① 求一份汽车电器设备的实训报告
1、 汽车照明系统由电源、照明灯具、控制装置等组成,其作用主要是夜间道路照明、车厢内部照明、车辆宽度标示、仪表与夜间检修等。车外照明灯有:前照灯、雾灯、牌照灯等。车内照明灯有:顶灯、仪表灯、阅读灯等。工作灯有:发动机罩灯、行李箱灯、外接工作灯插座等。
2、 前照灯有较特殊的光学结构,满足以下要求:
(1)前照灯应保证夜间车前有明亮而均匀的照明,使驾驶员能辨明车前道路100m以内道路上的任何物体,高速汽车的前照灯照明距离能达到200-250m.
(2)要具有防眩目装置。避免夜间两车交会时造成对方驾驶员眩目而发生事故。眩目:指人的眼睛突然受强光照射时,由于视觉神经受刺激而失去对眼睛的控制,本能地闭上眼睛或看不清楚暗处物体的生理现象。
3、 汽车前照灯的组成和各部分的功能是什么?
答:汽车前照灯主要是由灯泡、反射镜和配光镜三部分组成。其作用为,灯泡:发光,反光镜:将灯泡光线聚合并导向远方,配光镜:将反光镜反射出的平行光束折射。
4、 雾灯的工作过程
答:在必要的条件下闭合雾灯开关,雾灯继电器线圈通电,使得雾灯继电器开关闭合,然后使得雾灯形成通路,雾灯亮。
5、 前照灯电路
6、 前照灯的常见故障与故障原因
故 障 现 象 故 障 原 因
所有灯均不亮 蓄电池到点火开关之间火线断;车灯开关损坏;电源总保险断
前照灯远近光不全 变光开关损坏;远近光中的一个导线断路;双灯丝灯泡中某灯丝烧断;灯光继电器损坏;车灯开关损坏
前照灯一侧亮,另一侧暗 前照灯暗的一侧存在搭铁不良;变光开关接触不良;左右两侧灯泡的功率不同
前照灯灯光暗 电源电压低;大灯开关或继电器触点接触不良;保险丝松;导线接头松动
7、 电容式闪光器工作过程?
答:当接通电源开关,电流通过常闭触点及线圈、灯泡负载等电路,使线圈产生磁力而吸合衔铁,拉开常闭触点,切断电源,此刻由于线圈的电感电流不能跃变(电感线圈贮存磁能,电容贮存电能;电感电流和电容电压不能跃变),线圈的磁能电流经电阻、线圈砚、电容C构成回路,使线圈Ll的电磁力得以短时间的维持,同时又对电容C充电;当电容C的电压钦逐渐上升,线圈Ll、L2的电流逐渐减小到门槛值以下,常闭触点在弹力作用下恢复它的闭合状态,此刻,线圈Ll虽然产生了电磁力,但由于电容C的电容电压不能跃变,其电容电流经U、触点构成放电回路,使L2上产生的电磁力与电源供电流在L1上产生的电磁力方向相反,从而使线圈上的电磁力基本为零,而不能吸合衔铁;当电容上的电流放电完毕,吸合电磁力大于某一门槛值,常闭触点就被拉开,又进行下一次循环工
8、 盆形电喇叭工作原理:
答:当按下喇叭按钮时,喇叭线圈的供电电路为:蓄电池正极→喇叭线圈→触点→喇叭按钮→搭铁→蓄电池负极。喇叭线圈通电后产生电磁吸力,吸动上铁心及衔铁下移,带动膜片向下变形,同时,衔铁下移将触点打开,线圈断电,电磁力消失,上铁心及衔铁在膜片弹力的带动下复位,触点再次闭合。重复周期开始,使膜片与共鸣板产生共鸣发声。
9、 喇叭继电器作用,结构与工作过程
答:当按下喇叭按钮时,电流会通过回路流到喇叭继电器的电磁线圈上,电磁线圈吸引继电器的动触点开关闭合,电流就会流到喇叭处。电流使喇叭内部的电磁铁工作,从而使振动膜振动而发出声音
10、 车内各仪表指示灯含义
答:机油指示灯用来显示发动机内机油的压力状况。打开钥匙门,车辆开始自检时,指示灯点亮,启动后熄灭。该指示灯常亮,说明该车发动机机油压力低于规定标准,需要维修。
ABS指示灯用来显示ABS工作状况。当打开钥匙门,车辆自检时,ABS灯会点亮数秒,随后熄灭。如果未闪亮或者启动后仍不熄灭,表明ABS出现故障
蓄电池指示灯用来显示电瓶使用状态。打开钥匙门,车辆开始自检时,该指示灯点亮。启动后自动熄灭。如果启动后电瓶指示灯常亮,说明该电瓶出现了使用问题,需要更换。
油量指示灯用来显示车辆内储油量的多少,当钥匙门打开,车辆进行自检时,该油亮指示灯会短时间点亮,随后熄灭。如启动后该指示灯点亮,则说明车内油量已不足。
车门指示灯用来显示车辆各车门状况,任意车门未关上,或者未关好,该指示灯都有点亮相应的车门指示灯,提示车主车门未关好,当车门关闭或关好时,相应车门指示灯熄灭。
安全气囊指示灯用来显示安全气囊的工作状态,当打开钥匙门,车辆开始自检时,该指示灯自动点亮数秒后熄灭,如果常亮,则安全气囊出现故障。
刹车盘指示灯是用来显示车辆刹车盘磨损的状况。一般,该指示灯为熄灭状态,当刹车盘出现故障或磨损过渡时,该灯点亮,修复后熄灭。
手刹指示灯用来显示车辆手刹的状态,平时为熄灭状态。当手刹被拉起后,该指示灯自动点亮。手刹被放下时,该指示灯自动熄灭。有的车型在行驶中未放下手刹会伴随有警告音。
水温指示灯用来显示发动机内冷却液的温度,钥匙门打开,车辆自检时,会点亮数秒,后熄灭。水温指示灯常亮,说明冷却液温度超过规定值,需立刻暂停行驶。水温正常后熄灭。
发动机故障指示灯用来显示车辆发动机的工作状况,当打开钥匙门时,车辆自检时,该指示灯点亮后自动熄灭,如常亮则说明车辆的发动机出现了机械故障,需要维修。
转向指示灯是用来显示车辆转向灯所在的位置。通常为熄灭状态。当车主点亮转向灯时,该指示灯会同时点亮相应方向的转向指示灯,转向灯熄灭后,该指示灯自动熄灭。
远光指示灯是用来显示车辆远光灯的状态。通常的情况下该指示灯为熄灭状态。当车主点亮远光灯时,该指示灯会同时点亮,以提示车主,车辆的远光灯处于开启状态。
玻璃水指示灯是用来显示车辆所装玻璃清洁液的多少,平时为熄灭状态,该指示灯点亮时,说明车辆所装载玻璃清洁液已不足,需添加玻璃清洁液。添加玻璃清洁液后,指示灯熄灭。
雾灯指示灯是用来显示前后雾灯的工作状况,当前后雾灯点亮时,该指示灯相应的标志就会点亮。关闭雾灯后,相应的指示灯熄灭。
示宽指示灯是用来显示车辆示宽灯的工作状态,平时为熄灭状态,当示宽灯打开时,该指示灯随即点亮。当示宽灯关闭或者关闭示宽灯打开大灯时,该指示灯自动熄灭。
内循环指示灯是用来显示车辆空调系统的工作状态,平时为熄灭状态。当点亮内循环按钮,车辆关闭外循环,空调系统进入内循环状态时,该指示灯自动点亮。内循环关闭时熄灭。
VSC指示灯是用来显示车辆VSC(电子车身稳定系统)的工作状态,多出现在日系车上。当该指示灯点亮时,说明VSC系统已被关闭。
TCS指示灯是用来显示车辆TCS(牵引力控制系统)的工作状态,多出现在日系车上。当该指示灯点亮时,说明TCS系统已被关闭。
EPC指示灯常见于大众品牌车型中。打开钥匙门,车辆开始自检时,EPC灯会点亮数秒,随后熄灭。如车辆启动后仍不熄灭,说明车辆机械与电子系统出现故障。
O/D档指示灯用来显示自动档的O/D挡(Over-Drive)超速挡的工作状态,当O/D挡指示灯闪亮,说明O/D挡已锁止。此时加速能力获得提升,但会增加油耗。
安全带指示灯显示安全带是否处于锁止状态,当该灯点亮时,说明安全带没有及时的扣紧。有些车型会有相应的提示音。当安全带被及时扣紧后,该指示灯自动熄灭。
11、 机油压力表、水温表、燃油表、车速里程表、发动机转速表、蓄电池液面过低报警装置、机油压力报警装置,冷却液温度报警装置,空气滤清器堵塞报警装置的工作原理?
