一、 设计题目:二级直齿圆柱齿轮减速器
1. 要求:拟定传动关系:由电动机、V带、减速器、联轴器、工作机构成。
2. 工作条件:双班工作,有轻微振动,小批量生产,单向传动,使用5年,运输带允许误差5%。
3. 知条件:运输带卷筒转速 ,
减速箱输出轴功率 马力,
二、 传动装置总体设计:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。 其传动方案如下:
三、 选择电机
1. 计算电机所需功率 : 查手册第3页表1-7:
-带传动效率:0.96
-每对轴承传动效率:0.99
-圆柱齿轮的传动效率:0.96
-联轴器的传动效率:0.993
—卷筒的传动效率:0.96
说明:
-电机至工作机之间的传动装置的总效率:
2确定电机转速:查指导书第7页表1:取V带传动比i=2 4
二级圆柱齿轮减速器传动比i=8 40所以电动机转速的可选范围是:
符合这一范围的转速有:750、1000、1500、3000
根据电动机所需功率和转速查手册第155页表12-1有4种适用的电动机型号,因此有4种传动比方案如下:
方案 电动机型号 额定功率 同步转速
r/min 额定转速
r/min 重量 总传动比
1 Y112M-2 4KW 3000 2890 45Kg 152.11
2 Y112M-4 4KW 1500 1440 43Kg 75.79
3 Y132M1-6 4KW 1000 960 73Kg 50.53
4 Y160M1-8 4KW 750 720 118Kg 37.89
综合考虑电动机和传动装置的尺寸、重量、和带传动、减速器的传动比,可见第3种方案比较合适,因此选用电动机型号为Y132M1-6,其主要参数如下:
额定功率kW 满载转速 同步转速 质量 A D E F G H L AB
4 960 1000 73 216 38 80 10 33 132 515 280
四 确定传动装置的总传动比和分配传动比:
总传动比:
分配传动比:取 则
取 经计算
注: 为带轮传动比, 为高速级传动比, 为低速级传动比。
五 计算传动装置的运动和动力参数:
将传动装置各轴由高速到低速依次定为1轴、2轴、3轴、4轴
——依次为电机与轴1,轴1与轴2,轴2与轴3,轴3与轴4之间的传动效率。
1. 各轴转速:
2各轴输入功率:
3各轴输入转矩:
运动和动力参数结果如下表:
轴名 功率P KW 转矩T Nm 转速r/min
输入 输出 输入 输出
电动机轴 3.67 36.5 960
1轴 3.52 3.48 106.9 105.8 314.86
2轴 3.21 3.18 470.3 465.6 68
3轴 3.05 3.02 1591.5 1559.6 19.1
4轴 3 2.97 1575.6 1512.6 19.1
六 设计V带和带轮:
1.设计V带
①确定V带型号
查课本 表13-6得: 则
根据 =4.4, =960r/min,由课本 图13-5,选择A型V带,取 。
查课本第206页表13-7取 。
为带传动的滑动率 。
②验算带速: 带速在 范围内,合适。
③取V带基准长度 和中心距a:
初步选取中心距a: ,取 。
由课本第195页式(13-2)得: 查课本第202页表13-2取 。由课本第206页式13-6计算实际中心距: 。
④验算小带轮包角 :由课本第195页式13-1得: 。
⑤求V带根数Z:由课本第204页式13-15得:
查课本第203页表13-3由内插值法得 。
EF=0.1
=1.37+0.1=1.38
EF=0.08
查课本第202页表13-2得 。
查课本第204页表13-5由内插值法得 。 =163.0 EF=0.009
=0.95+0.009=0.959
则
取 根。
⑥求作用在带轮轴上的压力 :查课本201页表13-1得q=0.10kg/m,故由课本第197页式13-7得单根V带的初拉力:
作用在轴上压力:
。
七 齿轮的设计:
1高速级大小齿轮的设计:
①材料:高速级小齿轮选用 钢调质,齿面硬度为250HBS。高速级大齿轮选用 钢正火,齿面硬度为220HBS。
②查课本第166页表11-7得: 。
查课本第165页表11-4得: 。
故 。
查课本第168页表11-10C图得: 。
故 。
③按齿面接触强度设计:9级精度制造,查课本第164页表11-3得:载荷系数 ,取齿宽系数 计算中心距:由课本第165页式11-5得:
考虑高速级大齿轮与低速级大齿轮相差不大取
则 取
实际传动比:
传动比误差: 。
齿宽: 取
高速级大齿轮: 高速级小齿轮:
④验算轮齿弯曲强度:
查课本第167页表11-9得:
按最小齿宽 计算:
所以安全。
⑤齿轮的圆周速度:
查课本第162页表11-2知选用9级的的精度是合适的。
2低速级大小齿轮的设计:
①材料:低速级小齿轮选用 钢调质,齿面硬度为250HBS。
低速级大齿轮选用 钢正火,齿面硬度为220HBS。
②查课本第166页表11-7得: 。
查课本第165页表11-4得: 。
故 。
查课本第168页表11-10C图得: 。
故 。
③按齿面接触强度设计:9级精度制造,查课本第164页表11-3得:载荷系数 ,取齿宽系数
计算中心距: 由课本第165页式11-5得:
取 则 取
计算传动比误差: 合适
齿宽: 则取
低速级大齿轮:
低速级小齿轮:
④验算轮齿弯曲强度:查课本第167页表11-9得:
按最小齿宽 计算:
安全。
⑤齿轮的圆周速度:
查课本第162页表11-2知选用9级的的精度是合适的。
八 减速器机体结构尺寸如下:
名称 符号 计算公式 结果
箱座厚度
10
箱盖厚度
9
箱盖凸缘厚度
12
箱座凸缘厚度
15
箱座底凸缘厚度
25
地脚螺钉直径
M24
地脚螺钉数目
查手册 6
轴承旁联结螺栓直径
M12
盖与座联结螺栓直径
=(0.5 0.6)
M10
轴承端盖螺钉直径
=(0.4 0.5)
10
视孔盖螺钉直径
=(0.3 0.4)
8
定位销直径
=(0.7 0.8)
8
, , 至外箱壁的距离
查手册表11—2 34
22
18
, 至凸缘边缘距离
查手册表11—2 28
16
外箱壁至轴承端面距离
= + +(5 10)
50
大齿轮顶圆与内箱壁距离
>1.2
15
齿轮端面与内箱壁距离
>
10
箱盖,箱座肋厚
9
8.5
轴承端盖外径
+(5 5.5)
120(1轴)
125(2轴)
150(3轴)
轴承旁联结螺栓距离
120(1轴)
125(2轴)
150(3轴)
九 轴的设计:
1高速轴设计:
①材料:选用45号钢调质处理。查课本第230页表14-2取 C=100。
②各轴段直径的确定:根据课本第230页式14-2得: 又因为装小带轮的电动机轴径 ,又因为高速轴第一段轴径装配大带轮,且 所以查手册第9页表1-16取 。L1=1.75d1-3=60。
因为大带轮要靠轴肩定位,且还要配合密封圈,所以查手册85页表7-12取 ,L2=m+e+l+5=28+9+16+5=58。
段装配轴承且 ,所以查手册62页表6-1取 。选用6009轴承。
L3=B+ +2=16+10+2=28。
段主要是定位轴承,取 。L4根据箱体内壁线确定后在确定。
装配齿轮段直径:判断是不是作成齿轮轴:
查手册51页表4-1得:
得:e=5.9<6.25。
段装配轴承所以 L6= L3=28。
2 校核该轴和轴承:L1=73 L2=211 L3=96
作用在齿轮上的圆周力为:
径向力为
作用在轴1带轮上的外力:
求垂直面的支反力:
求垂直弯矩,并绘制垂直弯矩图:
求水平面的支承力:
由 得
N
N
求并绘制水平面弯矩图:
求F在支点产生的反力:
求并绘制F力产生的弯矩图:
F在a处产生的弯矩:
求合成弯矩图:
考虑最不利的情况,把 与 直接相加。
求危险截面当量弯矩:
从图可见,m-m处截面最危险,其当量弯矩为:(取折合系数 )
计算危险截面处轴的直径:
因为材料选择 调质,查课本225页表14-1得 ,查课本231页表14-3得许用弯曲应力 ,则:
因为 ,所以该轴是安全的。
3轴承寿命校核:
轴承寿命可由式 进行校核,由于轴承主要承受径向载荷的作用,所以 ,查课本259页表16-9,10取 取
按最不利考虑,则有:
则 因此所该轴承符合要求。
4弯矩及轴的受力分析图如下:
5键的设计与校核:
根据 ,确定V带轮选铸铁HT200,参考教材表10-9,由于 在 范围内,故 轴段上采用键 : ,
采用A型普通键:
键校核.为L1=1.75d1-3=60综合考虑取 =50得 查课本155页表10-10 所选键为:
中间轴的设计:
①材料:选用45号钢调质处理。查课本第230页表14-2取 C=100。
②根据课本第230页式14-2得:
段要装配轴承,所以查手册第9页表1-16取 ,查手册62页表6-1选用6208轴承,L1=B+ + + =18+10+10+2=40。
装配低速级小齿轮,且 取 ,L2=128,因为要比齿轮孔长度少 。
段主要是定位高速级大齿轮,所以取 ,L3= =10。
装配高速级大齿轮,取 L4=84-2=82。
段要装配轴承,所以查手册第9页表1-16取 ,查手册62页表6-1选用6208轴承,L1=B+ + +3+ =18+10+10+2=43。
③校核该轴和轴承:L1=74 L2=117 L3=94
作用在2、3齿轮上的圆周力:
N
径向力:
求垂直面的支反力
计算垂直弯矩:
求水平面的支承力:
计算、绘制水平面弯矩图:
求合成弯矩图,按最不利情况考虑:
求危险截面当量弯矩:
从图可见,m-m,n-n处截面最危险,其当量弯矩为:(取折合系数 )
计算危险截面处轴的直径:
n-n截面:
m-m截面:
由于 ,所以该轴是安全的。
轴承寿命校核:
轴承寿命可由式 进行校核,由于轴承主要承受径向载荷的作用,所以 ,查课本259页表16-9,10取 取
则 ,轴承使用寿命在 年范围内,因此所该轴承符合要求。
④弯矩及轴的受力分析图如下:
⑤键的设计与校核:
已知 参考教材表10-11,由于 所以取
因为齿轮材料为45钢。查课本155页表10-10得
L=128-18=110取键长为110. L=82-12=70取键长为70
根据挤压强度条件,键的校核为:
所以所选键为:
从动轴的设计:
⑴确定各轴段直径
①计算最小轴段直径。
