『壹』 低压系统既有有源滤波又有无功补偿应该怎么布置
城市轨道交通低压无功补偿装置及有源滤波装置的应用目前国内城市轨道交通线路供电系统低压配电系统普遍存在由于谐波问题导致电气设备损坏的现象,本文通过对谐波问题产生的原因进行分析,提出切合工程实施的解决方案。一、存在问题及现状分析(1)低压系统谐波来源低压动力照明负荷包括车站的通风空调、自动扶梯、排水、通风、消防及各车站、区间、变电所的照明负荷等能耗,其中含有大量变频负荷,且随着节能的需要,变频负荷所占的比重逐年提高。变频负荷也在逐年增加,其产生的谐波电流也在相应增加。(2)无功补偿为集中补偿地铁系统动力照明负荷的无功分量,目前地铁系统一般在变电所0.4kV母线设置电力电容器组,电容器组具有自动投切功能,且功率因数连续可调,调节范围一般在0.8~0.9之间,使补偿后的功率因数不低于0.9。(3)无功补偿装置与谐波的关系根据GB50157-2003《地铁设计规范》,地铁动力照明供电系统应采用并联电力电容器作为无功补偿装置。因此,国内地铁动力照明供电系统多采用并联电力电容器作为无功补偿装置。从理论上,该电力电容器无论在基波下还是在谐波下均表现为容性,因此,对于不论是来自于配电变压器高压侧的谐波还是来自于低压变频负荷产生的谐波均会起到放大作用。其放大作用已经被国内多个地铁系统的实测结果所验证。系统的谐波过大将会带来供电质量下降、断路器误动作、电容器谐振损坏、熔丝型保护装置意外动作以及敏感的电子通讯设备损坏等问题,进而造成电气设备的绝缘寿命和使用寿命大大降低。因此,目前国内绝大部分城市轨道交通采用的是预留电容补偿装置的做法,即便在工程中已经投入,也暂缓投入使用。二、设备发展情况结合目前现有的技术,滤波装置和无功补偿设备主要有以下几种方案:方案一、单体电容器三角形接法组成的低压无功功率补偿方案。如图1所示。该电容器虽然起到了无功补偿以提高功率因数的目的,但是它对系统所产生的5、7、11、13、23、25等次谐波起到了放大的作用。该接线形式技术简单、投资最少,但存在放大谐波的问题。
图1单体电容器三角形接法组成的低压无功功率补偿方案方案二、在低压400V母线上设有源滤波装置,如图2所示,它可以产生与来自于低压负荷的谐波大小相等,相位相反的谐波,从而有效地滤除谐波。有源滤波装置可以单独设定各次谐波的滤波目标,不存在过载及过补偿的问题。但是牵引负荷所产生的谐波会通过配电变压器传输至低压侧从而会经过该单体电容器,该方式对限制电容器放大牵引负荷产生的谐波没有效果。图2 低压400V母线上设有源滤波装置方案三、无功补偿装置采用带电抗器的无功补偿装置(即电容器串联电抗器),通过选取元件的参数使装置在谐波频率下为一低阻抗支路以吸收谐波,在基波频率下仅呈容性以提高功率因数。该方式下为避免谐波放大,需要单调谐滤波频率设定在地铁负荷产生的最低次谐波频率附近,且应在该最低次谐波频率下呈感性。但地铁供电系统中谐波频谱较宽,若采用该方式,则对其它更高次谐波的滤波效果较差。若设置多组调谐支路,由于有严格的投切次序,不易做到谐波与无功补偿共赢的效果的控制,较难满足系统运行状态的变化。同时该方式远期可扩展性及灵活性相对较差。4)带电抗器的无功补偿装置与有源滤波装置同时使用,它综合了两者的优点,有源滤波器对来自于低压系统调频负荷的谐波进行滤除,带电抗器的无功补偿装置使其在谐波下呈现感性,从而避免对谐波的放大,同时避免与系统形成谐振。只是,该方案对系统来说投资较大。综上,第4种方案既能够滤除来自低压负荷侧的谐波,又能避免对来自牵引负荷侧的谐波放大。但是,由于地铁低压谐波源种类繁多,在地铁建设初期很难对谐波进行准确计算,随着地铁建设的未来扩容和改造,很难合理地确定有源滤波装置的容量。因此建议先预留相应的安装位置和接线条件,在建设调试阶段对低压谐波进行实际测量和评估后,再根据评估结果最终确定有源滤波装置的投入容量。
