『壹』 带式输送机传动装置的设计
一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW
3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m
五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.
六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm
II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N•m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm
(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N•m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危险截面C的强度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。
主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N•m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够
(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min
(1)已知nII=121.67(r/min)
两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够
二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够
七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。
八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳.
放油螺塞
选用外六角油塞及垫片M18×1.5
根据《机械设计基础课程设计》表5.3选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:
:
(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12
(4)箱座凸缘厚度b=1.5z=1.5×8=12
(5)箱座底凸缘厚度b2=2.5z=2.5×8=20
(6)地脚螺钉直径df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)
(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位销直径d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距离C1
(15) Df.d2
(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>9.6 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3
D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.
九、润滑与密封
1.齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2.滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4.密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。
十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。
十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版
『贰』 如何 设计 带式输送机传动装置(急急急,谢谢大家了!!!)
一.已知条件:运输带工作拉力F=2000,运输带工卖举作速度V=1.8m/s。滚筒直径D=450mm,每日工作时速24T/h。传动不逆转,载荷平稳,工作年限5年。(启动载荷为名义载态唤荷的1.25倍,输送带的速度允许误差为5%)
二.应完成的工作
1.拟定、分析传动装置的设计方案
2.选择电动机,计算传动装置的运动和动力系数。
3.设计说明书一份帆配凯。
『叁』 带式运输机传动装置设计
1根据卷筒直径和带速计算出卷筒转速,根据卷筒直径和带拉力计算出卷筒转矩。
2算出功率。
3根据功率及工作条件选择电机
4根据电机和卷筒的转速,转矩,工作条件设计齿轮副
5计算和设计轴,轴连接方式,壳体……
6整理计算过程成文,画图
『肆』 带式输送机传动装置设计
一、带式输送机传动装置,可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,不过增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
二、设计安装调试:
1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。
2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。
3.螺旋张紧行程为机长的1%~1.5%。
4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。
5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50~70mm。
6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。
7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查:
(1)各托辊应与输送带接触,转动灵活。
(2)各润滑处无漏油现象。
(3)各紧固件无松动。
(4)轴承温升不大于40°C,且最高温度不超过80°C。
(5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。
『伍』 求带式输送机传动装置设计
课程设计说明书
一.电动机的选择:
1.选择电动机的类型:
按工作要求和条件,选用三机笼型电动机,封闭式结构,电压380V,Y系列斜闭式自扇冷式鼠笼型三相异步电动机。(手册P167)
选择电动机容量 :
滚筒转速:
负载功率:
KW
电动机所需的功率为:
(其中: 为电动机功率, 为负载功率, 为总效率。)
2.电动机功率选择:
折算到电动机的功率为:
3.确定电动机型号:
按指导书 表1推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围为: .取V带传动比 ,则总传动比理论范围为 ,故电动机转速的可选范围为
符合这一范围的同步转速有750,1000和1500
查手册 表 的:选定电动机类型为:
其主要性能:额定功率: ,满载转速: ,额定转速: ,质量:
二、确定传动装置的总传动比和分配传动比
1.减速器的总传动比为:
2、分配传动装置传动比:
按手册 表1,取开式圆柱齿轮传动比
因为 ,所以闭式圆锥齿轮的传动比 .
三.运动参数及动力参数计算:
1.计算各轴的转速:
I轴转速:
2.各轴的输入功率
电机轴:
I轴上齿轮的输入功率:
II轴输入功率:
III轴输入功率:
3.各轴的转矩
电动机的输出转矩:
四、传动零件的设计计算
1.皮带轮传动的设计计算:
(1)选择普通V带
由课本 表5.5查得:工作情况系数:
计算功率:
小带轮转速为:
由课本 图5.14可得:选用A型V带:小带轮直径
(2)确定带轮基准直径,并验算带速
小带轮直径 ,参照课本 表5.6,取 ,
由课本 表5.6,取
实际从动轮转速:
转速误差为:
满足运输带速度允许误差要求.
验算带速
在 范围内,带速合适.
(3)确定带长和中心距
由课本 式5.18得:
查课本 表5.1,得:V带高度:
得:
初步选取中心距:
由课本 式5.2得:
根据课本 表5.2选取V带的基准长度:
则实际中心距:
(4)验算小带轮包角:
据课本 式5.1得: (适用)
(5)确定带的根数:
查课本 表5.3,得: .查课本 表5.4,得:
查课本 表5.4,得: .查课本 表5.2,得:
由课本 式5.19得:
取 根.