答:机油压力表:当汽车发动机主油道的油压增高时,油压推动膜片弯曲,使滑动触点向左滑动,电阻值减少,故通过主线圈的电流增大,这是电流通过主线圈和副线圈的合成磁场使指针偏向右侧,指示相应的油压;
水位表:它主要由热敏电阻传感器和电磁水温指示表组成,传感器中装有负温度系数热敏电阻,其电阻会随水温升高而减小
燃油表:从发送器流出的电流通过一个电阻器,这个电阻器可能环绕在一个双金属片周围,也可能位于其附近。 双金属片通过一个连杆与燃油表的指针相连。当电阻增大时,通过加热线圈的电流变小,因此双金属片会冷却下来。 随着金属片的冷却,金属片会伸直,从使燃油表从满指向空。双金属片是由两种不同种类的金属压合而成的一块金属片。 构成金属片的金属随着加热或冷却而膨胀或收缩。 每种金属都有其特定的膨胀率。 构成金属片的这两种金属经过了特别的挑选,它们的膨胀率和收缩率是不同的。当金属片加热时,由于一种金属的膨胀度小于另一种金属,因此金属片会发生弯曲,并且外侧是膨胀度大的金属。 这个弯曲的动作便是使指针转动的原因。
车速里程表:电子车速里程表采用安装在变速箱主传动输出端的车速传感器所输出的脉冲信号,通过导线输入车速里程表它由永久磁铁、矩型塑料框内线圈针轴、游丝、电子模块、步进电动机和机械计算器组成。安装在主传动器输出端盖上的车速传感器,检测到输出轴上的脉冲齿轮的转速信号脉冲变化,并输送到车速表表头,信号频率愈大,车速表指针偏转愈大,指示车速愈高。同时里程表中的电子模块把脉冲量转换成里程数,通过机械计算器累计起来。车速里程表上,还有一个短程(单程)里程表,当需要消除短程里程时,只需按一次复位杆,短程里程表就会归零
发动机转速表:发动机转速表大多是利用发电机的发电的频率信号来做的,这个涉及到曲轴带轮及发电机带轮的比例和发电机的电枢组数;现在的电控系统都是通过ECU采集发动机转速后,再输出一个占空比信号而转化而来的。
蓄电池液面过低报警装置:传感器由铅棒和加液塞组成,通常安装在从蓄电池正极桩数起第三个单元格内。当蓄电池液面高度正常时,传感器的铅棒上的电位为+8V,从而使VT1导通,VT2截止,报警灯不亮。当蓄电池液面在最低限以下时,传感器的铅棒就无法与电解液接触,铅棒就无正电位,从而使VT1截止,VT2导通。警报灯电路接通,报警灯亮。
空气滤清器堵塞报警装置:当空气滤清器滤芯发生堵塞时,报警灯点亮起到报警作用。
12、 对照实物,可以说出汽车空调每个制冷部件的名称和作用,
13、 空调制冷系统的工作原理
答:各种车辆的空调结构不尽相同,但它们的工作原理基本相同,就是用人为的方式在车厢内造成一个对人体适宜的气候环境。对夏天而言,就是用制冷方式,使车厢内降温。一般热量总是从高温流向低温,而空调的目的要将具有较低温度的车内空气中的热量移到具有较高温度的大气中去,使车内空气一直保持较低温度。这是一种热流的逆循环,需要供助于制冷机构来完成。制冷的方式很多,汽车上的制冷主要采用压缩式制冷剂。它是利用液态制冷剂汽车吸热而产生的效应,工作系统如图1-1所示。制冷系统主要由压缩机、冷凝器、膨胀阀和蒸发器四大总成构成,从压缩机出来的高温、高压制冷剂通过高压软管进入冷凝器。由于车外温度低于进入冷凝器的制冷剂温度,借助于冷凝风扇的作用。在冷凝器中的制冷剂的大量热量被车外空气带走,从而高温、高压气体被冷凝成高温、高压的液体。这种高温、高压液体流过节流膨胀阀时,由于节流作用,体积突然变大而降低,变成低温、低压的雾状物(液体)进入蒸发器,在定压下气化。由于制冷剂在管内汽化时的温度低于蒸发器管外的车内循环风,故它能自动吸收管外空气中热量,从而使流经蒸发器的空气温度降低,产生了制冷降温的效果,汽化了的制冷剂被压缩机抽吸压缩,变成高温、高压的气体,又通过高压软管送向冷凝器,这样就完成了一个制冷系统的热力循环
14、 SRS的作用?由那几个部分组成?
答:SRS是安全气囊系统。气囊组件由点火器、燃料爆破管、气囊、惰性气件发生器、引线插头及外壳等组成。主气囊安装在方向盘内,副气囊安装在副驾驶侧仪表台内,侧气囊安装在座椅靠背外侧。
当碰撞发生时,气囊电脑根据预置数据向气囊发出引爆信号,气囊引爆后迅速张开,在驾乘人员和车内构件之间形成一个气垫,使驾乘人员的头部与胸部或肩部压在充满气体的气囊上,利用气囊本身的阻尼作用和气囊背面排气孔排气节流的阻尼作用,来吸收人体惯性力产生的动能,达到保护人体的目的。
15、 滚球式碰撞传感器、滚轴式碰撞传感器、偏心锤式碰撞传感器、水银开关式碰撞传感器工作原理是什么?安装时方向有没有前后?
答:机电结合式碰撞传感器的工作原理是利用机械运动控制电器触点动作,再由触点的断开与结合控制气囊电路的通断。
电子式碰撞传感器,目前常用的有电阻应变计式和电压效应式两种。电子式碰撞传感器没有电器触点,在发生碰撞时应变电阻发生变形,使电阻发生变化、传感器输出信号电压发生变化,当电压值超过预定值时,气囊被触发;或者压电晶体在碰撞时发生变化而使输出电压变化,当变化的电压达到预定值,气囊被触发。
水银开关式碰撞传感器是利用水银导电的特性控制气囊电路的通断。
碰撞传感器的作用是检测汽车在发生碰撞时的减速度或惯性力,并将信号输人SRS气囊系统的电子控制装置。
在SRS安全气囊系统中,一般安装使用3~4只碰撞传感器,一般被安装在车身两侧的前翼子板内侧,或者安装在前照灯支架下面、发动机散热水箱支架左右两侧。
前碰撞传感器有2~3只,在车身的左前部和右前部分别安装一只,称为左前碰撞传感器和右前碰撞传感器。日本马自达轿车将前碰撞传感器称之为D碰撞传感器或第一碰撞传感器。在车身前部中央位置的碰撞传感器称之为中央碰撞传感器。丰田车系左、右碰撞传感器分别安装在车身前部左、右翼子板内。丰田轿车也有将前部两个碰撞传感器安装在左、右前照灯支架下面。林肯城市、凯迪拉克、沃尔沃马自达轿车左前、右前碰撞传感器分别安装在发动机散热水箱支架左、右两侧。马自达的中央碰撞传感器安装在发动机散热器支架的中央。丰田汽车将中央碰撞传感器与SRS电脑安装在一起,而SRS电脑则安装在驾驶室变速杆前或后的装饰板下面。
防护碰撞传感器也称之为防护传感器,丰田汽车公司称作侦测传感器,本田汽车公司将其称之为触发传感器或触发开关,马自达汽车公司称为S碰撞传感器或第二碰撞传感器。防护碰撞传感器一般与SRS电脑安装在一起,安装在驾驶室中央变速杆前、后的装饰板下面。
安装时有方向,有挡板的是后方。
16、 SRS的备用电源的功用?
