l点张力逐渐减小。必须使输送带在驱动滚筒上的趋入点张力Sn大于奔离点张力S1,方能克服运行阻力,使输送带运动。此两点张力之差,即为驱动滚筒传递给输送带的牵引力W0。在数值上它等于输送带沿驱动滚筒围包弧上摩擦力的总和,即
W0=Sn-S1 (1—1)
趋入点张力Sn随输送带上负载的增加而增大,当负载过大时,致使(Sn-S1)之差值大于摩擦力,此时输送带在驱动滚筒上打滑而不能正常工作。该现象在选煤厂中可经常遇到。
Sn与S1应保持何种关系方能防止打滑,保证输送带正常工作,这是将要研究的问题。
在讨论前,先作如下假设:
(1)假设输送带是理想的挠性体,可以任意弯曲,不受弯曲应力影响;
(2)假设绕经驱动滚筒上的输送带的重力和所受的离心力忽略不计(因与输送带上张力和摩擦力相比数值很小)。
如图l—22b所示,在驱动滚筒上取一单元长为dl的输送带,对应的中心角即围包角为dα。当滚筒回转时,作用在这小段输送带两端张力分别为S及S+dS。在极限状态下,即摩擦力达到最大静摩擦力时,dS应为正压力dN与摩擦系数μ的乘积,即
dS=μdN
dN为滚筒给输送带以上的作用力总和。
列出该单元长度输送带受力平衡方程式为
由于dα很小,故sin(dα/2)≈(dα/2),cos(dα/2)≈1,上述方程组可简化为
略去二次微量:dSdα,解上述方程组得 .
通过在这段单元长度上输送带的受力分析,可以得到,当摩擦力达到最大极限值时,欲保持输送带不打滑,各参数间的关系应满足dS/S=μdα。以定积分方法解之,即可得出输送带在整个驱动滚筒围包弧上,在不打滑的极限平衡状态下,趋入点的Sn与奔离点的Sk之间的关系
解上式,得
式中 e——自然对数的底,e=2.718;
μ——驱动滚筒与输送带之间的摩擦系数;
——输送带在驱动滚筒上趋入点的最大张力;
S1一一输送带在驱动滚筒奔离点的张力;
α——输送带在驱动滚筒上的围包角,弧度。
上式)即挠性体摩擦驱动的欧拉公式。根据欧拉公式可以绘出在驱动滚筒围包弧上输送带张力变化的曲线,见图l—23中的bca'。
从上述分析可知,欧拉公式只是表达了趋入点张力为最大极限值时的平衡状态。而实际生产中载荷往往是不均衡的;而且,在欧拉公式讨论中,将输送带看作是不变形的挠性体,实际上输送带(如橡胶带)是一个弹性体,在张力作用下,要产生弹性伸长,其伸长量与张力值大小成正比。因此,输送带沿驱动滚筒圆周上的分布规律见图1—23中bca曲线变化(而不是bca’)。在BC弧内,输送带张力按欧拉公式之规律变化;到c点后,张力达到Sn值,在CA弧内,Sn值保持不变。也就是说为了防止输送带在驱动滚筒上打滑,应使趋入点的实际张力Sn小于极限状态下的最大张力值,即
既然输送带是弹性体,那么,在受力后就要产生弹性伸长变形。这是弹性体与刚性体最本质的区别。受力愈大,变形也愈大,而输送带张力是由趋入点向奔离点逐渐减小,即在趋入点输送带被拉长的部分,在向奔离点运动过程中,随着张力的减小而逐渐收缩,从而使输送带与滚筒问产生相对滑动,这种滑动称为弹性滑动或弹性蠕动(它与打滑现象不同)。显然,弹性滑动只发生于输送带在驱动滚筒围包弧上有张力变化的一段弧内。产生弹性滑动的这一段围包弧,称为滑动弧,即图l-23中的BC弧,滑动弧所对应的中心角称为滑动角,即λ角;不产生弹性滑动的围包弧,称为静止弧(图中的CA弧),静止弧所对应的中心角,称为静止角,即图中γ角。滑动弧两端的张力差,即为驱动滚筒传递给输送带的牵引力。由此可见,只有存在滑动弧,驱动滚筒才能通过摩擦将牵引力传递给输送带;在静止弧内不传递牵引力,但它保证驱动装置具有一定的备用牵引力。
当输送机上负载增加时,趋入点张力Sn增大,滑动弧及对应的滑动角也相应均要增大,而静止弧及静止角则随之减小。图1—23中的C点向A点靠拢,当趋入点张力Sn增大至极限值Snmax时,则整个围包弧BA弧都变成了滑动弧,即C点与A点重合,整个围包角都变成了滑动角(λ=α,γ=0)。这时驱动滚筒上传送的牵引力达到最大值的极限摩擦力:
(1—4)
若输送机上的负荷再增加,即 ,这时.输送带将在驱动滚筒上打滑,输送机则不能正常工作。
二、提高牵引力的途径
根据库擦传动的理论及式(1—4)均可以看出,提高带式输送机的牵引力可以采用以下三种方法:
(1)增加奔离点的张力S1,以提高牵引力。具体的措施是通过张紧输送机的拉紧装置来实现。随着S1的增大,输送带上的最大张力也相应增大,就要求提高输送带的强度,这种做法是不经济的,在技术上也不合理。
(2)改善驱动滚筒表面的状况,以得到较大的摩擦系数μ,由表1—29可知,胶面滚筒的摩擦系数比光面滚筒大,环境干燥时比潮湿时大,所以,可以采用包胶、铸塑,或者采用在胶面上压制花纹的方法来提高摩擦系数。
(3)采用增加输送带在驱动滚筒上的围包角来提高牵引力。其具体措施是增设改向滚筒(即增面轮)可使包角由180°增至210°-240°必要时采用双滚筒驱动。