(6)计算轴上压力
查课本 表5.1,得:
由课本 式5.20,得:单根V带合适的张紧力:
由课本 式5.21,得:作用在带轮轴上的压力为 :
2、齿轮传动的设计计算:
(1)选择齿轮材料及精度等级
初选大小齿轮的材料均为45钢,经调质处理,硬度为
由课本表取齿轮等级精度为7级,初选
(2)计算高速级齿轮
<1>查课本 表6.2得:
取 ,
由课本 图6.12取 ,由课本 表6.3,取 ,
齿数教少取 ,取 则 .
<2>接触疲劳许用应力
由课本 图6.14查得: .
由课本 表6.5,查得: ,
则应力循环次数:
查课本 图6.16可得接触疲劳的寿命系数: ,
.
<3>计算小齿轮最小直径
计算工作转矩:
由课本 表6.8,取: ,
<4>确定中心距:
为便于制造和测量,初定: .
<5>选定模数 齿数 和螺旋角
一般: ,初选: 则 .
由 得:
由课本 表6.1取标准模数: ,则:
取 ,则: .
取 , .
齿数比:
与 的要求比较,误差为1.6%,可用.是:
满足要求.
<6>计算齿轮分度圆直径
小齿轮: ;
大齿轮:
<7>齿轮宽度
圆整得大齿轮宽度: ,取小齿轮宽度: .
<8>校核齿轮弯曲疲劳强度
查课本 图6.15,得 ;
查课本 表6.5,得: ;
查课本 图6.17得:弯曲强度寿命系数: ;
由课本 表6.4,得: ,
Z较大 ,取 ,
则: ,
所以两齿轮齿根弯曲疲劳强度满足要求,此种设计合理.
〈9〉齿轮的基本参数如下表所示:
名称 符号 公式 齿1 齿2
齿数
19 112
分度圆直径
58.015 341.985
齿顶高
3 3
齿根高
3.75 3.75
齿顶圆直径
64.015 347.985
齿根圆直径
50.515 334.485
中心距
200
孔径 b
齿宽
80 75
五、轴的设计计算及校核:
1.计算轴的最小直径
查课本 表11.3,取:
轴:
轴:
轴:
取最大转矩轴进行计算,校核.
考虑有键槽,将直径增大 ,则: .
2.轴的结构设计
选材45钢,调质处理.
由课本 表11.1,查得: .
由课本 表11.4查得: , .
由课本 式10.1得:联轴器的计算转矩:
由课本 表10.1,查得: ,
按照计算转矩应小于联轴器公称转矩的条件,查手册 表8-7,
选择弹性柱销联轴器,型号为: 型联轴器,其公称转矩为:
半联轴器 的孔径: ,故取: .
半联轴器长度 ,半联轴器与轴配合的毂孔长度为: .
(1)轴上零件的定位,固定和装配
单级减速器中可以将齿轮安排在箱体中央,相对两轴承对称分布.齿轮左面由套筒定位,右面由轴肩定位,联接以平键作为过渡配合固定,两轴承均以轴肩定位.
(2)确定轴各段直径和长度
<1> 段:为了满足半联轴器的轴向定位要求, 轴段右端需制出一轴肩,故取 段的直径 ,左端用轴端挡圈定位,查手册表按轴端去挡圈直径 ,半联轴器与轴配合的毂孔长度: ,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故段的长度应比略短,取: .
<2>初步选择滚动轴承,因轴承同时受有径向力和轴向力的作用 ,故选用蛋列圆锥滚子轴承,参照工作要求并根据: .
由手册 表 选取 型轴承,尺寸: ,轴肩
故 ,左端滚动轴承采用绉件进行轴向定位,右端滚动轴承采用套筒定位.
<3>取安装齿轮处轴段 的直径: ,齿轮右端与右轴承之间采用套筒定位,已知齿轮轮毂的宽度为 ,为了使套筒端面可靠地压紧齿轮,此轴段应略短与轮毂宽度,故取: ,齿轮右端采用轴肩定位,轴肩高度 ,取 ,则轴环处的直径: ,轴环宽度: ,取 , ,即轴肩处轴径小于轴承内圈外径,便于拆卸轴承.
<4>轴承端盖的总宽度为: ,取: .
<5>取齿轮距箱体内壁距离为: .
, .
至此,已初步确定了轴的各段直径和长度.
(3)轴上零件的周向定位
齿轮,半联轴器与轴的周向定位均采用平键联接
按 查手册 表4-1,得:平键截面 ,键槽用键槽铣刀加工,长为: .