答:备用电源用于当汽车电源与SRS逻辑之间的电路切断后,在一定时间内维持安全气囊系统供电,保持安全气囊系统正常工作。
17、 中控门锁的功用
1)、车门锁扣一锁,(驾驶员车门)其余车门及行李仓门能自动锁定。
用钥匙锁门,也可同时锁好其他车门和行李仓门。
2)、驾驶员车门扣拉起时,其余车门及行李仓门锁都能同时打开.用钥匙开关,也可实现此动作。
3)、车室内个别车门需打开时,可分别拉开各自的锁扣。
4)、速度控制:当行车速度达到一定时,各个车门能自行锁上,防止乘员误操作车门把手而导致车门打开
18、 汽车防盗系统分为哪几类?每一类各有什么优缺点?
答:可分为:机械式防盗装置、电子式防盗装置、芯片式防盗装置、网络式防盗装置;
其优缺点分别为,机械式电子防盗装置:价格便宜,拆装复杂,安全性差
电子式防盗装置:方便操作,容易误报
芯片式防盗装置:重码率低,安全性高,大多数汽车采用
网络式防盗装置:防盗效果明显,价格昂贵。
希望对你有点作用。。。
② 简述火灾检测与报警装置的工作原理及对其进行逻辑分析
ICAM空气采样火灾自动化报警系统的核心技术有两点,即激光散射测量和烟粒子计数。其工作原理是系统借助于高效抽气泵,通过防火区管道网络上的抽样孔连续不断地抽取空气样本,采集的空气样本经过滤器进入测量腔,在测量腔内特定的空间位置安装有测量光源及接收器,测量光源发出的光束照射到空气样本上,如样本上有烟粒子存在,光束将产生散射,光接收器接受散射的光信号,根据测得散射光强弱变化或光信号脉冲数,测量出空气样本中的烟粒子量。测量的信号经“人工神经网络”微处理器后,与预先设定的报警阈值比较,如达到某一报警阈值,则在显示器上给出相应的报警信号。实际测试数据表明,在空气中烟粒子浓度达到1000个/m3时,探测器就可发出报警信号。其工作原理图如下:
https://gss0..com/70cFfyinKgQFm2e88IuM_a/ke/pic/item/911386220104bbded7cae21d.jpg
Xtralis ICAM IFT 高灵敏度烟雾探测器是仪表级的悬液计,它可以在360度的范围内接收激光照射到烟雾粒子上而产生的散射光。其实际灵敏度为0.001%obs/m,是传统探测器的2000倍。极高的灵敏度与先进的处理和过滤功能相结合,使得IFT系统成为很多世界上最具挑战的烟雾探测应用环境所选用的产品。
在轮船上的应用:
http://wenku..com/view/ac154b28915f804d2b16c1d2.html
③ 电子测量与仪器的实验报告怎么写
英盛观察:
一. 实训目的(1) 熟悉常用电子仪器的功能及使用方法。(2) 掌握常用电子仪器的工作原理。(3) 掌握常用电子仪器附加功能的使用。(4) 熟练使用常用电子仪器进行数据测量。(5) 掌握常用电子元器件的测量方法,掌握电子元器件的焊接技巧和装配工艺;学会 使用万用表、示波器、毫伏表、频率计、 信号发生器等电子测量仪器。掌握查找电子设备故障的一般方法。培养学生实际动手操作能力;为学生以后参加工作打下良好的基础。
二.基本要求一、课程性质和任务
陕航航空电子设备维修专业的主干专业课程。其任务是使学生掌握从事航空电子设备维修工作所必需的电子基本工艺和基本技能,初步形成解决实际问题的能力,为学习其他专业知识和职业技能打下基础。
二、课程教学目标
(一) 知识教学目标
1. 了解电工电子仪表、仪器的基本结构及正确使用与维护;2. 掌握常用电子元器件的正确识别与检测方法;3. 理解常用电子电路和简单电子整机电路的分析、检测与常见故障排除方法;4. 掌握电子电路安装的工艺知识。
(二) 能力培养目标
1. 能正确使用常用电工电子仪表、仪器;2. 能正确阅读分析电路原理图和设备方框图,并能根据原理图绘制简单印刷电路;3. 初步学会借助工具书、设备铭牌、产品说明书及产品目录等资料,查阅电子元器件及产品有关数据、功能和使用方法;4. 能按电路图要求,正确安装、调试单元电子电路、简单整机电路;5. 处理电子设备的典型故障。
(三) 思想教育目标
1. 具有热爱科学、实事求是的学风和创新意识、创新精神;2. 加强爱岗敬业意识和职业道德意识。
三、教学内容和要求
基 础 模 块
(一) 常用电子仪器、仪表的使用与维护1. 了解常用电子仪器、仪表的结构;2. 理解常用电子仪器、仪表的基本功能;3. 掌握常用电子仪器、仪表的使用方法和注意事项。
(二) 常用电子元器件的识别与检测
1. 理解常用电子元器件的型号和主要参数;2. 理解常用电子元器件的识别和分类方法;3. 掌握用万用表检测常用电子元器件的方法。
三.实训内容
1.各种交流表电压的测量 1. 实训目的
1﹚掌握模拟是电压表的使用方法和几种典型电压表波形的观测和分析方法。
2)掌握模拟电压表、数字电压表的使用方法。
3)掌握直流稳压电源的输出指示准确度和纹波系数的测量方法。
2. 实训仪器
yb2173交流毫伏表一台;mag-203d音频信号发生器一台;yb4320示波器一台;fc-1000数字频率计一台。
3. 交流电压表整概要
1)一个交流电压的大小,可以用峰值up,平均值 u,有效值u,以及波形因数kf,波峰因数kp等表征,若被测电压的瞬时值为u(t),则
全波平均值 有效值 波形因数 波峰因数
2)电压表的检波特性有峰值型,均值型,有效值型等多种形式。一般说来,具有不同检波特性的电压表都是以正弦电压的有效值来定度的,但是,除了有效电压表之外,电压表的示值本身并不直接代表任意波形被测电压的有效值。
3)根据理据论分析,不同波形的电压加至不同检波特性的电压表示,可根据电压表的读数确定电压的up,Ū,u,一般可根据表1-1的关系换算。
图1-2
2.将各测量数据填入表1-3中
调节交流毫伏表的旋钮,使之正确测量各种波形电压,并记录交流毫伏表电压示值,将各种测量数据填入表1-4中
1.2直流稳压电源的输出指示准确度的测量
1.按1-5图所示连接电路图1-5
2.用数字电压表分别测量直流稳压电源的输出,将读数分别记入表1-6.