三、刚性联系双滚筒驱动牵引力及其分配比朗确定
刚性联系双滚筒和单滚筒相比,增加一个主动滚筒:当两个滚筒的直径相等时其角度是相同的(图1—24)。从图l—24中可以看出,输送带由滚筒②的C点到滚筒①的B点时,这两点之间除了一小段(BC段)胶带的臼重外,张力没有任何变化,故B点可看作C点的继续。因而刚性联系的双滚筒与单滚筒实质上是相同的,因为滑动弧随着张力增大而增大这一规律对它同样适用的。
S1及μ值在一定的情况下,而且μl=μ2,只有当滚筒②传递的牵引力达到极限值时,滚筒①才开始传递牵引力。设λ1、λ2、γ1、γ2、α1、α2分别为第①及第②滚筒的滑动角,静止角及围包角、则在λ2=α2,λ1=0的情况下,静止弧仅存在于滚筒①上。当λ2=α2时,λ1=α1-γ1时,输送带在两个主动滚筒上张力变化曲线如图1—24所示。
滚筒②可能传递的最大牵引力为
滚筒①可能传递的最大牵引力为
式中 S’——两滚筒间输送带上的张力。
驱动装置可能传递总的最大牵引力为
式中 α——总围包角
两滚筒可能传递的最大牵引力之比为
在一般情况下: 因而
(1-5)
显然,当第①滚筒上传递的牵引力未达到极限时,即 时,则两驱动滚筒传递的牵引力之比为
由上式可知,当总的牵引力W0和张力S1一定时,若μ值增加,则第⑧个驱动滚筒传递的牵引力WII增大,而WI减小。反之,若μ值减小时,则WI增大(因W0=WI+WII为一定值)。
由此可以看出:刚性联系的双滚筒驱动装置,其滚筒牵引力的分配比值随摩擦系数的变化而改变。但由式(1-5)可知,驱动滚筒①可能传递的最大牵引力等于滚筒⑨的 倍这一比值是不变的。
刚性联系的双驱动滚筒缺点是已设计的牵引力分配比值,只适用于一定的荷载和一定的摩擦系数。当荷载变化,其比例也就被破坏了。此外,还由于大气潮湿程度的变化,两滚筒的表面清洁程度的不同,摩擦系数也发生了变化,其分配比实际上不可能保持定值。
❻ 机械设计课程设计 设计带式输送机传动装置中的一级圆柱直齿轮和一级圆柱斜齿轮减速器
以下的东西我也是 借用来的
你修改修改
也可以套用
目 录
设计计划任务书 ﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎1
传动方案说明﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎2
电动机的选择﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎3
传动装置的运动和动力参数﹎﹎﹎﹎﹎﹎﹎﹎5
传动件的设计计算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎6
轴的设计计算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎8
联轴器的选择﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎10
滚动轴承的选择及计算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎13
键联接的选择及校核计算﹎﹎﹎﹎﹎﹎﹎﹎﹎14
减速器附件的选择﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎15
润滑与密封﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎16
设计小结﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎16
参考资料﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎17
1.拟定传动方案
为了估计传动装置的总传动比范围,以便选择合适的传动机构和传动方案,可先由已知条件计算其驱动卷筒的转速nw,即
v=1.1m/s;D=350mm;
nw=60*1000*v/(∏*D)=60*1000*1.1/(3.14*350)
一般常选用同步转速为1000r/min或1500r/min的电动机作为原动机,因此传动装置总传动比约为17或25。
2.选择电动机
1)电动机类型和结构形式
按工作要求和工作条件,选用一般用途的Y(IP44)系列三相异步电动机。它为卧式封闭结构。
2)电动机容量
(1)卷筒轴的输出功率Pw
F=2800r/min;
Pw=F*v/1000=2800*1.1/1000
(2)电动机输出功率Pd
Pd=Pw/t
传动装置的总效率 t=t1*t2^2*t3*t4*t5