为了保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为; ,半联轴器与轴的联接,选用平键为: ,半联轴器与轴的配合为: .
滚动轴承与轴的周向定位是借过渡配合来保证的,此处选轴的直径尺寸公差为: .
(4)确定轴上圆角和倒角尺寸,
参照课本 表11.2,取轴端倒角为: ,各轴肩处圆角半径: 段左端取 ,其余取 , 处轴肩定位轴承,轴承圆角半径应大于过渡圆角半径,由手册 ,故取 段为 .
(5)求轴上的载荷
在确定轴承的支点位置时,查手册 表6-7,轴承 型,取 因此,作为简支梁的轴的支撑跨距 ,据轴的计算简图作出轴的弯矩图,扭矩图和计算弯矩图,可看出截面处计算弯矩最大 ,是轴的危险截面.
(6)按弯扭合成应力校核轴的强度.
<1>作用在齿轮上的力
因已知低速级大齿轮的分度圆直径为: ,
得: , , .
<2>求作用于轴上的支反力
水平面内支反力:
垂直面内支反力:
<3>作出弯矩图
分别计算水平面和垂直面内各力产生的弯矩.
计算总弯矩:
<4>作出扭矩图: .
<5>作出计算弯矩图: ,
.
<6>校核轴的强度
对轴上承受最大计算弯矩的截面的强度进行校核.
由课本 式11.4,得: ,
由课本 表11.5,得: ,
由手册 表4-1,取 ,计算得: ,
得: 故安全.
(7)精确校核轴的疲劳强度
校核该轴截面 左右两侧.
<1>截面 右侧:由课本 表11.5,得:
抗弯截面模量: ,
抗扭截面模量: ,
截面 右侧的弯矩: ,
截面 世上的扭矩为: ,
截面上的弯曲应力: ,
街面上行的扭转切应力: .
截面上由于轴肩而形成的理论应力集中系数 及 ,
由课本 图1.15,查得:
得:
由课本 图1.16,查得:材料的敏性系数为:
故有效应力集中系数为:
由课本 图1.17,取:尺寸系数 ;扭转尺寸系数: .
按磨削加工,
由课本 图1.19,取表面状态系数: .
轴未经表面强化处理,即: .
计算综合系数值为:
.
由课本第一章取材料特性系数: .
计算安全系数 :
由课本 式,得: ,
.
由课本 表11.6,取疲劳强度的许用安全系数: .
,故可知其安全.
<2>截面 左侧
抗弯截面模量为: .
抗扭截面模量为: .
弯矩及弯曲应力为: ,
扭矩及扭转切应力为: ,
过盈配合处的 值: ,由 ,得: .
轴按磨削加工,由课本 图1.19,取表面状态系数为: .
故得综合系数为: ,
.
所以在截面 右侧的安全系数为: ,
.
.
故该轴在截面右侧的强度也是足够的.
3. 确定输入轴的各段直径和长度
六. 轴承的选择及计算
1.轴承的选择:
轴承1:单列圆锥滚子轴承30211(GB/T 297-1994)
轴承2:单列圆锥滚子轴承30207(GB/T 297-1994)
2.校核轴承:
圆锥滚子轴承30211,查手册:
由课本 表8.6,取
由课本 表8.5,查得:单列圆锥滚子轴承 时的 值为: .
由课本 表8.7,得:轴承的派生轴向力: , .
因 ,故1为松边,
作用在轴承上的总的轴向力为: .
查手册 表6-7,得:30211型 , .
由课本 表8.5,查得: ,
,得: .
计算当量动载荷: ,
.
计算轴承寿命,由课本 式8.2,得: 取: .
则: .
七.键的选择和计算
1.输入轴:键 , , 型.
2.大齿轮:键 , , 型.
3.输出轴:键 , , 型.
查课本 表3.1, ,式3.1得强度条件: .
校核键1: ;
键2: ;
键3: .
所有键均符合要求.
八.联轴器的选择
选择 轴与电动机联轴器为弹性柱销联轴器
型号为: 型联轴器:
公称转矩: 许用转速: 质量: .
选择 轴与 轴联轴器为弹性柱销联轴器
型号为: 型联轴器:
公称转矩: 许用转速: 质量: .