因为轴主要承受转矩作用,所以按扭转强度计算,由式14-2得:
考虑到该轴段上开有键槽,因此取
查手册9页表1-16圆整成标准值,取
②为使联轴器轴向定位,在外伸端设置轴肩,则第二段轴径 。查手册85页表7-2,此尺寸符合轴承盖和密封圈标准值,因此取 。
③设计轴段 ,为使轴承装拆方便,查手册62页,表6-1,取 ,采用挡油环给轴承定位。选轴承6215: 。
④设计轴段 ,考虑到挡油环轴向定位,故取
⑤设计另一端轴颈 ,取 ,轴承由挡油环定位,挡油环另一端靠齿轮齿根处定位。
⑥ 轮装拆方便,设计轴头 ,取 ,查手册9页表1-16取 。
⑦设计轴环 及宽度b
使齿轮轴向定位,故取 取
,
⑵确定各轴段长度。
有联轴器的尺寸决定 (后面将会讲到).
因为 ,所以
轴头长度 因为此段要比此轮孔的长度短
其它各轴段长度由结构决定。
(4).校核该轴和轴承:L1=97.5 L2=204.5 L3=116
求作用力、力矩和和力矩、危险截面的当量弯矩。
作用在齿轮上的圆周力:
径向力:
求垂直面的支反力:
计算垂直弯矩:
.m
求水平面的支承力。
计算、绘制水平面弯矩图。
求F在支点产生的反力
求F力产生的弯矩图。
F在a处产生的弯矩:
求合成弯矩图。
考虑最不利的情况,把 与 直接相加。
求危险截面当量弯矩。
从图可见,m-m处截面最危险,其当量弯矩为:(取折合系数 )
计算危险截面处轴的直径。
因为材料选择 调质,查课本225页表14-1得 ,查课本231页表14-3得许用弯曲应力 ,则:
考虑到键槽的影响,取
因为 ,所以该轴是安全的。
(5).轴承寿命校核。
轴承寿命可由式 进行校核,由于轴承主要承受径向载荷的作用,所以 ,查课本259页表16-9,10取 取
按最不利考虑,则有:
则 ,
该轴承寿命为64.8年,所以轴上的轴承是适合要求的。
(6)弯矩及轴的受力分析图如下:
(7)键的设计与校核:
因为d1=63装联轴器查课本153页表10-9选键为 查课本155页表10-10得
因为L1=107初选键长为100,校核 所以所选键为:
装齿轮查课本153页表10-9选键为 查课本155页表10-10得
因为L6=122初选键长为100,校核
所以所选键为: .
十 高速轴大齿轮的设计
因 采用腹板式结构
代号 结构尺寸和计算公式 结果
轮毂处直径
72
轮毂轴向长度
84
倒角尺寸
1
齿根圆处的厚度
10
腹板最大直径
321.25
板孔直径
62.5
腹板厚度
25.2
电动机带轮的设计
代号 结构尺寸和计算公式 结果
手册157页 38mm
68.4mm
取60mm
81mm
74.7mm
10mm
15mm
5mm
十一.联轴器的选择:
计算联轴器所需的转矩: 查课本269表17-1取 查手册94页表8-7选用型号为HL6的弹性柱销联轴器。
十二润滑方式的确定:
因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度。
十三.其他有关数据见装配图的明细表和手册中的有关数据。
十四.参考资料:
《机械设计课程设计手册》(第二版)——清华大学 吴宗泽,北京科技大学 罗圣国主编。
《机械设计课程设计指导书》(第二版)——罗圣国,李平林等主编。
《机械课程设计》(重庆大学出版社)——周元康等主编。
《机械设计基础》(第四版)课本——杨可桢 程光蕴 主编。
❷ 带式输送机传动装置的设计
一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW
3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m
五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.
六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm
II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N•m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm
(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N•m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危险截面C的强度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。
主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N•m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够
(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min
(1)已知nII=121.67(r/min)
两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够
二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够
七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。
八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳.
放油螺塞
选用外六角油塞及垫片M18×1.5
根据《机械设计基础课程设计》表5.3选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:
:
(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12
(4)箱座凸缘厚度b=1.5z=1.5×8=12
(5)箱座底凸缘厚度b2=2.5z=2.5×8=20
(6)地脚螺钉直径df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)
(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位销直径d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距离C1
(15) Df.d2
(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>9.6 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3
D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.
九、润滑与密封
1.齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2.滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4.密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。
十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。
十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版
❸ 机械设计题目:带式运输机传动系统中的展开式二级圆柱齿轮减速器
给你一份我以前做的:
摘 要
齿轮箱作为一种基础设备,被广泛应用,其性能优劣直接影响着机械设备的运行状况。而目前许多工厂尚不具备制造高精度齿轮箱的加工设备。另一方面,再好的设备加工出的零件也存在误差,其累积误差仍会影响齿轮箱装配后的传动性能。本文提出的无侧隙传动技术,从新的角度提出了在设备条件不足的情况下,利用主副齿轮来实现飞剪机的无侧隙传动。
“零侧间隙啮合”是:在尽量周到地考虑飞剪机工作条件下,将齿轮加工成在某一特定状态(例如温度,轴承游隙等)为“零侧间隙啮合”,事实上并非没有侧隙,只能说齿轮啮合的齿侧间隙是很小的。
常消除齿隙有很多方法,如提高加工精度,利用圆锥齿轮,四个齿轮串联布置机构,利用主副齿轮。本设计就是采用主副齿轮。在某些飞剪机上,为了改善上下滚筒同步齿轮的工作性能,被动轴上的齿轮往往采用主副齿轮结构,以便齿轮在无侧隙情况下工作,减少和消除冲击负荷。利用主副齿轮则能有效消除齿侧间隙,并且在减速器突然制动时,仍然能实现无间隙传动。
关键词: 飞剪机;减速器;间隙;主副齿轮
Abstract
Recer is widely used as a basic facility. It’s performance which is excellent or inferior has an impact on the running state of the mechanical equipment. But many factories don’t have machining equipment for manufacturing high-precision recer at present . On the other hand, even though the part is manufactured by the best equipment, it also has error. And their accumulative errors still affect on the transmission performance of recer after assembled.No lateral gap technology in this article put forward using main-second gear to achieve no lateral gap transmission of the flying shears at the state of having no adequate equipment by a new way.