式中,t1,t2,…为从电动机到卷筒之间的各传动机构和轴承的效率。由表2-4查得:
弹性联轴器 1个
t4=0.99;
滚动轴承 2对
t2=0.99;
圆柱齿轮闭式 1对
t3=0.97;
V带开式传动 1幅
t1=0.95;
卷筒轴滑动轴承润滑良好 1对
t5=0.98;
则
t=t1*t2^2*t3*t4*t5=0.95*0.99^2*0.97*0.99*0.98=0.8762
故
Pd=Pw/t=3.08/0.8762
(3)电动机额定功率Ped
由第二十章表20-1选取电动机额定功率ped=4KW。
3)电动机的转速
为了便于选择电动事,先推算电动机转速的可选范围。由表2-1查得V带传动常用传动比范围2~4,单级圆柱齿轮传动比范围3~6,
可选电动机的最小转速
Nmin=nw*6=60.0241*6=360.1449r/min
可选电动机的最大转速
Nmin=nw*24=60.0241*24=1440.6 r/min
同步转速为960r/min
选定电动机型号为Y132M1-6。
4)电动机的技术数据和外形、安装尺寸
由表20-1、表20-2查出Y132M1-6型电动机的方根技术数据和
外形、安装尺寸,并列表刻录备用。
电机型号 额定功率 同步转速 满载转速 电机质量 轴径mm
Y132M1-6 4Kw 1000 960 73 28
大齿轮数比小齿轮数=101/19=5.3158
3.计算传动装置总传动比和分配各级传动比
1)传动装置总传动比
nm=960r/min;
i=nm/nw=960/60.0241=15.9936
2)分配各级传动比
取V带传动比为
i1=3;
则单级圆柱齿轮减速器比为
i2=i/i1=15.9936/3=5.3312
所得i2值符合一般圆柱齿轮和单级圆柱齿轮减速器传动比的常用范围。
4.计算传动装置的运动和动力参数
1)各轴转速
电动机轴为0轴,减速器高速轴为Ⅰ轴,低速轴为Ⅱ轴,各轴转速为
n0=nm;
n1=n0/i1=60.0241/3=320r/min
n2=n1/i2=320/5.3312=60.0241r/min
2)各轴输入功率
按机器的输出功率Pd计算各轴输入功率,即
P0=Ped=4kw
轴I 的功率
P1=P0*t1=4*0.95=3.8kw
轴II功率
P2=P1*t2*t3=3.8*0.99*0.97=3.6491kw
3)各轴转矩
T0=9550*P0/n0=9550*4/960=39.7917 Nm
T1=9550*P1/n1=9550*3.8/320=113.4063 Nm
T2=9550*P2/n2=9550*3.6491/60.0241=580.5878 Nm
二、设计带轮
1、计算功率
P=Ped=4Kw
一班制,工作8小时,载荷平稳,原动机为笼型交流电动机
查课本表8-10,得KA=1.1;
计算功率
Pc=KA*P=1.1*4=4.4kw
2选择普通V带型号
n0 =960r/min
根据Pc=4.4Kw,n0=960r/min,由图13-15(205页)查得坐标点位于A型
d1=80~100
3、确定带轮基准直径
表8-11及推荐标准值
小轮直径
d1=100mm;
大轮直径
d2=d1*3.5=100*3.5=350mm
取标准件
d2=355mm;
4、验算带速
验算带速
v=∏*d1*n0/60000=3.14*100*960/60000=5.0265m/s
在5~25m/s范围内
从动轮转速
n22=n0*d1/d2=960*100/355=270.4225m/s
n21=n0/3.5=960/3.5=274.2857m/s
从动轮转速误差=(n22-n21)/n21=270.4225-274.2857/274.2857
=-0.0141
5、V带基准长度和中心距
初定中心距
中心距的范围
amin=0.75*(d1+d2)=0.75*(100+355)=341.2500mm
amax=0.8*(d1+d2)=0.8*(100+355)=364mm
a0=350mm;
初算带长
Lc=2*a0+pi*(d1+d2)/2+(d2-d1)^2/4/a0
Lc = 1461.2mm
选定基准长度
表8-7,表8-8查得
Ld=1600mm;
定中心距
a0+(Ld-Lc)/2=(1600-1461.3)/2=419.4206mm
a=420mm;
amin=a-0.015*Ld=420-0.015*1600=396mm
amax=a+0.03*Ld=420+0.03*1600=468mm
6、验算小带轮包角
验算包角
=180-(d2-d1)*57.3/a=180-(355-100)*57.3/a
145.2107 >120度 故合格
7、求V带根数Z
由式(13-15)得
查得 n1=960r/min , d1=120mm