九.减数器的润滑方式和密封类型的选择
1、 减数器的润滑方式:飞溅润滑方式
2、 选择润滑油:工业闭式齿轮油(GB5903-95)中的一种。
3、 密封类型的选择:密封件:毡圈1 30 JB/ZQ4606-86
毡圈2 40 JB/ZQ4606-86
十.设计小节
对一级减速器的独立设计计算及作图,让我们融会贯通了机械专业的各项知识,更为系统地认识了机械设计的全过程,增强了我们对机械行业的深入了解,同时也让我们及时了解到自己的不足,在今后的学习中会更努力地探究.
十一.参考资料
1.“课本”:机械设计/杨明忠 朱家诚主编 编号 ISBN 7-5629-1725-6 武汉理工大学出版社 2004年6月第2次印刷.
2.“手册”:机械设计课程设计手册/吴宗泽,罗圣国主编 编号ISBN7-04-019303-5 北京高等教育出版社 2006年11月第3次印刷.
3“指导书”:机械设计课程设计指导书/龚桂义,罗圣国主编 编号ISBN 7-04-002728-3 北京高等教育出版社 2006年11月第24次印刷.
『陆』 设计带式运输机传动装置
目 录一、 传动方案拟定-------------------------二、 电动机的选择-------------------------三、 各轴运动的总传动比并分配各级传动比---四、 运动参数及动力参数计算----------------五、 V带传动设计---------------------------六、 齿轮传动设计-------------------------七、 轴的设计-----------------------------八、 滚动轴承的选择及校核计算-------------九、 键的校核计算--------------------- 十、 联轴器的选择--------------------------十一、 润滑与密封 ---------------------------十二、 减速器附件的选择及简要说明----------------十三、 箱体主要结构尺寸的计算--------------------十四 参考文献一、传动方案拟定第四个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器1、 工作条件:使用年限5年,每年按300天计算,两班制工作,单向运转,载荷平稳。2、 原始数据:滚筒圆周力F=2.5KN;带速V=1.5m/s;滚筒直径D=300mm。 运动简图 二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.98×0.96=0.859(2)电机所需的工作功率:Pd=FV/1000η总=2500×1.5/(1000×0.859) =4.37KW(3)选用电动机查JB/T9616 1999选用Y132M2-6三相异步电动机,主要参数如下表1-2: 型 号额定功率KW转速r/min电流A效率%功率因数堵转电流额定电流堵转扭矩额定转矩最大转矩额定转矩Y132M2-6 5.5 960 12.6 85.3 0.78 6.5 2.0 2.2三、各轴运动的总传动比并分配各级传动比1、总传动比:工作机的转速 n筒=60×1000V/(πD)=60×1000×1.5/(4.14×300)=95.49r/mini总=n电动/n筒=960/95.49=10.052、分配各级传动比(1) 取i带=2.5(2) ∵i总=i齿×i 带∴i齿=i总/i带=10.05/2.5=4.02 四、运动参数及动力参数计算1、计算各轴转速(r/min)n电=960(r/min) nI=n电/i带=960/2.5=384(r/min)nII=nI/i齿=384/4.02=95.52(r/min)n筒=nII=95.52 (r/min)2、 计算各轴的功率(KW) P电= Pd=4.37KWPI=Pd×η带=4.73×0.96=4.20KW PII=PI×η轴承×η齿轮=4.2×0.99×0.97=4.03KWP筒=PI×η轴承×η联轴器=4.03×0.99×0.98=3.91KW3、 计算各轴转矩T电=9.55Pd/nm=9550×4.73/960=43.47N·mTI=9.55 PI /n1 =9550×4.2/384=104.45N·mTII =9.55 PII /n2=9550×4.03/95.52=402.92N·m T筒=9.55 P筒/n筒=9550×3.91/95.52=390.92 N·m将上述数据列表如下: 轴名参数 