1.按如图1-7所示连接测量电路
图1-7
2.在交流毫伏表适当的档位上,分别记下交流毫伏表的读数u2,填入表1-8中
2.1 示波器的应用
1. 实训目的
1﹚掌握示波器、交流毫伏表、音频信号发生器的基本应用。
2﹚掌握示波器观察信号波形和测量直流电压幅度、周期的方法。
2. 实训内容
﹙1﹚ 示波器的校准
﹙2﹚ 利用示波器1khz,0.5vp-p的方波校准信号作为示波器的输入信号,调出图2-1所示正常波形。
﹙3﹚ 将扫描基线移动的格数、垂直偏转因数和稳定电压原指示电压值填入表2-2中。
图2-1
表2-2直流电压测量
已调信号低、中放的增益可以做的较大,工作较稳定,通频带特性也可做的(5)梯形法测量调幅波的调幅系数
1)采用音频信号发生器输出1000hz的正弦信号加至示波器的ch1(x)端;as1053rf信号发生器的输出的已调信号加至示波器的ch2(y)端。
2)按下“x-y”,示波器处于x-y工作方式。
3)适当调节音频信号发生器,调节示波器的x,y位移及v/div开关,使屏幕上显示出圆柱形或梯形。
4)若调制信号与与x扫描信号同频同相,即以音频正弦信号同时作为高频信号发生器的外调制信号,高频信号发生器采用外调制方式进行调节,可显示较稳定的梯形。适当调节外调制调制度旋钮,观察波形的变化。
4 实训报告要求
整理好测量数据,填好表2-4、2-5。
。在实习期间,我们学习了初步的锡焊以及印制电路板的设计,元件测试,刚开始,锡焊,一个既熟悉又陌生 的概念,从开始的兴奋到后来的痛苦,一遍遍的焊接,看焊点,反反复复,基本上掌握了要点。如果说焊接是体力劳动,那么印制电路设计就是脑力劳动,远比体力 劳动恐怖,最后在无数次的改动中结束。可 以说,两周的电工实习,学到了不少东西,动手能力得到了提高,更重要的是有了一种精益求精的追求,获益匪浅,而且理解了一个道理,什么都是一门学问!
通过实际的测量实训,让我学到了很多实实在在的东西,比如对实验仪器的错误!未找到索引项。操作更加熟练,懂得了如何运用该知识结合实际来完成对收音机的检修,同时也提高了我们的思维能力和实际操作能力。
另外,这次电子产品设备维修实训还让我更进一步的认识了关于对lv软件的操作和使用方法,使我学会了应用该软件来绘制一些电子电路,为以后更好的走上工作岗位奠定了坚实的基础。
在制作实训报告的过程中,我们感觉自己的知识还是太有限了,还要继续学习,因为它对我们以后的学习和工作太有帮助了,因为它给人一种“电脑在手,使用不愁”的感觉。课程虽然学完了,但我们对于这门课的学习才刚刚起步,真心希望我们能够在这方面能有更深的造诣!
经验教训:
1、实验仪器对实验数据的误差有很大的影响;
2、小组成员的合作很重要,实习小组的气氛很大程度上影响实验的进度。
④ 电工的实验报告怎么写
电工的实验报告怎么写?这个要自己根据自己的具体情况去写啊,你到底做了什么样的实验呢?准备了一些什么材料啊?都写出来就好了呀,实验过程最后结果都写上。
⑤ 筛板精馏塔精馏实验报告
筛板精馏塔精馏实验
6.1实验目的
1.了解板式塔的结构及精馏流程
2.理论联系实际,掌握精馏塔的操作
3.掌握精馏塔全塔效率的测定方法。
6.2实验内容
⑴采用乙醇~水系统测定精馏塔全塔效率、液泛点、漏液点
⑵在规定时间内,完成D=500ml、同时达到xD≥93v%、xW≤3v%分离任务
6.3实验原理
塔釜加热,液体沸腾,在塔内产生上升蒸汽,上升蒸汽与沸腾液
体有着不同的组成,这种不同组成来自轻重组份间有不同的挥发度,
由此塔顶冷凝,只需要部族御慧分回流即可达到塔顶轻组份增浓和塔底重
组份提浓的目的。部分凝液作为轻组份较浓的塔顶产品,部分凝液
作为回流,形成塔内下降液流,下降液流的浓度自塔顶而下逐步下
降,至塔底浓度合格后,连续或间歇地自塔釜排出部分釜液作为重
组份较浓的塔底产品。
在塔中部适当位置加入待分离料液,加料液中轻组份浓度与塔截
面下降液流浓度最接近,该处即为加料的适当位置。因此,加料液
中轻组分浓度愈高,加料位置也愈高,加料位置将塔分成上下二个
塔段,上段为精馏段,下段为提馏段。
在精馏段中上升蒸汽与回流之间进行物质传递,使上升蒸汽中轻
组份不断增浓,至塔顶达到要求浓度。在提馏段中,下降液流与上
升蒸汽间的物质传递使下降液流中的轻组份转入汽相,重组份则转
入液相,下降液流中重组份浓度不断增浓,至塔底达到要求浓度。
6.3.1评价精馏的指标—全塔效率η
全回流下测全塔效率有二个目的。一是在尽可能短的时间内在塔
内各塔板,至上而下建立浓度分布,从而使未达平衡的不合格产品
全部回入塔内直至塔顶塔底产品浓度合格,并维持若干时间后为部
分回流提供质量保证。二是由于全回流下的全塔效率和部分回流下
的全塔效率相差不大,在工程处理时,可以用全回流下的全塔效率
代替部分回流下的全塔效率,全回流时精馏段和提馏段操作线重合,
气液两相间的传质具有的推动力,操作变量只有1个,即塔釜
加热量,所测定的全塔效率比较准确地反映了该精馏塔的性
能,对应的塔顶或塔底浓度即为该塔的极限浓度。全塔效率的定
义式如下:兆答 ??NT?1 (1) N
NT:全回流下的理论板数;
N:精馏塔实际板数。
6.3.2维持正常精馏的拆物设备因素和操作因素
精馏塔的结构应能提供所需的塔板数和塔板上足够的相间传递面积。塔底加热(产生上升蒸汽)、塔顶冷凝(形成回流)是精馏操作的主要能量消耗;回流比愈大,塔顶冷凝量愈大,塔底加热量也必须愈大。回流比愈大,相间物质传递的推动力也愈大。
6.3.2.1设备因素
合理的塔板数和塔结构为正常精馏达到指定分离任务提供了质量保证,塔板数和塔板结构为汽液接触提供传质面积。塔板数愈少,塔高愈矮,设备投资愈省。塔板数多少和被分离的物系性质有关,轻重组份间挥发度愈大,塔板数愈少。反之,塔板数愈多。塔结构合理,操作弹性大,不易发生液沫夹带、漏液、溢流液泛。反之,会使操作不易控制,塔顶塔底质量难以保证。为有效地实现汽液两相之间的传质,为了使传质具有的推动力,设计良好的塔结构能使操作时的板式精馏塔(如图2所示)应同时具有以下两方面流动特征:
⑴汽液两相总体逆流;
⑵汽液两相在板上错流。
塔结构设计不合理和操作不当时会发生以下三种不正常现象:
(i)严重的液沫夹带现象
由于开孔率太小,而加热量过大,导致汽速过大,塔板上的一
部分液体被上升汽流带至上层塔板,这种现象称为液沫夹带。液
沫夹带是一种与液体主流方向相反的流动,属返混现象,使板效
率降低,严重时还会发生夹带液泛,破坏塔的正常操作(见图3
所示)。这种现象可通过P釜显示,由于:
P釜=P顶+∑板压降 (2)
此时板压降急剧上升,表现P釜读数超出正常范围的上限。
(ii)严重的漏液现象
由于开孔率太大,加上加热量太小,导致汽速过小,部分液体从塔
板开孔处直接漏下,这种现象称为漏液。漏液造成液体与气体在板上
无法错流接触,传质推动力降低。严重的漏液,将使塔板上不能积液
而无法正常操作,上升的蒸汽直接从降液管里走,板压降几乎为0,
见图4所示。此时P釜≈P顶。
荷愈大,表现为操作压力P釜也愈大。P釜
