① 二级圆柱直齿减速器的毕业设计
机械设计课程设计原始资料
一、设计题目
热处理车间零件输送设备的传动装备
二、运动简图
图1
1—电动机 2—V带 3—齿轮减速器 4—联轴器 5—滚筒 6—输送带
三、工作条件
该装置单向传送,载荷平稳,空载起动,两班制工作,使用期限5年(每年按300天计算),输送带的速度容许误差为 ±5%.
四、原始数据
滚筒直径D(mm):320
运输带速度V(m/s):0.75
滚筒轴转矩T(N•m):900
五、设计工作量
1减速器总装配图一张
2齿轮、轴零件图各一张
3设计说明书一份
六、设计说明书内容
1. 运动简图和原始数据
2. 电动机选择
3. 主要参数计算
4. V带传动的设计计算
5. 减速器斜齿圆柱齿轮传动的设计计算
6. 机座结构尺寸计算
7. 轴的设计计算
8. 键、联轴器等的选择和校核
9. 滚动轴承及密封的选择和校核
10. 润滑材料及齿轮、轴承的润滑方法
11. 齿轮、轴承配合的选择
12. 参考文献
七、设计要求
1. 各设计阶段完成后,需经指导老师审阅同意后方能进行下阶段的设计;
2. 在指定的教室内进行设计.
一. 电动机的选择
一、电动机输入功率
二、电动机输出功率
其中总效率为
查表可得Y132S-4符合要求,故选用它。
Y132S-4(同步转速 ,4极)的相关参数
表1
额定功率 满载转速 堵转转矩额定转矩 最大转矩额定转矩 质量
二. 主要参数的计算
一、确定总传动比和分配各级传动比
传动装置的总传动比
查表可得V带传动单级传动比常用值2~4,圆柱齿轮传动单级传动比常用值为3~5,展开式二级圆柱齿轮减速器 。
初分传动比为 , , 。
二、计算传动装置的运动和动力参数
本装置从电动机到工作机有三轴,依次为Ⅰ,Ⅱ,Ⅲ轴,则
1、各轴转速
2、各轴功率
3、各轴转矩
表2
项目 电机轴 高速轴Ⅰ 中间轴Ⅱ 低速轴Ⅲ
转速
1440 576 135.753 62.706
功率
5.5 5.28 5.070 4.869
转矩
36.476 87.542 356.695 1038.221
传动比 2.5 4.243 3.031
效率 0.96 0.96 0.922
三 V带传动的设计计算
一、确定计算功率
查表可得工作情况系数
故
二、选择V带的带型
根据 ,由图可得选用A型带。
三、确定带轮的基准直径 并验算带速
1、初选小带轮的基准直径 。
查表8-6和8-8可得选取小带轮的基准直径
2、验算带速
按计算式验算带的速度
因为 ,故此带速合适。
3、计算大带轮的基准直径
按式(8-15a)计算大带轮的基准直径 根据教材表8-8,圆整得 。
4、确定V带的中心距 和基准直径
(1)按计算式初定中心距
(2)按计算式计算所需的基准长度
=1364mm
查表可选带的基准长度
(3)按计算式计算实际中心距
中心距的变化范围为 。
5、验算小带轮上的包角
6、计算带的根数
(1)计算单根V带的额定功率
由 查表可得
根据 和A型带,查表可得 、 、 。
故
(2)计算V带的根数Z
故取V带根数为6根
7、计算单根V带的初拉力的最小值
查表可得A型带的单位长度质量
应使带的实际初拉力 。
8、计算压轴力
压轴力的最小值为
四 减速器斜齿圆柱齿轮传动的设计计算
一、高速级齿轮
1、选定齿轮类型、精度等级、材料及齿数
(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。
(2)运输装置为一般工作机器,速度不高,故选用7级精度。
(3)材料选择:查表可选择小齿轮材料为40 (调质),硬度为280HBS;大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
(4)选小齿轮齿数 ,大齿轮齿数 ,取
(5)选取螺旋角,初选螺旋角
2、按齿面接触强度设计,按计算式试算即
(1)确定公式内的各计算数值
①试选 ,由图10-26 , 则有
②小齿轮传递转矩
③查图10-30可选取区域系数 查表10-7可选取齿宽系数