电动机I轴II轴滚筒轴转速n(r/min)96038495.5295.52功率p(kw)4.374.204.033.91转矩T(N·m)43.47104.45402.92390.92传动比i2.54.021.00效率η0.960.960.98 五、V带传动设计1、 选择普通V带截型由课本[1]表15-8得:kA=1.2 P电=4.37KWPC=KAP电=1.2×4.37=5.24KW据PC=5.24KW和n电=960r/min由[1]图15-8得:选用A型V带2、 确定小带轮基准直径由课本[1]表15-8,表15-4,表15-6,取dd1=112mm3、 确定大带轮基准直径 dd2=i带=2.5×112=280 mm4、验算带速带速V:V=πdd1n1/(60×1000)=π×112×960/(60×1000) =5.63m/s在5~25m/s范围内,带速合适5、初定中心距a0 0.7(dd1+ dd2)≤ a0 ≤ 2(dd1+ dd2)得 274.4≤a0≤784取a0=530 mm6、确定带的基准长L0=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×530+3.14(112+280)+(280-112)2/(4×530)=1689mm根据课本[1]表15-2选取相近的Ld=1800mm7、确定实际中心距aa≈a0+(Ld-Ld0)/2=530+(1800-1689)/2=585.5mm8、验算小带轮包角α1=180°-57.3° ×(dd2-dd1)/a=180°-57.3°×(280-112)/585.5=163.33°>120°(适用)9、确定带的根数单根V带传递的额定功率.据dd1和n1,查课本[1]表15-7得 P0=1.16KWi≠1时单根V带的额定功率增量.据带型及i查[1]表15-9得 △P0=0.11KW查[1]表15-10,得Kα=0.957;查[1]表15-12得 KL=1.01Z=PC/[(P1+△P1)KαKL]=5.24/[(1.16+0.11) ×0.957×1.01]=4.27 取Z=5根10、计算轴上压力由课本[1]表15-1查得q=0.11kg/m,单根V带的初拉力:F0=500PC/ZV(2.5/Kα-1)+qV2=500x5.24/5x5.63(2.5/0.957-1)+0.11x5.632 =153.55kN则作用在轴承的压力FQFQ=2ZF0sin(α1/2)=2×5×153.55sin(163.55°/2)=1519.7N11、计算带轮的宽度BB=(Z-1)e+2f=(5-1)×15+2×10=80 mm六、齿轮传动设计(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度229-286HBW;大齿轮材料也为45钢,正火处理,硬度为169-217HBW;精度等级:运输机是一般机器,速度不高,故选8级精度(2)按齿面接触疲劳强度设计该传动为闭式软齿面,主要失效形式为疲劳点蚀,故按齿面接触疲劳强度设计,再按齿根弯曲疲劳强度校核。设计公式为:d1≥ [(2k TI (u+1)(ZhZe)2/(φ[σH]2)]1/3①载荷系数K 查课本[1]表13-8 K=1.2 ②转矩TI TI=104450N·mm ③解除疲劳许用应力[σH] =σHlim ZN/SH按齿面硬度中间值查[1]图13-32 σHlim1=600Mpa σHlim2=550Mpa接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算N1=60×384×5×300×16=5.53x108N2=N1/i齿=5.53x109 /4.02=1.38×108查[1]课本图13-34中曲线1,得 ZN1=1.05 ZN2=1.1按一般可靠度要求选取安全系数SH=1.0[σH]1=σHlim1ZN1/Shmin=600x1.05/1=630 Mpa[σH]2=σHlim2ZN2/Shmin=550x1.1/1=605Mpa故得:[σH]= 605Mpa④计算小齿轮分度圆直径d1由[1]课本表13-9 按齿轮相对轴承对称布置,取 φd=1.0 ZH=2.5由[1]课本表13-10得ZE=189.8(N/mm2)1/2将上述参数代入下式d1≥ [(2k TI (u+1)(ZHZE)2/φ[σH]2)]1/3=[(2×1.2×104450 × (4.02+1)×(2.5×189.8)2/(1×4.02×6052)]1/3=57.5mm 取d1=60 mm⑤计算圆周速度V= nIπd1/(60×1000)=384×3.14×60/(60×1000)=1.21m/sV<6m/s 故取8级精度合适(3)确定主要参数①齿数 取Z1=24 