“No lateral gap ingear” is processing gear to a particular state(such as temperature, bearing clearance, etc.),considering the working conditions as much as possible. But in fact,it’s impossible that the gears have no lateral gap.The laterl gap of the gear is very small.
Usually there are many ways to eliminate lateral gap,such as improving the processing accuracy,using bevel gear, using four tandem gears and using main-second gear.This design has used the main-second gear. In some flying shears the running performance of the top and bottom selsyn roller usually can be improved by using main-second gear on the gear of the driven shaft.It can make the gear working at no lateral gap and eliminate shock load. The use of the main-second gear can eliminate lateral gap,and it still can achieve no lateral gap transmission when the recer is suddenly braked.
Key words:Flying shears; Recer; Lateral gap; Main-second gear
目 录
1 前言 1
2 研究内容 2
3 传动方案的分析与拟定 2
4 电动机的选择 2
5 传动装置的运动及动力参数的选择和计算 2
5.1 传动装备的总效率为 2
5.2 传动比的分配 2
5.3 传动装置的运动和动力参数计算 2
5.3.1 各轴的转速计算: 2
5.3.2 各轴的输入功率计算: 3
5.3.3 各轴输入转矩的计算: 3
6 齿轮的计算 3
6.1 第一对斜齿轮的计算 3
6.1.1 材料选择 3
6.1.2 初选齿轮齿数 3
6.1.3 按齿面接触强度设计 3
6.1.4 按齿根弯曲疲劳强度设计 5
6.1.5 几何尺寸计算 7
6.1.6 齿轮的尺寸计算 7
6.1.7 传动验算 8
6.2 第二对斜齿轮的计算 8
6.2.1 材料选择 8
6.2.2 初选齿数 8
6.2.3 按齿面接触强度设计 9
6.2.4 按齿根弯曲疲劳强度设计 10
6.2.5 几何尺寸计算 12
6.3 按标准修正齿轮 12
6.3.1 修正中心距 12
6.3.2 对第二对齿轮修正螺旋角: 13
6.3.3 第二对齿轮的分度圆和中心距: 13
6.3.4 计算齿宽: 13
6.3.5 齿轮的尺寸计算 13
6.3.6 传动验算 14
7 轴的设计 15
7.1 高速轴的设计 15
7.1.1 初步确定轴的最小直径: 15
7.1.2 根据轴向定位要求确定轴各段的直径和长度 15
7.2 中速轴的设计 16
7.2.1 初步确定轴的最小直径: 17
7.2.2 初步选择滚动轴承 17
7.2.4 轴承端盖 18
7.2.5 键的选择 18
7.3 低速轴的计算 18
7.3.1 初步确定轴的最小直径 18
7.3.2 根据轴向定位要求确定轴各段的直径和长度 19
8 轴的校核 19
8.1 高速轴的校核 20
8.1.1 各支点间的距离 20
8.1.2 求轴上的载荷: 20
8.2 中速轴的校核 21
8.2.1 各支点间的距离 22
8.2.2 求轴上的载荷: 22
8.3 低速轴的校核 24
8.3.1 各轴段的距离 24
8.3.2 求轴上的载荷: 24
9 轴承的寿命计算 26
9.1 高速轴上轴承的寿命计算 26
9.1.1 求两轴承受到的径向载荷 和 26
9.1.2 求两轴承的轴向力 和 27
9.1.3 求轴承当量重载荷P1和P2 27
9.2 中速轴上轴承的寿命计算 27
9.2.1 求两轴承的轴向力 和 28
9.2.2 求轴承当量重载荷P1和P2 28
9.3 低速轴上轴承的寿命计算 28
9.3.1 求两轴承受到的径向载荷 和 28
9.3.2 求两轴承的轴向力 和 29
9.3.3 求轴承当量重载荷P1和P2 29
10 键的校核 30
10.1 高速轴上和联轴器相配处的键: 30
10.2 中速轴上和齿轮相配处的键: 30
10.3 低速轴上和齿轮相配处的键: 30
11 主副齿轮的设计 31
11.1 第一对主副齿轮的设计 31
11.2 第二对主副齿轮的设计 32
12 减速器箱体的设计 33
12.1 箱盖各钢板的尺寸: 34
12.1.1 箱盖左侧钢板的尺寸如图: 34
12.1.2 箱盖轴承座的尺寸如图: 34
12.1.3 箱盖吊耳环下钢板尺寸 34
12.1.4 吊耳环的尺寸 35
12.1.5 高速上肋板的尺寸 35
12.1.6 中速轴上的肋板的尺寸 35
12.1.7 视孔盖的尺寸 36
12.1.9 箱盖顶钢板的尺寸 37
12.1.10 箱盖凸缘钢板尺寸 37
12.1.11 箱盖前后侧面的尺寸 38
12.2 箱座上各钢板的尺寸 38
12.2.1 箱座底座的尺寸 38
12.2.2 箱座左侧面的尺寸 39
12.2.3 轴承座的尺寸 39
12.2.4 吊钩的尺寸 39
12.2.5 箱座凸缘的尺寸 39
12.2.6 低速端肋板钢板尺寸 40
12.2.7 高速轴端肋板的尺寸 40
12.2.8 中速端肋板的尺寸 41
12.2.9 箱座右侧面钢板的尺寸 41
12.2.10 箱座前后端面的尺寸 42
12.2.11 箱座底板 42
13 结束语 42
参考文献: 43
致谢: 43
1 前言
齿轮箱作为一种基础设备,被广泛应用,其性能优劣直接影响着机械设备的运行状况。而目前许多工厂尚不具备制造高精度齿轮箱的加工设备。另一方面,再好的设备加工出的零件也存在误差,其累积误差仍会影响齿轮箱装配后的传动性能。本文提出的无侧隙传动技术,从新的角度提出了在设备条件不足的情况下,利用主副齿轮来实现飞剪机的无侧隙传动。
“零侧间隙啮合”是:在尽量周到地考虑飞剪机工作条件下,将齿轮加工成在某一特定状态(例如温度,轴承游隙等)为“零侧间隙啮合”,事实上并非没有侧隙,只能说齿轮啮合的齿侧间隙是很小的。
常消除齿隙有很多方法,如提高加工精度,利用圆锥齿轮,四个齿轮串联布置机构,利用主副齿轮。本设计就是采用主副齿轮(图1)。在某些飞剪机上,为了改善上下滚筒同步齿轮的工作性能,被动轴上的齿轮往往采用主副齿轮结构,以便齿轮在无侧隙情况下工作,减少和消除冲击负荷。利用主副齿轮则能有效消除齿侧间隙,并且在减速器突然制动时,仍然能实现无间隙传动。
图1.1 飞剪机同步齿轮传动的主副齿轮结构 a)结构简图 b)啮合关系
1—从动轴的主齿轮 2—从动轴的副齿轮 3—主动轴上的齿轮 4—弹簧 5,6—销钉