④查表10-6可得材料的弹性影响系数 。
⑤查图10-21d得按齿面硬度选取小齿轮的接触疲劳强度极限 ,大齿轮的接触疲劳强度极限 。
⑥按计算式计算应力循环次数
⑦查图可选取接触疲劳寿命系数 , 。
⑧计算接触疲劳许用应力
取失效概率为1%,安全系数 ,按计算式(10-12)得
(2)计算相关数值
①试算小齿轮分度圆直径 ,由计算公式得
②计算圆周速度
③计算齿宽 及模数
④计算总相重合度
⑤计算载荷系数
查表可得使用系数 ,根据 ,7级精度,查表10-8可得动载系数 ,由表10-4查得 的值与直齿轮的相同,为1.419 ,
故载荷系数
⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得
⑦计算模数
3、按齿根弯曲强度设计,按计算式(10-17)试算即
(1)确定公式内的各计算数值
①、计算载荷系数
②根据纵向重合度 ,查图10-28可得螺旋角影响系数 。
③查图可选取区域系数 , , 则有
④查表取应力校正系数 , 。
⑤查表取齿形系数 , 。(线性插值法)
⑥查图10-20C可得小齿轮的弯曲疲劳强度极限 ,大齿轮的弯曲疲劳强度极限 。
⑦查图可取弯曲疲劳寿命系数 , 。
⑧计算弯曲疲劳许用应力 ,取弯曲疲劳安全系数 ,按计算式(10-22)计算得
⑨计算大、小齿轮的 并加以计算
大齿轮的数值较大。
(2)设计计算
对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,故取 ,已可满足弯曲强度,但为了同时满足接触疲劳强度,需按接触疲劳强度算得的分度圆直径 来计算应有的齿数,于是有
取 ,则
4、几何尺寸计算
(1)计算中心距
将中心距圆整为 。
(2)按圆整后的中心距修正螺旋角
因 值改变不多,故参数 、 、 等不必修正。
(3)计算大、小齿轮的分度圆直径
(4)计算齿轮宽度
圆整后取 , 。
二、低速级齿轮
1、选定齿轮类型、精度等级、材料及齿数
(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。
(2)运输装置为一般工作机器,速度不高,故选用7级精度。
(3)材料选择,在同一减速器各级小齿轮(或大齿轮)的材料,没有特殊情况,应选用相同牌号,以减少材料品种和工艺要求,故查表可选择小齿轮材料为40 (调质),硬度为52HRC;大齿轮材料为45钢(调质),硬度为45HRC.
(4)选小齿轮齿数 ,大齿轮齿数
(5)选取螺旋角,初选螺旋角
2、按齿面接触强度设计,按计算式试算即
(1)确定公式内的各计算数值
①试选
②小齿轮传递转矩
③查表10-7可选取齿宽系数 , 查图10-26可选取区域系数 , , 则有
④查表可得材料的弹性影响系数 。
⑤查图得按齿面硬度选取小齿轮的接触疲劳强度极限 ,大齿轮的接触疲劳强度极限 。
⑥按计算式计算应力循环次数
⑦查图可选取接触疲劳寿命系数 , 。
⑧计算接触疲劳许用应力
取失效概率为1%,安全系数 ,于是得
(2)计算相关数值
①试算小齿轮分度圆直径 ,由计算公式得
②计算圆周速度
③计算齿宽 及模数
④计算总相重合度
⑤计算载荷系数
查表可得使用系数 ,根据 ,7级精度,查表可得动载系数 , , ,
故载荷系数
⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得
⑦计算模数
3、按齿根弯曲强度设计,按计算式试算即
(1)确定公式内的各计算数值
①计算载荷系数
②根据纵向重合度 ,查图可得螺旋角影响系数 。
③计算当量齿数
④查表可取齿形系数 , 。
⑤查表可取应力校正系数 , 。(线性插值法)
⑥查图可得小齿轮的弯曲疲劳强度极限 ,大齿轮的弯曲疲劳强度极限 。
⑦查图可取弯曲疲劳寿命系数 , 。
⑧计算弯曲疲劳许用应力
取弯曲疲劳安全系数 ,按计算式计算
⑨计算大、小齿轮的 并加以计算
大齿轮的数值较大。
(2)设计计算