Z2=Z1×i齿=24×4.02≈96.48=97②模数 m=d1/Z1=60/24=2.5 符合标准模数第一系列③分度圆直径d2=Z2 m=24×2.5=60mm d2=Z2 m=97×2.5=242.5 mm④中心距a=(d1+ d2)/2=(60+242.5)/2=151.25mm⑤齿宽 b=φdd1=1.0×60=60mm 取b2=60mm b1=b2+5 mm=65 mm(4)校核齿根弯曲疲劳强度①齿形因数Yfs 查[1]课本图13-30 Yfs1=4.26 Yfs2=3.97 ②许用弯曲应力[σF] [σF]=σFlim YN/SF 由课本[1]图13-31 按齿面硬度中间值得σFlim1=240Mpa σFlim2 =220Mpa 由课本[1]图13-33 得弯曲疲劳寿命系数YN:YN1=1 YN2=1 按一般可靠性要求,取弯曲疲劳安全系数SF=1 计算得弯曲疲劳许用应力为[σF1]=σFlim1 YN1/SF=240×1/1=240Mpa[σF2]= σFlim2 YN2/SF =220×1/1=220Mpa校核计算 σF1=2kT1YFS1/ (b1md1)=2×1.2×104450×4.26/(60×2.5×60)=118.66Mpa< [σF1]σF2=2kT1YFS2/ (b2md1)=118.66×3.97/4.26=110.58Mpa< [σF2]故轮齿齿根弯曲疲劳强度足够(5)齿轮的几何尺寸计算 齿顶圆直径dada1 =d1+2ha=60+5=65mmda2=d2+ ha=242.5+5=247.5mm 齿全高h h=(2 ha*+c*)m=(2+0.25)×2.5=5.625 mm 齿根高hf=(ha*+c*)m=1.25×2.5=3.125mm 齿顶高ha= ha*m = 1×2.5=2.5mm 齿根圆直径dfdf1=d1-2hf=60-6.25=53.75mmdf2=d2-2hf=242.5-6.25=236.25mm (6)齿轮的结构设计小齿轮采用齿轮轴结构,大齿轮采用锻造毛坯的腹板式结构。大齿轮的有关尺寸计算如下:轴孔直径d=60mm轮毂直径D1=1.6d=60×1.6=96mm轮毂长度L=1.2d=1.2×60=72mm轮缘厚度δ0=(3-4)m=7.5-10mm 取δ0=10mm轮缘内径D2=da2-2h-2δ0=247.5-2×5.625-20=216.25 mm 取D2 =216mm腹板厚度C=(0.2-0.3)b=12-18mm取C=18mm腹板中心孔直径D0=0.5(D1+D2)=0.5(96+216)=156mm腹板孔直径d0=15-25mm 取d0=20mm齿轮倒角取C2七、轴的设计 从动轴设计 1、选择轴的材料 确定许用应力 选轴的材料为45号钢,调质处理。查[1]表19-14可知:σb=600Mpa,查[1]表19-17可知:[σb] -1=55Mpa 2、按扭矩估算轴的最小直径 单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构要求考虑,输出端轴径应最小,最小直径为: d≥A(PⅡ/nⅡ)1/3 查[1]表19-16 A=115 则d≥115×(4.03/95.52)1/3mm=40mm 考虑键槽的影响,故应将轴径增大5%即d=40×1.05=42mm 要选联轴器的转矩Tc Tc=KTⅡ=1.5×402920=6.0438×105N·mm (查[1]表20-1 工况系数K=1.5) 查[2]附录6 选用连轴器型号为YLD10考虑联轴器孔径系列标准 故取d=45mm 3、轴的结构设计 轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。 1)联轴器的选择 联轴器的型号为YLD10联轴器:45×112 (2)确定轴上零件的位置与固定方式 单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置。在齿轮两边。轴外伸端安装联轴器,齿轮靠轴环和挡油环实现轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴承靠挡油环和端轴承盖实现轴向定位,靠过盈配合实现周向固定,联轴器靠轴肩平键和过盈配合分别实现轴向定位和周向定位。 (3)确定各段轴的直径将估算轴d=45mm作为外伸端直径d1与联轴器相配(如图),考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=50mm,齿轮和右端轴承从右侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=55mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=60mm。