从动轴上的主齿轮1与轴用键固定,而副齿轮2则与主齿轮1的轮毂滑动配合(亦可直接空套在从动轴上)。主副齿轮通过压装在主齿轮轮毂上的销钉5及装在副齿轮上的销钉6与弹簧4相联,主副齿轮1和2同时与装在主动轴上的齿轮3啮合。在弹簧4的作用下,副齿轮始终越前主齿轮一个角度,这就保证了上下滚筒的同步齿轮在无侧隙下工作。弹簧4的设计应能克服飞剪机制动时所产生的惯性力。这种齿轮侧隙消除装通常用在低速大载荷飞剪机上,例如在设计FL—60型曲柄连杆飞剪机的同步齿轮时就采用了这种结构。
2 研究内容
本设计对象为飞剪齿轮减速器,总传动比i=16,实际输入功率N=120KW;输入转速n1=1500rpm,输出转速n2≈85rpm,技术要求为满足上述功率及速比要求,减速器启动频繁,工作时一般不逆转,设计一台能消除传动时的齿轮侧间隙的减速器,要求减速器箱体为焊接结构件。合理公配速比,设计计算齿轮,轴及各零部件的强度,刚度。分析无侧间隙传动的基本理论及保证措施。
3 传动方案的分析与拟定
减速器采用双级圆柱展开式齿轮减速器。
4 电动机的选择
5 传动装置的运动及动力参数的选择和计算
5.1 传动装备的总效率为
η=η12η22η33η4=0.992 0.972 0.993 0.96=0.872 (5.1)
η1为联轴器的效率,取0.99,
η2为齿轮传动的效率,取0.97,
η3为滚动轴承的效率,取0.99,
η4为滚筒的效率,取0.96。
5.2 传动比的分配
i1= (5.2)
取系数1.35 i=16 则,
i1=4.6476
i2=i/i1=16/4.6476=3.4426 (5.3)
5.3 传动装置的运动和动力参数计算
5.3.1 各轴的转速计算:
n1=1500r/min
n2=n1/i1=1500/4.6476r/min=322.747r/min (5.4)
n3=n2/i2=322.747/3.4426r/min=93.751r/min (5.5)
n4=n3=93.751r/min (5.6)
5.3.2 各轴的输入功率计算:
P1=N η1=120 0.99kW=118.8kW (5.7)
P2=P1 η2 η3=118.8 0.97 0.99kW=114.0836kW (5.8)
P3=P2 η2 η3=114.0836 0.97 0.99kW=109.5545kW (5.9)
P4=P3 η3 η1=109.5545 0.99 0.99kW=106.3744kW (5.10)
5.3.3 各轴输入转矩的计算:
T1=9550P1/n1=9550 118.8 1500N m=756.36 N m (5.11)
T2=9550P2/n2=9550 114.0836 322.7472 N m =3375.702N m (5.12)
T3=9550P3/n3=9550 109.5545 93.751 N m =11159.8327N m (5.13)
T4=9550P4/n4=9550 106.3744 93.751 N m=10937.7555 N m (5.14)
各轴的运动及动力参数:
轴号 转速n r/min 功率P kw 转矩T N m 传动比
1 1500 118.8 756.36 4.6476
2 322.75 114.08 3375.7 3.4426
3 93.75 109.55 11159.83 1
4 93.75 106.37 10937.76
6 齿轮的计算
6.1 第一对斜齿轮的计算
6.1.1 材料选择
选大小齿轮材料均为40Cr,并经调质及表面淬火,齿面硬度为48~55HRC,齿轮精度等级选择6级,初选螺选角β=14°。由参考文献《机械设计》(表10-6)查得材料的弹性影响系数 。
6.1.2 初选齿轮齿数
选小齿轮齿数Z1=24,Z2=Z1 =24 4.6476=111.54 取Z2=112
6.1.3 按齿面接触强度设计
d1t (6.1)
6.1.3.1 确定载荷系数
因大小齿轮均为硬齿面,故宜选取稍小的齿宽系数,取 d=0.8,试选Kt=1.6。
由参考文献《机械设计》查得
Hlim1= Hlim2=1100Mp
6.1.3.2 计算应力循环系数。
N1=60n1jLh=60 1500 1 (2 8 300 15)=6.48 109 (6.2)
N2=N1/i1=6.48 109/4.6476=1.39 109 (6.3)
由参考文献《机械设计》(图10-19)查得接触疲劳强度
KHN1=0.88 KHN2=0.95
6.1.3.3 计算接触疲劳许用应力
失效率取1%,安全系数S=1。
1= = Mp=968Mp (6.4)
2= = Mp=1045Mp (6.5)
=( 1+ 2)/2=(968+1045)/2Mp=1006.5Mp (6.6)
6.1.3.4 小齿分度圆的直径
d1t =77.54mm (6.7)
6.1.3.5 计算圆周速度
= = m/s=6.09m/s (6.8)
6.1.3.6 计算齿宽b及模数mnt
b= =0.8 77.54mm=62.032mm (6.9)
mnt= = mm=3.135mm (6.10)
h=2.25mnt=7.053mm
b/h=62.032/7.053=8.795 (6.11)
6.1.3.7 计算纵向重合度
=0.318 =0.318 0.8 24 =1.522 (6.12)
6.1.3.8 计算载荷系数K
根据 =6.09m/s,6级精度,由参考资料《机械设计》(图10-8)查得动载系数K =1.08,由参考资料《机械设计》(表10-3)查得
K =1.1,由由参考资料《机械设计》(表10-4)硬齿面齿轮一栏查得小齿轮相对支承非对称布置,6级精度,K 时
K =1.05+0.31 (1+0.6 ) +0.19 (6.13)
故K =1.05+0.31 (6.14)
考虑到齿轮为6级精度,所以取K =1.43
故 =1 (6.15)
由参考资料《机械设计》(图10-13)查得 =1.29
6.1.3.9 按实际的载荷系数校正所算得的分度圆直径
(6.16)
6.1.3.10 计算模数mn
(6.17)
6.1.4 按齿根弯曲疲劳强度设计
(6.18)
6.1.4.1 计算载荷系数
=1 (6.18)
6.1.4.2 计算弯曲疲劳强度极限
由参考资料《机械设计》(图10-20d)查得齿轮的弯曲疲劳强度极限
6.1.4.3 弯曲疲劳寿命系数
由参考资料《机械设计》(图10-18)查得弯曲疲劳寿命系数 0,
6.1.4.4 计算弯曲疲劳许用应力
取弯曲疲劳安全系数S=1.4
(6.19)
(6.20)
6.1.4.5 计算大小齿轮的 并加以比较
由参考文献《机械设计》(表10-5)查取齿形系数
,
查取应力校正系数
,
则 (6.21)
(6.22)
比较可得,小齿轮的数值较大,取小齿轮的值。
6.1.4.6 计算螺旋角影响系数
根据 =1.522,由参考资料《机械设计》(图10-28)查得 =0.88
6.1.4.7 计算重合度
由参考资料《机械设计》(图10-26)查得 , 。
则 (6.23)
则有, (6.24)
对比计算结果,齿面接触强度得出的模数为mn=3.198mm,由齿根弯曲疲劳强度得出的模数为mn=3.082mm。由于齿轮模数m的大小主要取决于弯曲疲劳强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力仅与齿轮直径有关,所以取标准值mn=3.5mm,取分度圆直径d1=79.11mm。