¥
5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
城市轨道交通低压无功补偿装置及有源滤波装置的应用
城市轨道交通低压无功补偿装置及有源滤波装置的应用
目前国内城市轨道交通线路供电系统低压配电系统普遍存在由于谐波问题导致电气设备损坏的现象,本文通过对谐波问题产生的原因进行分析,提出切合工程实施的解决方案。
一、存在问题及现状分析
(1)低压系统谐波来源
低压动力照明负荷包括车站的通风空调、自动扶梯、排水、通风、消防及各车站、区间、变电所的照明负荷等能耗,其中含有大量变频负荷,且随着节能的需要,变频负荷所占的比重逐年提高。变频负荷也在逐年增加,其产生的谐波电流也在相应增加。(2)无功补偿
第 1 页
为集中补偿地铁系统动力照明负荷的无功分量,目前地铁系统一般在变电所0.4kV母线设置电力电容器组,电容器组具有自动投切功能,且功率因数连续可调,调节范围一般在0.8~0.9之间,使补偿后的功率因数不低于0.9。
(3)无功补偿装置与谐波的关系
根据GB50157-2003《地铁设计规范》,地铁动力照明供电系统应采用并联电力电容器作为无功补偿装置。因此,国内地铁动力照明供电系统多采用并联电力电容器作为无功补偿装置。从理论上,该电力电容器无论在基波下还是在谐波下均表现为容性,因此,对于不论是来自于配电变压器高压侧的谐波还是来自于低压变频负荷产生的谐波均会起到放大作用。其放大作用已经被国内多个地铁系统的实测结果所验证。系统的谐波过大将会带来供电质量下降、断路器误动作、电容器谐振损坏、熔丝型保护装置意外动作以及敏感的电子通讯设备损坏等问题,进而造成电气设备的绝缘寿命和使用寿命大大降低。因此,目前国内绝大部分城市轨道交通采用的是预留电容补偿装置的做法,即便在工程中已经投入,也暂缓投入使用。
『贰』 无功补偿装置的作用有哪些
无功功率补偿Reactive power compensation,简称无功补偿,在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少电网的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
无功补偿的作用:
⑴ 补偿无功功率,可以增加电网中有功功率的比例常数。
⑵ 减少发、供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cosΦ=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW对原有设备而言,相当于增大了发、供电设备容量。因此,对新建、改建工程,应充分考虑无功补偿,便可以减少设计容量,从而减少投资。
⑶ 降低线损,由公式ΔΡ%=(1-cosθ/cosΦ)×100%得出其中cosΦ为补偿后的功率因数,cosθ为补偿前的功率因数则:
cosΦ>cosθ,所以提高功率因数后,线损率也下降了,减少设计容量、减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益。所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行。
『叁』 什么叫无功补偿装置有哪些
总的来说无功补偿装置就是个无功电源。
一般电业规定功率因数为低压0.85以上,回高压0.9以上。为了克服答无功损耗,就要采用无功补偿装置来解决。电力系统中现有的无功补偿设备有无功静止式补偿装置和无功动态补偿装置两类,前者包括并联电容器和并联电抗器
,后者包括同步补偿机(调相机)和静止型无功动态补偿装置(SVS)。
并联电抗器的功能是:
1)吸收容性电流,补偿容性无功,使系统达到无功平衡;2)可削弱电容效应,限制系统的工频电压升高及操作过电压。其不足之处是容量固定的并联电抗器,当线路传输功率接近自然功率时,会使线路电压过分降低,且造成附加有功损耗,但若将其切除,则线路在某些情况下又可能因失去补偿而产生不能允许的过电压。
改进方法是采用可控电抗器,它借助控制回路直流的励磁改变铁心的饱和度(即工作点),从而达到平滑调节无功输出的目的。工业上采用
1.同步电机和同步调相机;
2.采用移相电容器;
目前大多数采用移相电容器为主。
『肆』 无功补偿原理的装置特点
高压动态无功补偿装置主要由输人开关柜、变压器框、功率柜、控制框等组成。
(1)输入变压器
将电网电压变为适合功率单元工作的电压。
实现高压与低压的电气隔离,各功率单元之间相对独立,所以可以较容易地引入软开关控制,直流侧的均压比较容易实现,增加系统可靠性。
(2)功率单元
SVG的核心主电路,用以实现功率变换。
模块化设计,功率单元的结构和电气性能完全一致,单元可以互换。
(3)输出电抗器
用于将SVG与电网连接起来,实现能量的缓冲。
减少SVG输出电流中的开关纹波,降低共模干扰。
(4)控制柜
柜式结构,用于对SVG及其辅助设备的实时控制。
实现SVG与上位机及控制中心的通讯。 -
(5)全数字化控制系统
实时计算电网所需的无功功率,实现动态跟踪b~l"偿。
控制系统采用模块化设计。
『伍』 无功补偿装置的概况
目前用于无功补偿和谐波治理的装置如:无源电力滤波器,该设备兼有无功补偿和调压功能,一般要根据谐波源的参数和安装点的电气特性以及用户要求专门设计;静止无功补偿装置(SVC)装置是一种综合治理电压波动和闪变、谐波以及电压不平衡的重要设备。有源电力滤波器(APF),APF是一种新型的动态抑制谐波和补偿无功的电力电子装置,它能对频率和幅值都发生变化的谐波和无功电流进行补偿,主要应用于低压配电系统。
其中无功补偿技术的发展经历了从同步调相机→开关投切固定电容→静止无功补偿器(SVC)→直到今天引人注目的静止无功发生器SVG(STATCOM)的几个不同阶段。
根据结构原理的不同,SVC技术又分为:自饱和电抗器型(SSR)、晶闸管相控电抗器型(TCR)、晶闸管投切电容器型(TSC)、高阻抗变压器型(TCT)和励磁控制的电抗器型(AR)。
随着电力电子技术,特别是大功率可关断器件技术的发展和日益完善,国内外还在研制、开发一种更为先进的静止无功补偿装置静止无功功率发生装置(SVG),虽然它们尚处在开发及试运行阶段,目前尚未形成商品化,但SVG凭借着其优越的性能特点,在电力系统中的应用将越来越广泛。
各种无功设备各自特点如下:
1)同步调相机:响应速度慢,噪音大,损耗大,技术陈旧,属淘汰技术;
2)开关投切固定电容:慢响应补偿方式,连续可控能力差;
3)静止无功补偿器(SVC):目前相对先进实用技术,在输配电电力系统中得到了广泛应用;
4)静止无功发生器SVG(STATCOM):目前虽然有技术上局限性,属少数示范工程阶段,但SVG是一种更为先进的新型静止型无功补偿装置,是灵活柔性交流输电系统(FACTS)技术和定制电力(CP)技术的重要组成部分,现代无功功率补偿装置的发展方向。
『陆』 低压无功补偿控制器怎么设置
1、设置目标功率因数一般0.95左右。
2、设置投入时限一般15S左右。
3、设置互感器版变比,这个要看你权进线柜互感器变比设置。
4、设置过电压值440V。
5、设置单个电容器容量,(这个有的控制器没有)有的话就按电容容量设置。
无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
JKWB型低压配电监测无功补偿装置是采用了一系列领先的技术和最新的电子元器件及新型的机电一体化的SLFK型智能复合开关元件,集电网监测与无功补偿于一体,不但可以补偿电网中的无功损耗,提高功率因数,降低线损,从而提高电网的负载能力和供电质量;同时还能够实时监测电网的三相电压、电流、功率因数等运行数据,可完成对整个低压配电线路的监测、分析处理、报表输出等综合管理,为低压配电线路的科学管理提供第一手可靠数据。