查表13-3 P0=0.95
由式13-9得传动比
i=d2/(d1(1+0.0141)=350/(100*(1+0.0141)=3.5
查表(13-4)得
由包角145.21度
查表13-5得Ka=0.92
KL=0.99
z=4.4/((0.95+0.05)*0.92*0.99)=3
8、作用在带上的压力F
查表13-1得q=0.10
故由13-17得单根V带初拉力
三、轴
初做轴直径:
轴I和轴II选用45#钢 c=110
d1=110*(3.8/320)^(1/3)=25.096mm
取d1=28mm
d2=110*(3.65/60)^(1/3)=43.262mm
由于d2与联轴器联接,且联轴器为标准件,由轴II扭矩,查162页表
取YL10YLd10联轴器
Tn=630>580.5878Nm 轴II直径与联轴器内孔一致
取d2=45mm
四、齿轮
1、齿轮强度
由n2=320r/min,P=3.8Kw,i=3
采用软齿面,小齿轮40MnB调质,齿面硬度为260HBS,大齿轮用ZG35SiMn调质齿面硬度为225HBS。
因 ,
SH1=1.1, SH2=1.1
,
,
因: , ,SF=1.3
所以
2、按齿面接触强度设计
设齿轮按9级精度制造。取载荷系数K=1.5,齿宽系数
小齿轮上的转矩
按 计算中心距
u=i=5.333
mm
齿数z1=19,则z2=z1*5.333=101
模数m=2a/(z1+z2)=2.0667 取模数m=2.5
确定中心矩a=m(z1+z1)/2=150mm
齿宽b=
b1=70mm,b2=60mm
3、验算弯曲强度
齿形系数YF1=2.57,YF2=2.18
按式(11-8)轮齿弯曲强度
4、齿轮圆周速度
按162页表11-2应选9做精度。与初选一致。
五、轴校核:
圆周力Ft=2T/d1
径向力Fr=Ft*tan =20度 标准压力角
d=mz=2.5*101=252.5mm
Ft=2T/d1=2*104.79/252.5=5852.5N
Fr=5852.5*tan20=2031.9N
1、求垂直面的支承压力Fr1,Fr2
由Fr2*L-Fr*L/2=0
得Fr2=Fr/2=1015.9N
2、求水平平面的支承力
FH1=FH2=Ft/2=2791.2N
3、画垂直面弯矩图
L=40/2+40/2+90+10=140mm
Mav=Fr2*L/2=1015.9*140/2=71.113Nm
4、画水平面弯矩图
MaH=FH*L/2=2791.2*140/2=195.384Nm
5、求合成弯矩图
6、求轴传递转矩
T=Ft*d2/2=2791.2*2.5*101/2=352.389Nm
7、求危险截面的当量弯矩
从图可见a-a截面是最危险截面,其当量弯矩为
轴的扭切应力是脉动循环应力
取折合系数a=0.6代入上式可得
8、计算危险截面处轴的直径
轴的材料,用45#钢,调质处理,由表14-1查得
由表13-3查得许用弯曲应力 ,
所以
考虑到键槽对轴的削弱,将轴的最小危险直径d加4%。
故d=1.04*25.4=26.42mm
由实际最小直径d=40mm,大于危险直径
所以此轴选d=40mm,安全
六、轴承的选择
由于无轴向载荷,所以应选深沟球轴承6000系列
径向载荷Fr=2031.9N,两个轴承支撑,Fr1=2031.9/2=1015.9N
工作时间Lh=3*365*8=8760(小时)
因为大修期三年,可更换一次轴承
所以取三年
由公式
式中 fp=1.1,P=Fr1=1015.9N,ft=1 (工作环境温度不高)
(深沟球轴承系列)
由附表选6207型轴承
七、键的选择
选普通平键A型
由表10-9按最小直径计算,最薄的齿轮计算
b=14mm,h=9mm,L=80mm,d=40mm
由公式
所以
选变通平键,铸铁键
所以齿轮与轴的联接中可采用此平键。
八、减速器附件的选择
1、通气器:
由于在外界使用,有粉尘,选用通气室采用M18 1.5
2、油面指示器:
选用油标尺,规格M16
3、起吊装置:采用箱盖吊耳,箱座吊耳
4、放油螺塞:选用外六角细牙螺塞及垫片M16 1.5
5、窥视孔及视孔盖
选用板结构的视孔盖
九、润滑与密封:
1、齿轮的润滑:采用浸油润滑,由于低速级大齿轮的速度为:
查《课程设计》P19表3-3大齿轮浸油深度为六分之一大齿轮半径,所以取浸油深度为30mm。
2、滚动轴承的润滑
采用飞溅润滑在箱座凸缘面上开设导油沟,并设挡油盘,以防止轴承旁齿轮啮合时,所挤出的热油溅入轴承内部,增加轴承的阻力。
3、润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备选用
L-AN15润滑油
4、密封方式选取:
选用凸缘式端盖,易于调整轴承间隙,采用端盖安装毡圈油封实现密封。