(6.25)
取Z1=22
则Z2=uZ1=4.6476 22=102.24,取Z2=102 (6.26)
6.1.5 几何尺寸计算
6.1.5.1 计算中心距
(6.27)
圆整后,取a=224mm
6.1.5.2 按圆整后的中心距修正螺旋角
(6.28)
因 值改变不多,故参数 , ,ZH 等不必修正。
6.1.5.3 计算分度圆直径
(6.29)
(6.30)
6.1.5.4 计算齿轮宽度
(6.31)
圆整后取B1=75mm,B2=64mm
6.1.6 齿轮的尺寸计算
6.1.6.1 基圆直径
(6.32)
(6.33)
6.1.6.2 分度圆齿厚
(6.34)
6.1.6.3 齿高
齿顶高 (6.35)
齿根高 (6.36)
齿全高 (6.37)
6.1.6.4 齿顶圆直径
(6.38)
(6.39)
6.1.6.5 齿根圆直径
(6.40)
(6.41)
6.1.6.6 分度圆齿槽宽和齿距
(6.42)
(6.43)
6.1.7 传动验算
6.1.6.1 按齿面接触强度验算:
其中
6.1.6.2 按齿根弯曲强度验算
取YFa中较大者YFa1进行计算。
(6.44)
其中
6.2 第二对斜齿轮的计算
6.2.1 材料选择
选大小齿轮材料均为40Cr,并经调质及表面淬火,齿面硬度为48~55HRC,齿轮精度等级选择6级,初选螺选角β=14°。
6.2.2 初选齿数
选小齿轮齿数Z1=30,Z2=Z1 =30 3.4426=103.28 取Z2=104
6.2.3 按齿面接触强度设计
d1t (6.45)
6.2.3.1 各项系数
因大小齿轮均为硬齿面,故宜选取稍小的齿宽系数,取 d=0.8,试选Kt=1.6。由参考文献《机械设计》(表10-6)查得材料的弹性影响系数 。
6.2.3.2 Hlim值
由参考文献《机械设计》查得
Hlim1= Hlim2=1100Mp
6.2.3.3 计算应力循环系数。
N1=60n1jLh=60 322.75 1 (2 8 300 15)=1.394 109 (6.46)
N2=N1/i1=1.394 109/3.4426=4.05 108 (6.47)
由参考文献《机械设计》(图10-19)查得接触疲劳强度
KHN1=0.89 KHN2=0.94
6.2.3.4 计算接触疲劳许用应力
失效率取1%,安全系数S=1。
1= = Mp=979Mp (6.48)
2= = Mp=1034Mp (6.49)
=( 1+ 2)/2=(979+1034)/2Mp=1006.5Mp (6.50)
6.2.3.5 小齿分度圆的直径
d1t =130.25mm (6.51)
6.2.3.6 计算圆周速度
= = m/s=2.201m/s (6.52)
6.2.3.7 计算齿宽b及模数
b= =0.8 130.25mm=104.2mm
= = mm=4.213mm (6.53)
h=2.25mnt=9.479mm
b/h=104.2/9.479=8.795
6.2.3.8 计算纵向重合度
=0.318 =0.318 0.8 30 =1.903 (6.54)
6.2.3.9 计算载荷系数K
根据 =2.201m/s,6级精度,由参考资料《机械设计》(图10-8)查得动载系数K =1.04,由参考资料《机械设计》(表10-3)查得
K =1.1,由由参考资料《机械设计》(表10-4)硬齿面齿轮一栏查得小齿轮相对支承非对称布置,6级精度,K 时
K =1.0+0.31 (1+0.6 ) +0.19
故K =1.0+0.31 (6.55)
考虑到齿轮为6级精度,所以取K =1.35
故 =1 (6.66)
由参考资料《机械设计》(图10-13)查得 =1.29
6.2.3.10 按实际的载荷系数校正所算得的分度圆直径
(6.67)
6.2.3.11 计算模数mn
(6.68)
6.2.4 按齿根弯曲疲劳强度设计
(6.69)
6.2.4.1 计算载荷系数
=1 (6.70)
6.2.4.2 值
由参考资料《机械设计》(图10-20d)查得齿轮的弯曲疲劳强度极限
6.2.4.3 弯曲疲劳寿命系数
由参考资料《机械设计》(图10-18)查得弯曲疲劳寿命系数 0,
6.2.4.4 计算弯曲疲劳许用应力
取弯曲疲劳安全系数S=1.4
(6.71)
(6.72)
6.2.4.5 计算大小齿轮的 并加以比较
由参考文献《机械设计》(表10-5)查取齿形系数:
,
查取应力校正系数:
,
则 (6.73)
(6.74)
比较可得,大齿轮的数值较大,取大齿轮的值。
6.2.4.6 计算螺旋角影响系数
根据 =1.903,由参考资料《机械设计》(图10-28)查得 =0.88
6.2.4.7 计算重合度
由参考资料《机械设计》(图10-26)查得 , 。
则
则有, (6.75)
对比计算结果,齿面接触强度得出的模数为mn=4.21mm,由齿根弯曲疲劳强度得出的模数为mn=4.31mm。由于齿轮模数m的大小主要取决于弯曲疲劳强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力仅与齿轮直径有关,所以取标准值mn=4.5mm,取分度圆直径d1=130.25mm。
,取Z1=28
则Z2=uZ1=3.4426 28=96.39,取Z2=96
6.2.5 几何尺寸计算
6.2.5.1 计算中心距
(6.76)
圆整后,取a=288mm
6.2.5.2 按圆整后的中心距修正螺旋角
(6.77)
因 值改变不多,故参数 , ,ZH 等不必修正。
6.2.5.3 计算分度圆直径
6.2.5.4 计算齿轮宽度
圆整后取B1=120mm,B2=103mm
6.3 按标准修正齿轮
6.3.1 修正中心距
中心距之和为 ,查得标准中心距为a=539mm, , 。由于第一个中心距和标准相同,所以只需将第二个中心距修改为 即可。由于模数取的标准值所以不作变化,只更改第二对齿轮的齿数。
由于 所以
而 ,则有 , 。
中心距 ,改变不大,所以仍取 。
6.3.2 对第二对齿轮修正螺旋角:
(6.78)
因为改变不多,故 , , 等不必修正。
6.3.3 第二对齿轮的分度圆和中心距:
6.3.4 计算齿宽:
圆整后取 ,
6.3.5 齿轮的尺寸计算
6.3.5.1 基圆直径
6.3.5.2 分度圆齿厚
6.3.5.3 齿高
齿顶高
齿根高
齿全高
6.3.5.4 齿顶圆直径
7.3.5.5 齿根圆直径
6.3.5.6 分度圆齿槽宽和齿距
6.3.6 传动验算
6.3.6.1 按齿面接触强度验算:
其中
6.3.6.2 按齿根弯曲强度验算
取 中较大者 进行计算。
其中
所以满足。
还是发你邮箱吧
❹ 急求带式输送机传动装置中的二级圆柱齿轮减速器毕业设计
前 言
机械设计综合课程设计在机械工程学科中占有重要地位,它是理论应用于实际的重要实践环节。本课程设计培养了我们机械设计中的总体设计能力,将机械设计系列课程设计中所学的有关机构原理方案设计、运动和动力学分析、机械零部件设计理论、方法、结构及工艺设计等内容有机地结合进行综合设计实践训练,使课程设计与机械设计实际的联系更为紧密。此外,它还培养了我们机械系统创新设计的能力,增强了机械构思设计和创新设计。
本课程设计的设计任务是展开式二级圆柱齿轮减速器的设计。减速器是一种将由电动机输出的高转速降至要求的转速比较典型的机械装置,可以广泛地应用于矿山、冶金、石油、化工、起重运输、纺织印染、制药、造船、机械、环保及食品轻工等领域。