『柒』 SVG无功补偿装置的原理是什么
SVG静止无功发生器采用可关断电力电子器件(IGBT)组成自换相桥式电路,经过电抗回器并联在电网上,适当地答调节桥式电路交流侧输出电压的幅值和相位,或者直接控制其交流侧电流。
迅速吸收或者发出所需的无功功率,实现快速动态调节无功的目的。作为有源形补偿装置,不仅可以跟踪冲击型负载的冲击电流,而且可以对谐波电流也进行跟踪补偿。
(7)无功补偿装置通讯功能设计扩展阅读
补偿方式:国内的无功补偿装置基本上是采用电容器进行无功补偿,补偿后的功率因数一般在0.8-0.9左右。SVG采用的是电源模块进行无功补偿,补偿后的功率因数一般在0.98以上,这是目前国际上最先进的电力技术。
补偿时间: 国内的无功补偿装置完成一次补偿最快也要200毫秒的时间,SVG在5-20毫秒的时间就可以完成一次补偿。无功补偿需要在瞬时完成,如果补偿的时间过长会造成该要无功的时候没有,不该要无功的时候反而来了的不良状况;
有级无级: 国内的无功补偿装置基本上采用的是3—10级的有级补偿,每增减一级就是几十千法,不能实现精确的补偿。SVG可以从0.1千法开始进行无级补偿,完全实现了精确补偿。
『捌』 240kvar数字式自动无功补偿装置的设计
设计? 什么意思。一般来说是按照补偿回路来看看。你设计30KVAR 8个回路吧,我感觉你如果是设计师不指定型号的话就直接写要求补偿容量240KVAR(带不带电抗自己定)按成套厂家标准配置就可以了。
『玖』 无功功率补偿的装置
除发电机和输电线外的无功电源主要有:①并联电容器组是一种静态的无功补偿装置。用它进行的补偿称为并联电容补偿。②同步调相机;③静止无功补偿器。后两者属于动态的无功补偿装置。3种无功补偿装置的性能比较见表。
另外,在远方水电站和坑口火电厂等的出线母线上,长距离输电线的两侧线路上,以及长距离输电线的开关站等地方接有并联电抗器,也是一种无功补偿装置。用其进行的补偿称为并联电抗补偿。远方电站出口母线上的并联电抗器主要是吸收发电机所发的无功功率,以使发电机能运行在合理的功率因数下而又避免无功的长距离输送。长距输电级上配置的并联电抗器,主要是吸收线路空载和轻载时的充电功率,使沿线电压分布合理并降低工频稳态和暂态过电压。
智能电容器集成智能控制模块、快速投切开关和电容器保护,设计结构精巧,可以灵活配置以满足用户对无功补偿的需求。智能电容器构成的无功补偿系统与常规电容器产品构成的无功补偿系统比较见下表1。 常规电容器构成无功补偿系统 智能电容器构成无功补偿系统 无功补偿装置 常规电容器、熔断器、复合开关或机械式接触器、热继电器、智能控制器 智能电容器(1台独立使用或多台联机使用) 控制方式 自动控制或手动控制 自动控制或手动控制,实现过零投切(自动控制无需配置控制器) 参数测量 测量电压、电流、无功功率、功率因数 测量电压、电流、无功功率、功率因数、各台电容器三相电流、电容器体内温度 状态监视 电容器投切状态、过欠补状态、过欠压状态 电容器投切状态、过欠补状态、过欠压状态、保护动作类型、自诊断故障类型 保护类型 电流速切、过流保护、过压保护、欠压保护 电流速切、过流保护、过压保护、欠压保护、电容器过温保护、断相保护、三相不平衡保护 人机对话 数码管与按键 显示界面与按键、信息内容丰富 安装使用 元件总类多,数量多,结构复杂 产品结构简洁,安装接线简单方便 系统组成及扩展 产品整体性设计、一次性投资。产品成形后的补偿容量调整困难。 产品为模块化设计,补偿容量扩展方便,可实现分期投资。 外形及重量 体积庞大、重量非常大 结构精巧、重量轻。
可以直接安装在配电柜内。