对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,故取 ,已可满足弯曲强度,但为了同时满足接触疲劳强度,需按接触疲劳强度算得的分度圆直径 来计算应有的齿数,于是有
取 ,则
4、几何尺寸计算
(1)计算中心距
将中心距圆整为 。
(2)按圆整后的中心距修正螺旋角
因 值改变不多,故参数 、 、 等不必修正。
(3)计算大、小齿轮的分度圆直径
(4)计算齿轮宽度
圆整后取 , 。
五 轴的设计计算
一、高速轴的设计
1、求作用在齿轮上的力
高速级齿轮的分度圆直径为d
2、选取材料
可选轴的材料为45钢,调质处理。
3、计算轴的最小直径,查表可取
应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使 与带轮相配合,且对于直径 的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。故取 。
4、拟定轴上零件的装配草图方案(见下图)
5、根据轴向定位的要求,确定轴的各段直径和长度
(1)根据前面设计知大带轮的毂长为93mm,故取 ,为满足大带轮的定位要求,则其右侧有一轴肩,故取 ,根据装配关系,定
(2)初选流动轴承7307AC,则其尺寸为 ,故 , 段挡油环取其长为19.5mm,则 。
(3) 段右边有一定位轴肩,故取 ,根据装配关系可定 ,为了使齿轮轴上的齿面便于加工,取 。
(4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s=8mm,故右侧挡油环的长度为19mm,则
(5)计算可得 、
(6)大带轮与轴的周向定位采用普通平键C型连接,其尺寸为 ,大带轮与轴的配合为 ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6.
求两轴承所受的径向载荷 和
带传动有压轴力 (过轴线,水平方向), 。
将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系
图一
图二
图三
[注]图二中 通过另加弯矩而平移到作用轴线上
图三中 通过另加转矩而平移到指向轴线
同理
6 、求两轴承的计算轴向力 和
对于 型轴承,轴承的派生轴向力
故
7、求轴承的当量动载荷 和
对于轴承1
对于轴承2
查表可得径向载荷系数和轴向载荷系数分别为:
对于轴承1 ,
对于轴承2 ,
8、求该轴承应具有的额定载荷值
因为 则有
故 符合要求。
9、弯矩图的计算
水平面: , N,则其各段的弯矩为:
BC段:
由弯矩平衡得M-
CD段:
由弯矩平衡得
铅垂面: 则其各段弯矩为:
AB段:
则
BC段:
则
CD段:
则
做弯矩图如下
从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表
表3
载荷 水平面
垂直面
支持力
弯矩
总弯矩
扭矩
10、按弯扭合成应力校核轴的强度
进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环变应力,取 ,轴的计算应力
前已选定轴的材料为45钢,调质处理,查表可得 ,因此 ,故安全。
11、键的选择和校核
高速轴上与大带轮相配合的轴上选择键连接,由于大带轮在轴端部,故选用单圆头平键(C型)
根据 ,从表6-1中查得键的截面尺寸为:宽度: 高度: ,由轮毂宽度并参考键的长度系列,取键长为:
键、轴承和轮毂材料都为钢查表可得
取其平均植,
键的工作长度
键和轮毂键槽的接触高度
则 ,故合适。
所以选用:键C GB/T 1096-2003
12、确定轴上圆角和倒角尺寸
取轴端倒角为 ,各轴肩处圆角半径为2。
二、中间轴的设计
1、求作用在齿轮上的力
因为高速轴的小齿轮与中速轴的大齿轮相啮合,故两齿轮所受的 、 、 都是作用力与反作用力的关系,则大齿轮上所受的力为
中速轴小齿轮上的三个力分别为
2、选取材料
可选轴的材料为45钢,调质处理。
3、计算轴的最小直径,查表可取