过大,液沫夹带将发生,P釜过小,漏液将出现。若液沫夹带量和漏液量各超过10%,被称为严重的不正常现象。所以正常
的精馏塔,操作压力P釜应有合适的范围即操作压力区间。
(iii)溢流液泛
由于降液管通过能力的限制,当气液负荷增大,降液管通道截面积
太小,或塔内某塔板的降液管有堵塞现象时降液管内清液层高度
增加,当降液管液面升至堰板上缘时(见图5所示)的液体流量为其极限通过能力,若液体流量超过此极限值,常操作。
6.3.2.2操作因素
⑴适宜回流比的确定
回流比是精馏的核心因素。在设计时,存在着一个最小回流比,低于该回流比即使塔板数再多,也达不到分离要求。
在精馏塔的设计时存在一个经济上合理的回流比,使设备费用和能耗得到兼顾。在精馏塔操作时,存在一个回流比的允许操作范围。处理量恒定时,若汽液负荷(回流比)超出塔的通量极,会发生一系列不正常的操作现象,同样会使塔顶产品不合格。加热量过大,会发生严重的雾沫夹带和液泛;加热量过小,会发生漏液,液层过薄,塔板效率降低。 ⑵物料平衡
F=D+W (3)
Fxf=DxD+WxW (4)
(i)总物料的平衡:F=D+W
若F>D+W,塔釜液位将会上升,从而发生淹塔;若F<d+w,塔釜液位将会下降,从而发生干塔。调节塔釜排放阀开度,可以维持塔釜液位恒定,实现总物料的平衡。 p=""> </d+w,塔釜液位将会下降,从而发生干塔。调节塔釜排放阀开度,可以维持塔釜液位恒定,实现总物料的平衡。>
(ii) 轻组分的物料平衡:Fxf=DxD+WxW
在回流比R一定的条件下,若Fxf>DxD+WxW,塔内轻组分大量累积,即表现为每块塔板上液体中的轻组分增加,塔顶能达到指定温度和浓度,此时塔内各板的温度所对应塔板的温度分布曲线如图6所示,但塔釜质量不合格,表明加料速度过大或塔釜加热量不够;若Fxf<DxD+WxW,塔内轻组分大量流失,此时各板上液体中的重组分增加,塔内温度分布曲线如图7所示,这时塔顶质量不合格,塔底质量合格。表示塔顶采出率过大,应减小或停止出料,增加进料和塔釜出料。
6 Fxf>DxD+WxW时温度分布曲线 图7 Fxf<DxD+WxW时温度分布曲线图
6.3.2.3灵敏点温度T灵
(1) 灵敏板温度是指一个正常操作的精馏塔当受到某一外界因素的干扰(如R,xf,采
出率等发生波动时),全塔各板的组成将发生变动,全塔的温度分布也将发生相应
的变化,其中有一些板的温度对外界干扰因素的反映最灵敏,故称它们为灵敏板。
(2) 按塔顶和塔釜温度进行操作控制的不可靠性
不可靠性来源于二个原因:一是温度与组成虽然有一一对应关系,但温度变化较
小,仪表难以准确显示,特别是高纯度分离时;另一是过程的迟后性,当温度达
到指定温度后由于过程的惯性,温度在一定时间内还会继续变化,造成出料不合
格。
(3) 塔内温度剧变的区域
塔内沿塔高温度的变化如图7所示。显然,在塔的顶部和底部附近的塔段内温度
变化较小,中部温度变化较大。因此,在精馏段和提馏段适当的位置各设置一个
测温点,在操作变动时,该点的温度会呈现较灵敏的反应,因而称为灵敏点温度。
(4) 按灵敏点温度进行操作控制
操作一段时间后能得知当灵敏点温度处于何值时塔顶产品和塔底产品能确保合
格。以后即按该灵敏点温度进行调节。例如,当精馏段灵敏点温度上升达到规定
值后即减小出料量,反之,则加大出料量。
因此能用测量温度的方法预示塔内组成尤其
是塔顶馏出液组成的变化。图6和图7是物料不
平衡时,全塔温度分布的变化情况;图8是分离
能力不够时,全塔温度分布的变化情况,此时塔
顶和塔底的产品质量均不合格。从比较图7和图8
可以看出,采出率增加和回流比减小时,灵敏板
的温度均上升,但前者温度上升是突跃式的,而
后者则是缓慢式的,据此可判断产品不合格的原
因,并作相应的调整。
6.4实验设计
6.4.1实验方案设计
⑴采用乙醇~水物系,全回流操作测全塔效率 根据??NT?1,在一定加热量下,全回流操作 N
稳定后塔顶塔底同时取样分析,得xD、xW,用作图法求理论板数。
⑵部分回流时回流比的估算
操作回流比的估算有二种方法:
(i) 通过如图所示,作一切线交纵坐标,截距为
xD,即可求得Rmin,由R=(1.2~2)Rmin,Rmin?1
xD初估操作回流比。 Rmin?1
(ii) 根据现有塔设备操作摸索回流比,方法如下:
(1) 选择加料速度为4~6l/h,根据物料衡算塔顶
出料流量及调至适当值,塔釜暂时不出料。 (2) 将加热电压关小,观察塔节视镜内的气液
接触状况,当开始出现漏液时,记录P釜读数,此时P釜作为操作压力下限,对应的加热电压即为最小加热量,读取的回流比即为操作回流比下限。
(3) 将加热电压开大,观察塔节视镜内的气液接触状况,当开始出现液泛时,记录P釜读数,此时P釜作为操作压力上限,对应的加热电压即为加热量,读取的回流比即为操作回流比上限。
(4) 在漏液点和液泛点之间选择一合适的塔釜加热量。
⑶部分回流时,塔顶塔底质量同时合格D的估算
根据轻组份物料衡算,得D的大小,应考虑全回流时塔底轻组分的含量。
6.4.2实验流程设计
⑴需要1个带再沸器和冷凝器的筛板精馏塔。
⑵需要3个温度计,以测定T顶、T灵、T釜。
⑶需要1个塔釜压力表,以确定操作压力P釜。
⑷需要1个加料泵,供连续精馏之用。
⑸需要3个流量计,以计量回流量、塔顶出料量、加料量。
将以上仪表和主要塔设备配上贮槽、阀门、管件等组建如下实验装置图。
6.6实验塔性能评定时的操作要点
(1) 分离能力——全回流操作
在塔釜内置入10~30v%的乙醇水溶液,釜位近液位计2处,开启加热电源使电压为220 3
V,打开塔顶冷凝器进水阀。塔釜加热,塔顶冷凝,不加料,不出产品。待塔内建立起稳定的浓度分布后,(回流流量计浮子浮起来达10min之久后),同时取样分析塔顶xD与塔釜xW。由该二组成可作图得到该塔的理论板数并与实际板数相除得到全塔效率。
(2) 的处理能力——液泛点
全回流条件下,加大塔釜的加热量,塔内上升蒸汽量和下降液体量将随之增大,塔板上液层厚度和塔釜压力也相应增大,当塔釜压力急剧上升时即出现液泛现象,读取该时刻的回流量和加热电流量,即为该塔操作的上限——液泛点。
(3) 最小的处理能力——漏液点
全回流条件下,逐次减小塔釜加热量,测定塔效率,塔效率剧降时,读取该时刻的回流量和加热电流量,即为该塔操作的下限——漏液点。
(4) 部分回流时,将加料流量计开至4 L/h,按照上述提及的回流比确定方法操作。
(5)若发生T灵急剧上升,应采取D=0,F?,W?的措施。
6.7 原始数据记录
实验体系:酒精水溶液
⑥ 离心泵性能测定实验注意事项【离心泵性能测定实验报告】
离心泵性能测定
一、实验目的:
1、 了解离心泵的构造与特性,掌握离心泵的操作方法;
2、 测定并绘制离心泵在恒定转速下的特性曲线。
二、实验原理:
离心泵的压头H、轴功率N及功率η与流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。