本次设计综合运用机械设计及其他先修课的知识,进行机械设计训练,使已学知识得以巩固、加深和扩展;学习和掌握通用机械零件、部件、机械传动及一般机械的基本设计方法和步骤,培养学生工程设计能力和分析问题,解决问题的能力;提高我们在计算、制图、运用设计资料(手册、 图册)进行经验估算及考虑技术决策等机械设计方面的基本技能,同时给了我们练习电脑绘图的机会。
最后借此机会,对本次课程设计的各位指导老师以及参与校对、帮助的同学表示衷心的感谢。
由于缺乏经验、水平有限,设计中难免有不妥之处,恳请各位老师及同学提出宝贵意见。
带式输送机概论
带式输送机是一种摩擦驱动以连续方式运输燃料的机械。应用它可以将物料在一定的输送线上,从最初的供料点到最终的卸料点间形成一种物料的输送流程。它既可以进行碎散物料的输送,也可以进行成件物品的输送。除进行纯粹的物料输送外,还可以与各工业企业生产流程中的工艺过程的要求相配合,形成有节奏的流水作业运输线。所以带式输送机广泛应用于现代化的各种工业企业中。在矿山的井下巷道、矿井地面运输系统、露天采矿场及选矿厂中,广泛应用带式输送机。它用于水平运输或倾斜运输。使用非常方便。
输送机发展历史
中国古代的高转筒车和提水的翻车,是现代斗式提升机和刮板输送机的雏形;17世纪中,开始应用架
空索道输送散状物料;19世纪中叶,各种现代结构的输送机相继出现。
1868年,在英国出现了带式输送机;1887年,在美国出现了螺旋输送机;1905年,在瑞士出现了钢带式输送机;1906年,在英国和德国出现了惯性输送机。此后,输送机受到机械制造、电机、化工和冶金工业技术进步的影响,不断完善,逐步由完成车间内部的输送,发展到完成在企业内部、企业之间甚至城市之间的物料搬运,成为材料搬运系统机械化和自动化不可缺少的组成部分。
输送机的特点
带式输送机是煤矿最理想的高效连续运输设备,与其他运输设备(如机车类)相比具有输送距离长、运量大、连续输送等优点,而且运行可靠,易于实现自动化和集中化控制,尤其对高产高效矿井,带式输送机已成为煤炭开采机电一体化技术与装备的关键设备。
带式输送机主要特点是机身可以很方便的伸缩,设有储带仓,机尾可随采煤工作面的推进伸长或缩短,结构紧凑,可不设基础,直接在巷道底板上铺设,机架轻巧,拆装十分方便。当输送能力和运距较大时,可配中间驱动装置来满足要求。根据输送工艺的要求,可以单机输送,也可多机组合成水平或倾斜的运输系统来输送物料。
带式输送机广泛地应用在冶金、煤炭、交通、水电、化工等部门,是因为它具有输送量大、结构简单、维修方便、成本低、通用性强等优点。
带式输送机还应用于建材、电力、轻工、粮食、港口、船舶等部门。
一、 设计任务书
设计一用于带式运输机上同轴式二级圆柱齿轮减速器
1. 总体布置简图
2. 工作情况
工作平稳、单向运转
3. 原始数据
运输机卷筒扭矩(N•m) 运输带速度(m/s) 卷筒直径(mm) 使用年限(年) 工作制度(班/日)
350 0.85 380 10 1
4. 设计内容
(1) 电动机的选择与参数计算
(2) 斜齿轮传动设计计算
(3) 轴的设计
(4) 滚动轴承的选择
(5) 键和联轴器的选择与校核
(6) 装配图、零件图的绘制
(7) 设计计算说明书的编写
5. 设计任务
(1) 减速器总装配图1张(0号或1号图纸)
(2) 齿轮、轴、轴承零件图各1张(2号或3号图纸)
(3) 设计计算说明书一份
二、 传动方案的拟定及说明
为了估计传动装置的总传动比范围,以便选择合适的传动机构和拟定传动:方案,可由已知条件计算其驱动卷筒的转速nw:
三. 电动机的选择
1. 电动机类型选:Y行三相异步电动机
2. 电动机容量
(1) 卷筒轴的输出功率
(2) 电动机的输出功率
传动装置的总效率
式中, 为从电动机至卷筒轴之间的各传动机构和轴承的效率。由《机械设计课程设计》(以下未作说明皆为此书中查得)表2-4查得:V带传动 ;滚动轴承 ;圆柱齿轮传动 ;弹性联轴器 ;卷筒轴滑动轴承 ,则
故
(3) 电动机额定功率
由第二十章表20-1选取电动机额定功率
由表2-1查得V带传动常用传动比范围 ,由表2-2查得两级展开式圆柱齿轮减速器传动比范围 ,则电动机转速可选范围为
可选符合这一范围的同步转速的电动3000 。
根据电动机所需容量和转速,由有关手册查出只有一种使用的电动机型号,此种传动比方案如下表:
电动机型号 额定功率
电动机转速
传动装置传动比
Y100L-2 3 同步 满载 总传动比 V带 减速器
3000 2880 62.06 2
三、 计算传动装置总传动比和分配各级传动比
1. 传动装置总传动比
2. 分配各级传动比
取V带传动的传动比 ,则两级圆柱齿轮减速器的传动比为
按展开式布置考虑润滑条件,为使两级大齿轮直径相近由图12展开式曲线的
则i
所得 符合一般圆柱齿轮传动和两级圆柱齿轮减速器传动比的常用范围。
四、计算传动装置的运动和动力参数:
按电动机轴至工作机运动传递路线推算,得到各轴的运动和动力参数
1.各轴转速:
2.各轴输入功率:
Ⅰ~Ⅲ轴的输出功率分别为输入功率乘轴承效率0.99,卷筒轴输出功率则为输入功率乘卷筒的传动效率0.96,计算结果见下表。
3. 各轴输入转矩:
Ⅰ~Ⅲ轴的输出转矩分别为输入转矩乘轴承效率0.99,卷筒轴输出转矩则为输入转矩乘卷筒的传动效率0.96,计算结果见下表。
综上,传动装置的运动和动力参数计算结果整理于下表:
轴名 功率
转矩
转速
传动比
效率
输入 输出 输入 输出
电机轴 2.3 7.63 2880 2
0.96
I轴 2.21 14.65 1440
7.13
0.95
II轴 2.1 99.29 201. 96
4.35 0.95
III轴
2.0 410.58 46.43
1.00 0.98
卷筒轴 1.94 398.34
第三章 主要零部件的设计计算
§3.1 展开式二级圆柱齿轮减速器齿轮传动设计
§3.1.1 高速级齿轮传动设计
1. 选定齿轮类型、精度等级、材料及齿数
1)按以上的传动方案,选用直齿圆柱齿轮传动。
2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。
3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,大齿轮为正火处理,小齿轮热处理均为调质处理且大、小齿轮的齿面硬度分别为260HBS,215HBS。
4)选小齿轮的齿数 ,大齿轮的齿数为 。
2. 按齿面接触强度设计
由设计公式进行试算,即
(1) 确定公式内的各计算数值
1) 试选载荷系数
2) 由以上计算得小齿轮的转矩:
3) 查6-12(机械设计基础)表选取齿宽系数 ,查图6-37(机械设计基础)按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。
计算接触疲劳许用应力,取失效概率为1%,安全系数S=1
4)计算应力循环次数
5) 按接触疲劳寿命系数
(2) 计算:
1) 带入 中较小的值,求得小齿轮分度圆直径 的最小值为
3) 计算齿宽: 取 ,
4) 计算分度圆直径与模数、中心距:
模数: 取第一系列标准值m=1.5
分度圆直径:
中心距:
5) 校核弯曲疲劳强度:
符合齿形因数 由图6-40得 =4.35, =3.98
弯曲疲劳需用应力:
1) 查图6-41得弯曲疲劳强度极限 : ;
2) 查图6-42取弯曲疲劳寿命系数
3) 计算弯曲疲劳许用应力.