轴承盖结构尺寸按用其定位的轴承外径决定。
设计小结:
二、课程设计总结
设计中运用了Matlab科学工程计算软件,用notebook命令调用MS—Word来完成设计说明书及设计总结,在设计过程中用了机械设计手册2.0 软件版辅助进行设计,翻阅了学过的各种关于力学,制图,公差方面的书籍,综合运用了这些知识,感觉提高许多,当然尤其是在计算机软件CAD 方面的运用,深切感到计算机辅助设计给设计人员带来的方便,各种设计,计算,制图全套完成。
由于没有经验,第一次做整个设计工作,在设计过程中出现了一些错误比如线形,制图规格,零件设计中的微小计算错误等都没有更正,设计说明书的排版也比较混乱等等。对图层,线形不熟悉甚至就不确定自己画出的线,在出图到图纸上时实际上是什么样子都不知道 ,对于各种线宽度,没有实际的概念。再比如标注较混乱,还是因为第一次做整个设计工作,没有经验,不熟悉。
这次设计的目的是掌握机械设计规律,综合运用学过的知识,通过设计计算,绘图以及运用技术标准,规范设计手册等有关设计资料进行全面的机械设计技能训练。目的已经达到,有许多要求、标准心中虽然明确理解掌握但是要全力,全面的应用在实际中,还有待于提高水平。
特别感谢—程莉老师。
参考资料目录
[1]《机械设计基础》,机械工业出版社,任成高主编,2006年2月第一版;
[2]《简明机械零件设计实用手册》,机械工业出版社,胡家秀主编,2006年1月第一版;
[3]《机械设计-课程设计图册》,高等教育出版社,龚桂义主编,1989年5月第三版;
[3]《设计手册软件》,网络上下载;
[4] 湖南工院学生论坛----机械制图专栏---bbs.yeux.cn
Nw=60.0241r/min
Pw=3.08Kw
效率t=0.8762
Pd = 3.5150
Ped=4Kw
i=15.9936
i1=3
i2=5.3312
n0=960r/min
n1=320r/min
n2=60.0241r/min
P0=4Kw
P1=3.8Kw
P2=3.6491Kw
T0=39.7917Nm
T1=113.4063Nm
T2=589.5878Nm
KA=1.1
Pc=4.4Kw
d1=100mm
d2=355mm
初定中心距
a0=350mm
Lc=1461.3mm
Ld=1600mm
中心距
a=420mm
z=3根
预紧力
FQ=274.3N
d1=28mm
d2=45mm
YL10YLd10
T1=113.4063Nm
m=2.5
a=150mm
=20度
Ft=5582.5N
Fr=2031.9N
FH1=FH2=2791.2N
Mav=71.113Nm
MaH=195.38Nm
Ma=216.16Nm
Me=457.15Nm
Fr1=1015.9N
Lh=8760小时
6207型
b h L=14 9 80
输送带拉力 F=2800 N
输送带速度 V=1.1 m/s
滚筒直径 D=350 mm
❼ 机械设计基础课程设计指导书——设计输送机传动装置课程设计
给你做个参考
一、前言
(一)
设计目的:
通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。
(二)
传动方案的分析
机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。
带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。
齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。
减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。
二、传动系统的参数设计
原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。
工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。
工作环境:室内灰尘较大,环境最高温度35°。
动力来源:电力,三相交流380/220伏。
1
、电动机选择
(1)、电动机类型的选择: Y系列三相异步电动机
(2)、电动机功率选择:
①传动装置的总效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作机所需的输入功率:
因为 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③电动机的输出功率:
=3.975/0.87=4.488KW
使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。
⑶、确定电动机转速:
计算滚筒工作转速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’ =3~6。取V带传动比I’ =2~4,则总传动比理时范围为I’ =6~24。故电动机转速的可选范围为n’ =(6~24)×96=576~2304r/min
⑷、确定电动机型号
根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。
其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。
2
、计算总传动比及分配各级的传动比
(1)、总传动比:i =1440/96=15
(2)、分配各级传动比:
根据指导书,取齿轮i =5(单级减速器i=3~6合理)
=15/5=3
3
、运动参数及动力参数计算
⑴、计算各轴转速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵计算各轴的功率(KW)
电动机的额定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶计算各轴扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、传动零件的设计计算
(一)齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm
(2)确定有关参数和系数如下:
传动比i
取小齿轮齿数Z =20。则大齿轮齿数:
=5×20=100
,所以取Z
实际传动比
i =101/20=5.05
传动比误差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齿数比:
u=i
取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°;
则
h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圆直径:d =×20mm=60mm
d =3×101mm=303mm
由指导书取
φ
齿宽:
b=φ =0.9×60mm=54mm
=60mm ,
b
齿顶圆直径:d )=66,
d
齿根圆直径:d )=52.5,
d )=295.5
基圆直径:
d cos =56.38,
d cos =284.73
(3)计算齿轮传动的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm
(二)轴的设计计算
1
、输入轴的设计计算
⑴、按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据指导书并查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴选d=25mm
⑵、轴的结构设计
①轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定
②确定轴各段直径和长度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以长度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L =(2+20+55)=77mm
III段直径:
初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直径:
由手册得:c=1.5
h=2c=2×1.5=3mm
此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm
因此将Ⅳ段设计成阶梯形,左段直径为41mm
+2h=35+2×3=41mm
长度与右面的套筒相同,即L
Ⅴ段直径:d =50mm. ,长度L =60mm
取L
由上述轴各段长度可算得轴支承跨距L=80mm
Ⅵ段直径:d =41mm, L
Ⅶ段直径:d =35mm, L <L3,取L
2
、输出轴的设计计算
⑴、按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)
根据课本P235页式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考虑有键槽,将直径增大5%,则
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、轴的结构设计
①轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。
②确定轴的各段直径和长度