实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。
2u2u12p2p1泵的扬程He有下式计算:Heh0hf 2gg
而泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N
测定时,流量Q可用涡轮流量计或孔板流量计来计量。轴功率N可用马达-天平式测功器或功率来表测量。
离心泵的性能与其转速有关。其特性曲线是某一恒定的给定转速(一般nl=2900PRM)下的性能曲线。因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。换算公式如下:
当n
n20%时,Q1QQHgnnn1He1He(1)2N1N(1)311e1
n n n2 N1
三、装置与流程:
水由水箱1
阀2、离心泵4涡轮流量计9回水箱
1
四、操作步骤:
1、 熟悉实验装置及仪器仪表等设备,做好启动泵前的准备工作;将泵盘车数转,关闭泵进口阀,打开泵出口阀并给泵灌水,待泵内排尽气体并充满水后,再关闭泵出口阀。
2、 启动离心泵,全开泵进口阀,并逐渐打开离心泵出口阀以调节流量。在操作过程稳定条件下,在流量为零和最大值之间,进行8次测定。
3、 在每次测定流量时,应同时记录流量计、转速表、真空计、压力表、功率测定器示值。
数据取全后,先关闭泵出口阀,再停泵。
五、实验数据记录和数据处理:
3 泵入口管径d1 =40mm;出口管径d2 =40mm;h0 = 0.1m;水温T =25.0℃;ρ=997.0kg/m;
μ=0.903mPa·s; V[m3/h]=0.04855I[μA]; 直管长度l = 2 m;
由公式Q=V=[m/h]=0.04855[μA]; He=h0+(P2-P1)/ρg
Ne=Q×He×ρ×g N=PLn/0.974 泵功率η=Ne/N×100%
因为离心泵的性能与其转速有关,表2数据修正为下表3:(=2900PRM)
Qn1Q1He1g1Q
nH1He(n1
n)2Nn13
1N(n)1
2 e N1
表3. 泵性能数据修正表
202.0
1.8181.61.416
/ m
He 141.0
120.8
100.60.4
0.2
0.0
3.080.00.51.01.52.0
32.5Q / 10N / kW1.2
六、讨论:
1、 离心泵开启前,为什么要先灌水排气?
答:是为了除去泵内的空气,使泵能够把水抽上来。
2、 启动泵前,为什么要先关闭出口阀,待启动后再逐渐开大?而停泵时也要先关闭出口阀。 答:因为N随Q的增大而增大,当Q=0时,N最小,因此,启动离心泵时,应关闭出口阀,使电动机的启亩伏动电流减至最小,以保护电机。启动后再逐渐开大,使为了防止管部收到太大的冲击。而停泵时也要先关闭出口阀,是为了防止水倒流。
3、 离心泵的特性曲线是否与连结的管路系统有隐拆关?
答:特性曲线与管路无关,因为测量点在电机两端,管路的大小、长短与流量无关,只是与流速有关。
4、 离心泵流量愈大,则泵入口处的真空度愈大,为什么? 答:流量越大,泵的有效功率就越大,由公式
2u2u12p2p1Heh0hf 2gg
22pp1u2u12p2u2u12p2可得:He增大,1也增大 h0hf gg2gg2gg
5、 离心泵的流量可由泵出口阀调节,为什么?
答:因为当阀小时,管阻大,电机的有效功率低,流量低。同理,当阀开大时,管阻小,电机的有效功率高,流量高灶耐枣。
⑦ 常用仪器使用及实验基本操作的实验报告
一、实验目的 1、学习电子技术实验中常用电子仪器的主要技术指标、性能和正确使用方法。 2、初步掌握用示波器观察正弦信号波形和读取波形参数的方法。 电路实验箱的结构、基本功能和使用方法。 二、实验原理 在模拟电子电路实验中,要对各种电子仪器进行综合使用,可按照信号流向,以接线简捷,调节顺手,观察与读数方便等原则进行合理布局。接线时应注意,为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。 1. 信号发生器 信号发生器可以根据需要输出正弦波、方波、三角波三种信号波形。输出信号电压频率可以通过频率分挡开关、频率粗调和细调旋钮进行调节。输出信号电压幅度可由输出幅度调节旋钮进行连续调节。 操作要领: 1)按下电源开关。 2)根据需要选定一个波形输出开关按下。 3)根据所需频率,选择频率范围(选定一个频率分挡开关按下)、分别调节频率粗调和细调旋钮,在频率显示屏上显示所需频率即可。 4)调节幅度调节旋钮,用交流毫伏表测出所需信号电压值。 注意:信号发生器的输出端不允许短路。 2. 交流毫伏表 交流毫伏表只能在其工作频率范围内,用来测量300伏以下正弦交流电压的有效值。 操作要领: 1) 为了防止过载损坏仪表,在开机前和测量前(即在输入端开路情况下)应先将 量程开关置于较大量程处,待输入端接入电路开始测量时,再逐档减小量程到适当位置。 2) 读数:当量程开关旋到左边首位数为“1”的任一挡位时,应读取0~10标度尺 上的示数。当量程开关旋到左边首位数为“3”的任一挡位时,应读取0~3标度尺上的示数。 3)仪表使用完后,先将量程开关置于较大量程位置后,才能拆线或关机。 3.双踪示波器 示波器是用来观察和测量信号的波形及参数的设备。双踪示波器可以同时对两个输入信号进行观测和比较。 操作要领: 1) 时基线位置的调节 开机数秒钟后,适当调节垂直(↑↓)和水平(←→)位 移旋钮,将时基线移至适当的位置。 2) 清晰度的调节 适当调节亮度和聚焦旋钮,使时基线越细越好(亮度不能太亮, 一般能看清楚即可)。 3) 示波器的显示方式 示波器主要有单踪和双踪两种显示方式,属单踪显示的有“Y1”、“Y2”、“Y1+Y2”,作单踪显示时,可选择“Y1”或“Y2”其中一个按钮按下。属双踪显示的有“交替”和“断续”,作双踪显示时,为了在一次扫描过程中同时显示两个波形,采用“交替”显示方式,当被观察信号频率很低时(几十赫兹以下),可采用“断续”显示方式。 4) 波形的稳定 为了显示稳定的波形,应注意示波器面板上控制按钮的位置:a) “扫描速率”(t/div)开关------根据被观察信号的周期而定(一般信号频率低时,开关应向左旋。反之向右旋)。b)“触发源选择”开关------选内触发。c)“内触发源选择”开关------应根据示波器的显示方式来定,当显示方式为单踪时,应选择相应通道(如使用Y1通道应选择Y1内触发源)的内触发源开关按下。当显示方式为双踪时,可适当选择三个内触发源中的一个开关按下。d)“触发方式”开关------常置于“自动”位置。当波形稳定情况较差时,再置于“高频”或“常态”位置,此时必须要调节电平旋钮来稳定波形。 5)在测量波形的幅值和周期时,应分别将Y轴灵敏度“微调”旋钮和扫描速率“微 调”旋钮置于“校准”位置(顺时针旋到底)。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、万用表 四、实验内容 1.