齿轮左端用轴环固定,右端用挡油环定位,轴环直径d5满足齿轮定位的同时,还应满足左侧轴承的安装要求,d5=68mm,根据选定轴承型号确定.左端轴承型号与左端轴承相同,取d6=55mm. (4)选择轴承型号由[2]附表5-1初选深沟球轴承,代号为6211,轴承宽度B=21。 (5)确定轴各段直径和长度由草绘图得Ⅰ段:d1=45mm 长度L1=110mmII段:d2=50mm 长度L2=60mmIII段:d3=55mm 长度L3=43mmⅣ段:d4=60mm 长度L4=70mmⅤ段:d5=68mm 长度L5=6mmⅦ段:d4=55mm 长度L6=35mm由上述轴各段长度可算得轴支承跨距L=133mm4、按弯矩复合强度校核(1)齿轮上作用力的计算 齿轮所受的转矩:T=TⅡ=402.92N·m 齿轮作用力: 圆周力:Ft=2000T/d=2000×402.92/242.5=3323.1N 径向力:Fr=Fttan200=3323.1×tan200=1209.5N(2)因为该轴两轴承对称,所以:LA=LB=66.5mm(3)绘制轴受力简图(如图a)(4)计算支承反力 FHA=FHB=Fr/2=1209.5/2=604.8NFVA=FVB=Ft/2=3323.1/2=1661.5N (5)绘制弯矩图由两边对称,知截面C的弯矩也对称。截面C在水平面弯矩(如图b)为MHC=FHAL/2=604.8×133÷2000=40.22N?m截面C在竖直面上弯矩(如图c)为:MVC=FVAL/2=1661.5×133÷2000=110.49N?m(6)绘制合弯矩图(如图d)MC=(MHC 2+ MVC 2)1/2=(40.222+110.492)1/2=117.58N?m(7)绘制扭矩图(如图e)转矩:T=TⅡ=402.92N·m(8)校核轴的强度转矩产生的扭剪可认为按脉动循环变化,取α=0.6,截面C处的当量弯矩:Mec=[MC2+(αT)2]1/2=[117.582+(0.6×402.92)2]1/2=268.8N·m(9)校核危险截面C所需的直径de=[Me /(0.1[σb] -1)]1/3=[268.8 /(0.1×55)]1/3=36.6mm考虑键槽的影响,故应将轴径增大5%de=36.6×1.05=38.4mm<60mm结论:该轴强度足够。
『柒』 带式传输机传动装置的设计
设计—用于带式运输机上的单级直齿圆柱减速器,已知条件:运输带的工作拉力F=1350 N,运输带的速度V=1.6 m/s卷筒直径D=260 mm,两班制工作(12小时),连续单向运转,载荷平移,工作年限10年,每年300工作日,运输带速度允许误差为±5%,卷筒效率0.96
一.传动方案分析:
如图所示减速传动由带传动和单级圆柱齿轮传动组成,带传动置于高速级具有缓冲吸振能力和过载保护作用,带传动依靠摩擦力工作,有利于减少传动的结构尺寸,而圆柱齿轮传动布置在低速级,有利于发挥其过载能力大的优势
二.选择电动机:
(1)电动机的类型和结构形式,按工作要求和工作条件,选用一般用途的Y系列三相异步交流电动机。
(2)电动机容量:
①卷筒轴的输出功率Pw=FV/1000=1350×1.6/1000=2.16 kw
②电动机输出功率Pd=Pw/η
传动系统的总效率:η=
式中……为从电动机至卷筒之间的各传动机构和轴承的效率。
由表查得V带传动=0.96,滚动轴承=0.99,圆柱齿轮传动
=0.97,弹性连轴器=0.99,卷筒轴滑动轴承=0.96
于是η=0.96××0.97×0.99×0.96≈0.88
故:
Pd= Pw/η=2.16/0.88≈2.45 kw
③ 电动机额定功率由表取得=3 kw
(3)电动机的转速:由已知条件计算卷筒的转速
即:
=60×1000V/πD=60×1000×1.6/3.14×260=118 r/min
V带传动常用传动比范围=2-4,单级圆柱齿轮的传动比范围=2-4
于是转速可选范围为 ==118×(2~4)×(2~4)
=472~1888 r/min
可见同步转速为 500 r/min和2000 r/min的电动机均合适,为使传动装置的传动比较小,结构尺寸紧凑,这里选用同步转速为960 ×r/min的电动机
传动系统总传动比i= =≈2.04
根据V带传动的常用范围=2-4取=4
于是单级圆柱齿轮减速器传动比 ==≈2.04
『捌』 机械设计课程设计---设计带式输送机传动装置
参考:
可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,它与普通胶带输送机相比增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
结构概述
伸缩胶带输送机分为固定部分和非固定部分两大部分。固定部分由机头传动装置、储带装置、收放胶带装置等组成;非固定部分由无螺栓连接的快速可拆支架、机尾等组成。
1、 机头传动装置由传动卷筒、减速器、液力联轴器、机架、卸载滚筒、清扫器组成。
n 机头传动装置是整个输送机的驱动部分,两台电机通过液力联轴器、减速器分别传递转距给两个传动滚筒(也可以用两个齿轮串联起来传动)。用齿轮传动时,应卸下一组电机、液力联轴器和减速器。
n 液力联轴器为YL-400型,它由泵轮、透平轮、外壳、从动轴等构成,其特点是泵轮侧有一辅助室,电机启动后,液流透过小孔进入工作室,因而能使负载比较平衡地启动而电机则按近于坚载启动,工作时壳体内加20号机械油,充油量为14m3,减速器采用上级齿轮减速,第一级为圆弧锥齿轮,第二、第三级为斜齿和直齿圆柱齿轮,总传动比为25.564,与SGW-620/40T型刮板输送机可通用互换,减速器用螺栓直接与机架连接。
n 传动卷筒为焊接结构,外径为Φ500毫米,卷筒表面有特制的硫化胶层,因此对提高胶带与滚筒的eua值,防止打滑、减少初张力,具有较好的效果。
n 卸载端和头部清扫器,带式逆止器,便于卸载,机头最前部有外伸的卸载臂,由卸载滚筒和伸出架组成,滚筒安装在伸出架上,其轴线位置可通过轴承两侧的螺栓进行调节,以调整胶带在机头部的跑偏,在卸载滚筒的下部装有两道清扫器,由于清扫器刮板紧压在胶带上,故可除去粘附着的碎煤,带式逆止器以防止停车时胶带倒转。
n 机架为焊接结构,用螺栓组装,机头传动装置所有的零部件均安装在机架上。电动机和减速器可根据具体情况安装在机架的左侧或右侧。
2、 储带装置包括储带转向架、储带仓架、换向滚筒、托辊小车、游动小车、张紧装置、张紧绞车等。
n 储带装置的骨架由框架和支架用螺栓连接而成,在机头传动装置两具转框架上装有三个固定换向滚筒与游动小车上的两个换向滚筒一起供胶带在储带装置中往复导向,架子上面安装固定槽形托辊和平托辊,以支撑胶带,架子内侧有轨道,供托辊不画和游动小车行走。
n 固定换向滚筒为定轴式,用于储带装置进行储带时,用以主承胶带,使其悬垂度不致过大,托辊小车随游动小车位置的变动,需要用人力拉出或退回。
n 游动小车由车架、换向滚筒、滑轮组、车轮等组成,滑轮组装在车身后都与另一滑轮组相适应,其位置可保证受力时车身不被抬起,这样,对保持车身稳定,防止换向滚筒上的胶带跑偏效果较好,车身下部还装着止爬钩,用以防止车轮脱轨掉道。
n 游动小车向左侧移动时,胶带放出,机身伸长,游动小车向右侧移动时,胶带储存,机身缩短,通过钢丝绳拉紧游动小车可使胶带得到适当的张紧度。
n 在储带装置的后部,设有张紧绞车,胶带张力指示器和张力缓冲器,张力缓冲器的作用是使输送机(在起动时让胶带始终保持一定的张力,以减少空载胶带的不适度和胶带层间的拍打)。
3、 收放胶带装置位于张紧绞车的后部,它由机架、调心托辊、减速器、电动机、旋杆等组成,其作用是将胶带增补到输送机机身上或从输送机机身取下,机架的两端和后端,各装一旋杆,当增加或减少胶带时用以夹紧主胶带,调心托辊组供卷筒收放胶带时导向,工作时将卷筒推进机架的一端用尾架顶起,另一端顶在减速器出轴的顶尖上,开动电动机通过减速器出轴的拨盘带动卷筒,收卷胶带,放出胶带,放出胶带时不开电机由外拖动卷筒反转,在不工作时活动轨可用插销挂在机架上,以缩小宽度,在活动轨上方应设置起重装置悬吊卷筒,巷道宽度可视具体情况适当拓宽,以利胶带收入时操作。
4、 中间架由无螺栓连接的快速可拆支架,由H型支架、钢管、平托辊和挂钩式槽形托辊、“V”型托辊等组成,是机器的非固定部分,钢管可作为拆卸的机身,用柱销固装在钢管上,用小锤可以打动,挂钩式槽形托辊胶接式,槽形角30°,用挂钩挂在钢管的柱销上,挂钩上制动的圆弧齿槽,托辊就是通过齿槽挂在柱销上的,可向前向后移动,以调节托辊位置控制胶带跑偏。
5、 上料装置、下料装置;上料装置安装在收放装置后边,由转向转导向接上料段,运送的物料从此段装上运至下料段,下料装置由下料段一组斜托辊将物料卸下,下料段直接极为,机尾由导轨(Ⅰ、Ⅱ、Ⅲ)和机尾滚筒座组成,导轨一端用螺栓固定在中支座上,并与另一导轨的前端用柱销胶接,藉以适应底板的不平,机尾滚筒与储带装置中的滚筒结构相同,能互换,其轴线位置可用螺栓调节,以调整胶带中在机尾的跑偏,机尾滚筒前端设有刮煤板,可使滚筒表面的碎煤或粉煤刮下,并收集泥槽中,用特制的拉泥板取出,机尾加上装有缓冲托辊组,受料时,可降低块煤对胶带的冲击,有利于提高胶带寿命