初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。
则
d =42mm
L
= 50mm
L
= 55mm
L
= 60mm
L
= 68mm
L
=55mm
L
四、滚动轴承的选择
1
、计算输入轴承
选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
2
、计算输出轴承
选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm
五、键联接的选择
1
、输出轴与带轮联接采用平键联接
键的类型及其尺寸选择:
带轮传动要求带轮与轴的对中性好,故选择C型平键联接。
根据轴径d =42mm ,L =65mm
查手册得,选用C型平键,得: 卷扬机
装配图中22号零件选用GB1096-79系列的键12×56
则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56
2
、输出轴与齿轮联接用平键联接
=60mm,L
查手册得,选用C型平键,得:
装配图中 赫格隆36号零件选用GB1096-79系列的键18×45
则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45
3
、输入轴与带轮联接采用平键联接
=25mm
L
查手册
选A型平键,得:
装配图中29号零件选用GB1096-79系列的键8×50
则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50
4
、输出轴与齿轮联接用平键联接
=50mm
L
查手册
选A型平键,得:
装配图中26号零件选用GB1096-79系列的键14×49
则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49
六、箱体、箱盖主要尺寸计算
箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下:
七、轴承端盖
主要尺寸计算
轴承端盖:HT150 d3=8
n=6 b=10
八、减速器的
减速器的附件的设计
1
、挡圈 :GB886-86
查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58
2
、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
设计参考资料目录
1、吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1999.6
2、解兰昌等编著.紧密仪器仪表机构设计.杭州:浙江大学出版社,1997.11
❽ 带式输送机设计
既然是毕业设计标题,我们就应该充分了解压带带式输送机的方方面面。例如版压带式输送机权的结构组成、工作原理、设计计算、应用特点等
压带带式输送机广泛应用于大倾角输送或垂直提升物料的连续输送系统中
压带带式输送机,又名夹带带式输送机或sand—wich(三明治)带式输送机,是由两条面面相对的输送带夹着物料进行密闭输送而得名。见图1和图2:下带是承载带,用来承载和输送物料;上带为压带,是一条辅助带,它与承载带共同夹紧物料,对物料产生一个法向夹紧力,增加了物料与物料、物料与输送带之间的摩擦力,阻止物料向下滑动,以实现大倾角甚至垂直输送的目的。
压带带式输送机分为加料区段、弯曲提升区段、卸料区段[2]。由图3知,加料区段,通过导料槽3或者其他给料装置,将物料装载到承载带上,物料在该区段运行稳定后,进入压带5和承载带2之间,在凹弧段被逐渐压紧后进行提升。当物料被提升到凸弧段,两输送带分开时,由卸料点通过漏斗卸载或直接将物料抛射到另一台输送机上。
希望对你有所帮助,朋友想要更多了解压带带式输送机,可以联系我。
❾ 课程设计带式输送机传动装置
本次毕业设计是关于矿用固定式带式输送机的设计。首选胶带输送机作了简单的内概述:接着分析了带式输送容机的选型原则及计算方法;然后根据这些设计准则与计算选型方法按照给定参数要求进行选型设计;接着对所选择的输送机各主要零部件进行了校核。普通带式输送机由六个主要部件组成:传动装置,机尾和导回装置,中部机架,拉紧装置以及胶带。最后简单的说明了输送机的安装与维护。目前,胶带输送机正朝着长距离,高速度,低摩擦的方向发展,近年来出现的气垫式胶带输送机就是其中的一中。在胶带输送机的设计、制造以及应用方面,目前我国与国外先进水平相比仍有较大差距,国内在设计制造带式输送机过程中存在着很多不足。
关键词:带式输送机,选型设计,主要部件
以上资料来自“三人行设计网” 我只是复制了一部分给你看 但愿能对你有所帮助 他的还算比较全 你可以去看看 呵呵