示波器内的校准信号 用机内校准信号(方波:f=1KHz VP—P=1V)对示波器进行自检。 1) 输入并调出校准信号波形 ①校准信号输出端通过专用电缆与Y1(或Y2)输入通道接通,根据实验原理中有关示波器的描述,正确设置和调节示波器各控制按钮、有关旋钮,将校准信号波形显示在荧光屏上。 ②分别将触发方式开关置“高频”和“常态”位置,然后调节电平旋钮,使波形稳定。 2) 校准“校准信号”幅度 将Y轴灵敏度“微调”旋钮置“校准”位置(即顺时针旋到底),Y轴灵敏度开关置适当位置,读取信号幅度,记入表1—1中。 3)校准“校准信号”频率 将扫速“微调”旋钮置“校准”位置,扫速开关置适当位置,读取校准信号周期,记入表1—1中。 2. 示波器和毫伏表测量信号参数 令信号发生器输出频率分别为500Hz、1KHz、5KHz,10KHz,有效值均为1V(交流毫伏表测量值)的正弦波信号。 调节示波器扫速开关和Y轴灵敏度开关,测量信号源输出电压周期及峰峰值,计算信号频率及有效值,记入表1—2中。 3.交流电压、直流电压及电阻的测量 1) 打开模拟电路实验箱的箱盖,熟悉实验箱的结构、功能和使用方法。 2) 将万用表水平放置,使用前应检查指针是否在标尺的起点上,如果偏移了,可调节 “机械调零”,使它回到标尺的起点上。测量时注意量程选择应尽可能接近于被测之量,但不能小于被测之量。测电阻时每换一次量程,必须要重新电气调零。 3) 用交流电压档测量实验箱上的交流电源电压6V、10V、14V;用直流电压档测量实 验箱上的直流电源电压±5V、±12V;用电阻档测量实验箱上的10Ω、1KΩ、10KΩ、100KΩ电阻器,将测量结果记入自拟表格中。常用仪器使用及实验基本操作的实验报告
⑧ 求一:热电偶温度传感器实验报告 很急
一、热电偶测温基本原理
将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,就构成热电偶。如图1所示。温度t端为感温端称为测量端, 温度t0端为连接仪表端称为参比端或冷端,当导体A和B的两个执着点t和t0之间存在温差时,就在回路中产生电动势EAB(t,t0), 因而在回路中形成电流,这种现象称为热电效应".这个电动势称为热电势,热电偶就是利用这一效应来工作的.热电势的大小与t和t0之差的大小有关.当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论知热电偶两端的热电势差可以用下式表示:
EAB(t,t0)=EAB(t)-EAB(t0)
式中 EAB(t,t0)-热电偶的热电势;
EAB(t)-温度为t时工作端的热电势;
EAB(t0)-温度为t0时冷端的热电势。
从上式可看出!当工作端的被测介质温度发生变化时,热电势随之发生变化,因此,只要测出EAB(t,t0)和知道EAB(t0)就可得到EAB(t),将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得测量端温度t值。
要真正了解热电偶的应用则不得不提到热电偶回路的几条重要性质:
质材料定律:由一种均质材料组成的闭合回路,不论材料长度方向各处温度如何分布,回路中均不产生热电势。这条规律要求组成热电偶的两种材料必须各自都是均质的,否则会由于沿热电偶长度方向存在温度梯度而产生附加电势,从而因热电偶材料不均引入误差。
中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。
中间温度定律:两种不同材料组成的热电偶回路,其接点温度分别为t和to时的热电势EAB(t,to)等于热电偶在连接点温度为(t,tn)和(tn,to)时相应的热电势EAB(t,tn)和EAB(tn,to)的代数和,其中tn为中间温度。该定律说明当热电偶参比端温度不为0℃时,只要能测得热电势EAB(t,to),且to已知,仍可以采用热电偶分度表求得被测温度t值。
连接导体定律:在热电偶回路中,如果热电偶的电极材料A和B分别与连接导线A1和B1相连接(如下图所示),各有关接点温度为t,tn和to,那么回路的总热电势等于热电偶两端处于t和tn温度条件下的热电势EAB(t,tn)与连接导线A1和B1两端处于tn和to温度条件的热电势EA1B1(tn,to)的代数和。
中间温度定律和连接导体定律是工业热电偶测温中应用补偿导线的理论依据。
二、各种误差引起的原因及解决方式
2.1 热电偶热电特性不稳定的影响
2.1.1 玷污与应力的影响及消除方法
热电偶在生产过程中,偶丝经过多道缩径拉伸在其表面总是受玷污的,同时,从偶丝的内部结构来看,不可避免地存在应力及晶格的不均匀性。因淬火或冷加工引入的应力,可以通过退火的方法来基本消除,退火不合格所造成的误差,可达十分之几度到几度。它与待测温度及热电偶电极上的温度梯度大小有关。廉金属热电偶的偶丝通常以“退火”状态交付使用,如果需要对高温用廉金属热电偶进行退火,那么退火温度应高于其使用温度上限,插入深度也应大于实际使用的深度。贵金属热电偶则必须认真清洗(酸洗和四硼酸钠清洗)和退火,以清除热电偶的玷污与应力。
2.1.2 不均匀性的影响
一般来说热电偶若是由均质导体制成的,则其热电势只与两端的温度有关,若热电极材料不是均匀的,且热电极又处于温度梯度场中,则热电偶会产生一个附加热电势,即“不均匀电势”。其大小取决于沿热电极长度的温度梯度分布状态,材料的不均匀形式和不均匀程度,以及热电极在温度场所处的位置。造成热电极不均匀的主要原因有:在化学成分方面如杂质分布不均匀,成分的偏析,热电极表面局部的金属挥发,氧化或某金属元素选择氧化,测量端在高温一的热扩散,以及热电偶在有害气氛中受到玷污和腐蚀等。在物理状态方面有应力分布不均匀和电极结构不均匀等。
在工业使用中,有时不均匀电势引起的附加误差竟达30℃这多,这将严重地影响热电偶的稳定性和互换性,其主要解决方式就是对其进行检验,只使用在误差允许范围内的热电偶。
2.1.3 热电偶不稳定性的影响
不稳定性就是指热电偶的分度值随使用时间和使用条件的不同而起的变化。在大多数情况下,它可能是不准确性的主要原因。影响不稳定性的因素有:玷污,热电极在高温下挥发,氧化和还原,脆化,辐射等。若分度值的变化相对地讲是缓慢而又均匀的,这时经常进行监督性校验或根据实际使用情况安排周期检定,这样可以减少不稳定性引入的误差。
2.2 参考端温度影响及修正方法
热电偶的热电动势的大小与热电极材料以及工作端的温度有关。热电偶的分度表和根据分度表刻度的温度显示仪表都是以热电偶参考端温度等于0℃为条件的。在实际使用热电偶时,其冷端温度(参考端) 不但不为0 ℃,而且往往是变化的,测温仪表所测得的温度值就会产生很大误差,在这种情况下,我们通常采用如下方法来修正。
2.2.1 热电势补正法