取弯曲疲劳安全系数S=1,得
4) 校核计算:
<
<
故弯曲疲劳强度足够
确定齿轮传动精度:
圆周速度:
对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级
§3.1.2 低速级齿轮传动设计
1. 选定齿轮类型、精度等级、材料及齿数
1)按以上的传动方案,选用直齿圆柱齿轮传动。
2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。
3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,热处理均为正火调质处理且大、小齿轮的齿面硬度分别为200HBS,250HBS,二者材料硬度差为40HBS。
4)选小齿轮的齿数 ,大齿轮的齿数为 ,取 。
2. 按齿面接触强度设计
由设计公式进行试算,即
2) 确定公式内的各计算数值
1) 试选载荷系数
2) 由以上计算得小齿轮的转矩
3) 查表及其图选取齿宽系数 ,由图6-37按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。
4) 计算接触疲劳许用应力,取失效概率为1%,安全系数S=1
5) 查图6-42取弯曲疲劳寿命系数
按接触疲劳寿命系数
模数: 由表6-2取第一系列标准模数
分度圆直径:
中心距:
齿宽:
校核弯曲疲劳强度:
复合齿形因数 由图6-40得
6)计算接触疲劳许用应力,取失效概率为1%,安全系数S=1
得
校核计算: <
<
故弯曲疲劳强度足够
确定齿轮传动精度:
圆周速度:
对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级
对各个轴齿轮相关计算尺寸
表6-3高速轴齿轮各个参数计算列表
名称 代号 计算公式
齿数 Z
模数
压力角
齿高系数
顶隙系数
齿距 P
齿槽宽 e
齿厚 s
齿顶高
齿根高
齿高 h
分度圆直径 d
基圆直径
齿顶圆直径
齿根圆直径
中心距
表6-3低速轴齿轮各个参数计算列表
名称 代号 计算公式
齿数 Z
模数
压力角
齿高系数
顶隙系数
齿距 P
齿槽宽 e
齿厚 s
齿顶高
齿根高
齿高 h
分度圆直径 d
基圆直径
齿顶圆直径
齿根圆直径
中心距
V带的设计
1)计算功率
2)选择带型
据 和 =2880由图10-12<械设计基础>选取z型带
3)确定带轮基准直径
由表10-9确定 <械设计基础>
1) 验算带速
因为 故符合要求
2) 验算带长
初定中心距
由表10-6选取相近
3) 确定中心距
4) 验算小带轮包角
故符合要求
5) 单根V带传递额定功率
据 和 查图10-9得
8) 时单根V带的额定功率增量:据带型及 查表10-2<械设计基础>得
10)确定带根数
查表10-3 查表10-4 <械设计基础>
11) 单根V带的初拉力
查表10-5
12)用的轴上的力
13带轮的结构和尺寸
以小带轮为例确定其结构和尺寸,由图10-11<械设计基础>带轮宽
§3.3 轴系结构设计
§3.3.1 高速轴的轴系结构设计
一、轴的结构尺寸设计
根据结构及使用要求,把该轴设计成阶梯轴且为齿轮轴,共分七段,其中第5段为齿轮,如图2所示:
图2
由于结构及工作需要将该轴定为齿轮轴,因此其材料须与齿轮材料相同,均为合金钢,热处理为调制处理, 材料系数C为118。
所以,有该轴的最小轴径为:
考虑到该段开键槽的影响,轴径增大6%,于是有:
标准化取
其他各段轴径、长度的设计计算依据和过程见下表:
表6 高速轴结构尺寸设计
阶梯轴段 设计计算依据和过程 计算结果
第1段
(考虑键槽影响)
13.6
16
60
第2段
(由唇形密封圈尺寸确定)
20(18.88)
50
第3段 由轴承尺寸确定
(轴承预选6004 B1=12)
20
23
第4段
24(23.6)
145
第5段 齿顶圆直径
齿宽
33
38
第6段
24
10
第7段
20
23
二、轴的受力分析及计算
轴的受力模型简化(见图3)及受力计算
L1=92.5 L2=192.5 L3=40
三、轴承的寿命校核
鉴于调整间隙的方便,轴承均采用正装.预设轴承寿命为3年即12480h.
校核步骤及计算结果见下表:
表7 轴承寿命校核步骤及计算结果
计算步骤及内容 计算结果
6007轴承
A端 B端
由手册查出Cr、C0r及e、Y值 Cr=12.5kN
C0r=8.60kN
e=0.68
计算Fs=eFr(7类)、Fr/2Y(3类) FsA=1809.55 FsB=1584.66
计算比值Fa/Fr FaA /FrA>e FaB /FrB< e
确定X、Y值 XA= 1,YA = 0, XB =1 YB=0
查载荷系数fP 1.2
计算当量载荷
P=Fp(XFr+YFa) PA=981.039 PB=981.039
计算轴承寿命
9425.45h
小于
12480h
由计算结果可见轴承6007合格.
表8 中间轴结构尺寸设计
阶梯轴段 设计计算依据和过程 计算结果
第1段
由轴承尺寸确定
(轴承预选6008 )
33.6
40
25
第2段
(考虑键槽影响)
45(44.68)
77.5
第3段
50
12.5
第4段
99
109
第5段
46
39
考虑到低速轴的载荷较大,材料选用45,热处理调质处理,取材料系数
所以,有该轴的最小轴径为:
考虑到该段开键槽的影响,轴径增大6%,于是有:
标准化取
其他各段轴径、长度的设计计算依据和过程见下表:
表10 低速轴结构尺寸设计
阶梯轴段 设计计算依据和过程 计算结果
第1段
(考虑键槽影响)
(由联轴器宽度尺寸确定)
52.49
60(55.64)
142
第2段
(由唇形密封圈尺寸确定)
64(63.84)
50
第3段
66
16
第4段 由轴承尺寸确定
(轴承预选6014C )
70
24
第5段
78
75
第6段
20
88
20
第7段
齿宽+10
80(79.8)
119
§3.3.4 各轴键、键槽的选择及其校核
因减速器中的键联结均为静联结,因此只需进行挤压应力的校核.
一、 高速级键的选择及校核:
带轮处键:按照带轮处的轴径及轴长选 键B8X7,键长50,GB/T1096
联结处的材料分别为: 45钢(键) 、40Cr(轴)
二、中间级键的选择及校核:
(1) 高速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B14X9GB/T1096
联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、20Cr(轴)
此时, 键联结合格.
三、低速级级键的选择及校核
(1)低速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B22X14,键长 GB/T1096
联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、45(轴)
其中键的强度最低,因此按其许用应力进行校核,查手册其
该键联结合格
(2)联轴器处键: 按照联轴器处的轴径及轴长选 键16X10,键长100,GB/T1096
联结处的材料分别为: 45钢 (联轴器) 、45钢(键) 、45(轴)
其中键的强度最低,因此按其许用应力进行校核,查手册其
该键联结合格.
第四章 减速器箱体及其附件的设计
§4.1箱体结构设计
根据箱体的支撑强度和铸造、加工工艺要求及其内部传动零件、外部附件的空间位置确定二级齿轮减速器箱体的相关尺寸如下:(表中a=322.5)
表12 箱体结构尺寸
名称 符号 设计依据 设计结果
箱座壁厚 δ 0.025a+3=11 11
考虑铸造工艺,所有壁厚都不应小于8
箱盖壁厚 δ1 0.02a+3≥8 9.45
箱座凸缘厚度 b 1.5δ 16.5
箱盖凸缘厚度 b1 1.5δ1 14.18
箱座底凸缘厚度 b2 2.5δ 27.5
地脚螺栓直径 df 0.036a+12 24(23.61)
地脚螺栓数目 n 时,n=6
6
轴承旁联结螺栓直径 d1 0.75df 18
箱盖与箱座联接螺栓直径 d 2 (0.5~0.6)df 12
轴承端盖螺钉直径和数目 d3,n (0.4~0.5)df,n 10,6
窥视孔盖螺钉直径 d4 (0.3~0.4)df 8
定位销直径 d (0.7~0.8) d 2 9
轴承旁凸台半径 R1 c2 16
凸台高度 h 根据位置及轴承座外径确定,以便于扳手操作为准 34
外箱壁至轴承座端面距离 l1 c1+c2+ (5~10) 42
大齿轮顶圆距内壁距离 ∆1 >1.2δ 11
齿轮端面与内壁距离 ∆2 >δ 10
箱盖、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7
轴承端盖凸缘厚度 t (1~1.2) d3 10
轴承端盖外径 D2 D+(5~5.5) d3 120
轴承旁边连接
螺栓距离
S
120
第五章 运输、安装和使用维护要求
1、减速器的安装
(1)减速器输入轴直接与原动机连接时,推荐采用弹性联轴器;减速器输出轴与工作机联接时,推荐采用齿式联轴器或其他非刚性联轴器。联轴器不得用锤击装到轴上。
(2)减速器应牢固地安装在稳定的水平基础上,排油槽的油应能排除,且冷却空气循环流畅。
(3)减速器、原动机和工作机之间必须仔细对中,其误差不得大于所用联轴器的许用补偿量。
(4)减速器安装好后用手转动必须灵活,无卡死现象。
(5)安装好的减速器在正式使用前,应进行空载,部分额定载荷间歇运转1~3h后方可正式运转,运转应平稳、无冲击、无异常振动和噪声及渗漏油等现象,最高油温不得超过100℃;并按标准规定检查轮齿面接触区位置、面积,如发现故障,应及时排除。
2、使用维护
本类型系列减速器结构简单牢固,使用维护方便,承载能力范围大,公称输入功率0.85—6660kw,公称输出转矩100—410000N.m,不怕工况条件恶劣,是适用性很好,应用量大面广的产品。可通用于矿山、冶金、运输、建材、化工、纺织、轻工、能源等行业的机械传动。但有以下限制条件:
1.减速器高速轴转速不高于1000r/min;
2.减速器齿轮圆周速度不高于20m/s;
3.减速器工作环境温度为—40~45℃,低于0℃时,启动前润滑油应预热到8℃以上,高于45℃时应采取隔热措施。
3、减速器润滑油的更换:
(1)减速器第一次使用时,当运转150~300h后须更换润滑油,在以后的使用中应定期检查油的质量。对于混入杂质或变质的油须及时更换。一般情况下,对于长期工作的减速器,每500~1000h必须换油一次。对于每天工作时间不超过8h的减速器,每1200~3000h换油一次。
(2)减速器应加入与原来牌号相同的油,不得与不同牌号的油相混用。牌号相同而粘度不同的油允许混合用。
(3)换油过程中,蜗轮应使用与运转时相同牌号的油清洗。
(4)工作中,当发现油温温升超过80℃或油池温度超过100℃及产生不正常的噪声等现象时,应停止使用,检查原因。如因齿面胶合等原因所致,必须排除故障,更换润滑油后,方可继续运转。
减速器应定期检修。如发现擦伤、胶合及显著磨损,必须采用有效措施制止或予以排除。备件必须按标准制造,更新的备件必须经过跑合和负荷试验后才能正式使用。 用户应有合理的使用维护规章制度,对减速器的运转情况和检验中发现的问题应做认真的记录 。
小 结
转眼两周的时间过去了,感觉时间过得真快,忙忙碌碌终于把机械设计做出来了。我通过这次设计学到了很多东西。使我对机械设计的内容有了进一步的了解.