由中间温度定律可知,参考端温度为tn时的热电势EAB(t,tn)=EAB(t,t0)-EAB(tn,t0)。所以,用常温下的温度传感器,只要测出参比端的温度tn,然后从对应电偶的分度表中查出对应温度下的热电势E(tn,t0),再将这个热电势与所实测的E(t,tn)代数相加,得出的结果就是热电偶参比端温度为0度时,对应于测量端的温度为t时的热电势E(t,t0)最后再从分度表中查得对应于E(t,0)的温度,这个温度就是热电偶测量端的实际温度t。在计算机应用日益广泛的今天,可以利用软件处理方法,特别是在多点测量系统或高温测控中,采用这种方法,可很好的解决参比端温度的变化问题,只要随时准确的测出tn,就可以准确得到测量端温度。同时还充分应用了对应热电偶的分度表,并对非线性误差得到了校正,而且适应各种热电偶。
2.2.2 调仪表起始点法
由于仪表示值是EAB(tn,t0)对应于热电势,如果在测量线路开路的情况下,将仪表的指针零位调定到tn处,就当于事先给仪表加了一个电势EAB(tn,t0),当用闭合测量线路进行测温时,由热电偶输入的热电势EAB(tn,t0)就与EAB(t,tn)叠加,其和正好等于EAB(t,t0)。因此对直读式仪表采用调仪表起始点的方法十分简便。
2.2.3 补偿导线
采用补偿导线把热电偶的参考端延长到温度较恒定的地方,再进行修正。从本质上来说它并不能消除参考端温度不为0℃时的影响,因此,还应该与其它修正方法结合才能将补偿导线与仪表连接处的温度修正到0℃。此时参考端己变为一个温度不变或变化很小的新参考端。此时的热电偶产生热电势己不受原参考端温度变化影响, EAB ( T、T10 ) 是新参考端温度T10 (不等于℃) ,且T10 为一常数时所测得热电势, TAB( T、T10 ) 是参考端温度T0 = 0 ℃时,工作端为T10时所测得热电势(热电偶分度表中可查出) 。
使用补偿导线时,不仅应注意补偿导线的极性,还应特别注意不要错用补偿导线,同时应注意补偿导线与热电偶连接处的两端温度保持相等,且温度在0-100℃(或0-150℃)之间,否则要产生测量误差。
2.2.4 参考端温度补偿器
补偿器是一个不平衡电桥,电桥的3 个桥臂电阻是电阻温度系数很小的锰铜丝绕制的。其阻值基本上不随温度变化而变化,并使R1 = R2 =R3 = 1Ω。另一个桥臂电阻Rt 是由电阻温度系数较大的铜绕制而成,并使其在20 ℃时Rt = R1 =1Ω ,此时电桥平衡,没有电压输出,当电桥所处温度发生变化时, Rt 的阻值也随之改变,于是就有不平衡电压输出,此输出电压用来抵消参考端温度变化所产生的热电势误差,从而获得补偿。(注:我国也有以0℃作为平衡点温度的)当温度达到40℃(即计算点温度)时桥路的输出电压恰好补偿了热电偶参比端温度偏离平衡点温度而产生的热电势变化量。
对电子电位差计,其测量桥路本身就具有温度自动补偿的功能,使用时无需再调整仪表的温度起始点。除了平衡点和计算点外,在其他各参比端温度值时只能得到近似的补偿,因此采用冷端补偿器作为参比端温度的处理方法会带来一定的附加误差。
2.3 传热及热电偶安装的影响
由于热电偶测温是属于接触式测量,当热电偶插入被测介质时,它要从被测介质吸收热量使自身温度升高,同时又以热辐射方式和热传导方式向温度低的地方散发热量,当测量端各外散失的热量等于自气流中吸收的热量时即达到动态平衡,此时热电偶达到了稳定的示值,但并不代表气流的真实温度,因为测量端环境散失的热量是由气流的加热来补偿,也就是说测量端与气流的热交换处于不平衡状态,因此,它们的温度也不可能具有相同的数值。测量端与环境的传热愈强,测量端的温度偏离气流温度也愈大。
2.3.1 热辐射误差
热辐射误差产生的原因是热电偶测量端与环境的辐射热交换所引起的,这是热电偶与气流之间的对流换热不能达到热平衡的结果。减少辐射误差的办法,一是加剧对流换热,二是削弱辐射换热。具体方法有:
尽量减少器壁与测量端的温差,即在管壁铺设绝热层;
在热电偶工作端加屏蔽罩;
增大流体放热系数,即增加流速,加强扰动,减小偶丝直径或使热电极与气流形成跨流等。
2.3.2 导热误差
在测量高温气流的温度时,由于沿热电偶长度存在温度梯度,故测量端必然会沿热电极导热,使得指示温度偏离实际温度。导热量相差越多,相应的误差就越大,因此凡能加剧对流和削弱导热的因素都可以用来减少导热误差。具体方法有:
增加L/d;
将热电偶垂直安装改成斜装或弯头处安装,安装时应注意使热电偶的端对着气流方向,并处在流速最大的位置上;
选用热电偶和支杆导热系数较小的材料。
2.4 测量系统漏电影响
绝缘不良是产生电流泄漏的主要原因,它对热电偶的准确度有很大的影响,能歪曲被测的热电势,使仪表显示失真,甚至不能正常工作。漏电引起误差是多方面的,例如,热电极绝缘瓷管的绝缘电阻较差,使得热电流旁路。若电测设备漏电,也能使工作电流旁路,使测量产生误差。由于测量热电势的电位差计都是低电阻的,因此它对绝缘电阻的要求并不高,影响热电势测量的漏电主要是来处被测系统的高温,因为热电偶保护管和热电极的绝缘材料的绝缘电阻将随着温度升高而下降,我们通常所说的铠装热电偶的“分流误差”就属这类情况。一般是采用接地或其它屏蔽方法。对铠装热电偶的分流误差我们通常是以增大其直径;增加绝缘层厚度;缩短加热带长度;降低热电偶的电阻值等方法来降低误差的。
2.5 动态响应误差
热电偶插入被测介质后,由于本身具有热惰性,因此不能立即指示出被测气流的温度,只有当测量端吸、放热达到动态平衡后才达到稳定的示值。在热电偶插入后到示值稳定之前的整个不稳定过程中,热电偶的瞬时示值与稳定后的示值存在着偏差,这时热电偶除了有各种稳定的误差外,还存在由热电偶热惰性引入的偏差,即动态响应误差。克服这类误差的方法,一是确定动态响应误差,予以修正;二是将动态响应误差减少到允许要求的范围之内,此时可认为T测=T气。
2.6 短程有序结构变化(K状态)的影响
K型热电偶在250-600℃范围内使用时,由于其显微结构发生变化,形成短程有序结构,因此将影响热电势值而产生误差,这就是所谓的K状态。这是Ni-Cr合金特有的晶格变化,当WCr在5%-30%范围内存在着原子晶格从有序至无序为。由些引起的误差,因Cr含量及温度的不同而变化。一般在800℃以上短时间热处理,其热电特性即可恢复。由于K状态的存在,使K型热电偶检定规程中明文规定检定顺序:由低温向高温逐点升温检定。而且在400℃检定点,不仅传热效果不佳,难以达到热平衡,而且,又恰好处于K状态误差最大范围。因此,对该点判定合格与否时应很慎重。Ni-Cr合金短程有序结构变化现象,不仅存在于K型,而且,在E型热电偶正极中也有此现象。但是,作为变化量E型热电偶仅为K型的2/3。总之,K状态与温度、时间有关,当温度分布或热电偶位置变化时,其偏差也会发生很大变化。故难以对偏差大小作出准确评价。
三、小结
通过对热电偶原理及误差来源的总结,对以热电偶温度计量误差情况有了系统认识,得出了一些结论。热电偶的不稳定性、不均匀性、参考端温度变化、热传导以及热电偶安装使用不当会引起测量误差,有一些是由于加工制造过程中,或是测量系统及仪器本身存在的误差,还有一些则是人为造成的,对这一部分只要我们细心并对热电偶的特性有一定的了解则是可以避免的。