因为刚结束课程就搞设计,还没有来得及复习,所以刚开始遇到好多的问题,都感觉很棘手.因为机械设计是把我们这学期所学知识全部综合起来了,还用到了许多先前开的课程,例如金属工艺学,材料力学,机械原理等.
首先,我们要运用知识想好用什么结构,然后进行轴大小长短的设计,要校核,选轴承。最后还要校核低速轴,看能否用。键也是一件重要的零件,校核也不可避免。所有这些都用到了力学和机械设计得内容,可是我当时力学没有学好,机械设计又没完全掌握,做这次设计真是不容易啊!.
但通过这次机械设计学到了许多,不仅是在知识方面,重要是在观念方面。以往我们不管做什么都有现成的东西,而我们只要算别人现有的东西就可以了,其实那就是抄。但现在很多是自己设计,没有约束了反而不知所措了。其次,我在这次设计中出现了许多问题,经过常老师得指点,我学到了许多课本上没有的东西他并且给我们讲了一些实际用到的经验.收获真是破多啊!最后就是我们大学的课程开了这么多,我们一定要把基础打牢,为以后的综合运用打下基础啊.这次机械设计课程就体现了,我们现在很缺乏把自己学的东西联系起来的能力.
最后我总结一下通过这次机械设计我学到的。实践出真知,不假。通过设计我现在可以了解真正的设计是一个怎样的程序啊.而且其中出现了许多错误,为以后工作增加经验。虽然机设很累,但我很充实,我学到了许多知识,我增加了社会竞争力,我又多了解了机械,又进步了。总之,这次机械设计虽然很累,但是我学到了好多自己从前不知道和没有经历的经验。
参 考 文 献
1 <<机械设计>>第八版 濮良贵主编 高等教育出版社 ,2006
2 <<机械设计课程设计>>第1版 . 王昆,何小柏主编 .机械工业出版社 ,2004
3 <<机械原理>> 申永胜主编 清华大学出版社 ,1999
4 <<材料力学 >> 刘鸿文主编 高等教育出版社 ,2004
5 <<几何公差与测量>>第五版 甘永力主编 上海科学技术出版社 ,2003
6 <<机械制图>>
❺ 带式输送机传动装置设计!!!感激不尽
题目:传动装置,减速机设计及相关零件加工。
一.总体布置简图
1—电动机;2—带式运输机;3—齿轮减速器;4—联轴器;5—滚筒
二.工作情况:
载荷平稳、单向工作
三.原始数据
滚筒的扭矩T(Nm):520
滚筒的直径D(mm):260
运输带速度V(m/s):1.2
带速允许偏差(%):5
使用年限(年):8
工作制度(班/日):2
四.设计内容
传动方案的拟定及说明
一个好的传动方案,除了满足机器的功能要求外,还应当工作可靠,结构简单,尺寸紧凑,传动效率高,成本低廉以及使用维护方便。对比材料中2-1所示带式输送机的四种方案,再经由题目所知传动机由于工作载荷平稳,工作环境有轻尘,布局尺寸没有严格限制,将带传动放在高速级,即可缓冲吸振又能减小传动的尺寸。具体方案见图1-1。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y系列的三相异步电动机。
2.电动机容量的选择
1) 工作机所需功率Pw
Pw=2.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.895
Pd=2.682kW
3.电动机转速的选择
nd=(i1’ i2’…in’)nw
则V带传动η1=0.96
初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-2查出电动机型号为Y132S-6,其额定功率为3kW,满载转速960r/min。基本符合题目所需的要求
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=88.19
i=10.89
2.合理分配各级传动比
取V带传动的传动比i1,取i1=2.7,则单级圆柱齿轮减速器的传动比为i2=i/i1= =4.03,
取i2=4
各轴转速、输入功率、输入转矩
项 目 电动机轴 高速轴I 低速轴II 滚筒W轴
转速(r/min) 960 384 88.19 88.19
功率(kW) 2.682 2.575 2.471 2.422
转矩(N?m) 26.68 64.04 245.813 262.276
传动比 4 4.356 4.356 1
效率 0.96 0.97 0.99 0.99
传动件设计计算
(1)材料选择以斜齿圆柱齿轮传动方式
小齿轮:材料45钢,调质处理HBS1=230
大齿轮:材料45钢(或者ZG310~570)正火处理,HBS2=190
(2)参数选择
1)齿数,取Z1=22,则Z2=I Z=4.356×22=95.832 取Z2=96
2)齿宽系数, 查表6-6 取
❻ 带式输送机传动装置设计
一、带式输送机传动装置,可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,不过增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
二、设计安装调试:
1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。
2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。
3.螺旋张紧行程为机长的1%~1.5%。
4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。
5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50~70mm。
6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。
7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查:
(1)各托辊应与输送带接触,转动灵活。
(2)各润滑处无漏油现象。
(3)各紧固件无松动。
(4)轴承温升不大于40°C,且最高温度不超过80°C。
(5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。
❼ 机械设计课程设计关于设计带式运输机上的二级圆柱齿轮减速器要怎么做
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
载
鼓轮的直径D(mm):350
运输带速度V(m/s):0.7
带速允许偏差(%):5
使用年限(年):5
工作制度(班/日):2
四. 设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
1、 第一阶段:总体计算和传动件参数计算
2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择
1) 工作机所需功率Pw
Pw=3.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.电动机转速的选择
nd=(i1’?i2’…in’)nw
初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=38.4
i=25.14
2.合理分配各级传动比
由于减速箱是同轴式布置,所以i1=i2。
因为i=25.14,取i=25,i1=i2=5
速度偏差为0.5%<5%,所以可行。
各轴转速、输入功率、输入转矩
项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮
转速(r/min) 960 960 192 38.4 38.4
功率(kW) 4 3.96 3.84 3.72 3.57
转矩(N?m) 39.8 39.4 191 925.2 888.4
传动比 1 1 5 5 1
效率 1 0.99 0.97 0.97 0.97
传动件设计计算
1. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的;
4) 选取螺旋角。初选螺旋角β=14°
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt≥
1) 确定公式内的各计算数值
(1) 试选Kt=1.6
(2) 由图10-30选取区域系数ZH=2.433
(3) 由表10-7选取尺宽系数φd=1
(4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62
(5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(7) 由式10-13计算应力循环次数
N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8
N2=N1/5=6.64×107
(8) 由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98
(9) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]1==0.95×600MPa=570MPa
[σH]2==0.98×550MPa=539MPa
[