轴的最小直径显然是安装轴承处,为使轴承便于安装,且对于直径 的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。故取 。
4、拟定轴上零件的装配草图方案(见下图)
5、根据轴向定位的要求,确定轴的各段直径和长度
(1)初选滚动轴承7008AC,则其尺寸为:
故 用挡油环定位轴承,故 段右边有一定位轴肩,故 低速级小齿轮与箱体内壁距离为16 ,与箱体内壁距离为8 ,故左边挡油环长为24 ,则
(2)低速级小齿轮轮毂为95 ,即 取两齿面的距离为8 ,即
(3)右边也用挡油环定位轴承和低速级大齿轮,故 。 段轴长略短与其齿轮毂长,又毂长为55 ,故取
、 、 各有一定位轴肩,故依次可取
(4)计算可得
6、轴上零件的周向定位
低速级大齿轮的轴采用普通平键A型连接。
其尺寸为 齿轮与轴的配合为 ,滚动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为 。
求两轴承所受的径向载荷 和
将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系
图一
图二
图三
7、求两轴承的计算轴向力 和
由齿轮中计算得,
对于 型轴承,轴承的派生轴向力
算得
所以
8、求轴承的当量动载荷 和
对于轴承1
对于轴承2
查表可得径向载荷系数和轴向载荷系数分别为:
对于轴承1 ,
对于轴承2 ,
9、求该轴承应具有的额定载荷值
因为 则有
故 符合要求。
10、弯矩图的计算
水平面: 。
AB段:
则 即
BC段:
则
CD段:
则
。
铅垂面:
AB段:
BC段:
CD段:
做弯矩图如下
从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表
表4
载荷 水平面
垂直面
支持力
弯矩
总弯矩
扭矩
11、按弯扭合成应力校核轴的强度
进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环变应力,取 ,轴的计算应力
前已选定轴的材料为45钢,调质处理,查表可得 , ,故安全。
12、键的选择和校核
一般的8级以上精度的齿轮有空心精度要求,应选用平键连接,由于齿轮不在轴端,故选用圆头普通平键(A型)
取键长 ,
键、轴承和轮毂材料都为钢查表可得
取其平均植,
键的工作长度
键和轮毂键槽的接触高度
则 ,故合适。
所以选用:键 GB/T 1096-2003
13、确定轴上圆角和倒角尺寸
取轴端倒角为 ,各轴肩处圆角半径见365页……
三、低速轴的设计
1、求作用在齿轮上的力
因为高速轴的小齿轮与中速轴的大齿轮相啮合,故两齿轮所受的 、 、 都是作用力与反作用力的关系,则
2、选取材料
可选轴的材料为45钢,调质处理。
3、计算轴的最小直径,查表可取
轴的最小直径显然是安装联轴器处轴的直径 ,为了使所选的轴直径 与联轴器的孔径相配合,且对于直径 的轴有两个键槽时,应增大10%-15%,然后将轴径圆整,故取 。并选取所需的联轴器型号
联轴器的计算转矩 ,查表可得,考虑到转矩变化小,故取
其公称转矩为 。半联轴器的孔径 ,长度 ,半联轴器与轴配合的毂孔长度
4、拟定轴上零件的装配草图方案(见下图)
5、根据轴向定位的要求,确定轴的各段直径和长度
①为了满足半联轴器安装的轴向定位要求,Ⅰ-Ⅱ轴段右端需制出一轴肩,故Ⅱ-Ⅲ段的直径 。
②查手册99页,选用 型弹性柱销联轴器L
③初选滚动轴承7051AC,则其尺寸为
故 左边轴承安装处有挡油环,取其长度为20mm,
则
④挡油环右侧用轴肩定位,故可取
⑤取齿面与箱体内壁距离 轴承座距箱体内壁距离为 。
用挡油环对齿面定位时,为了使油环可靠的压紧齿轮, 段应略短于轮毂宽度,故取 所以取
⑥齿轮左侧用轴肩定位,取 则 ,轴换宽度 ,取 。
⑦由装配关系可确定
⑧计算得 , , 。
6、轴上零件的周向定位
齿轮、半联轴器与轴的周向定位均采用普通平键 型 连接。轴与齿轮连接采用平键 ,L=70 ,齿轮轮毂与轴的配合为 。同样半联轴器与轴连接,采用键 。半联轴器与轴的配合为 。滚动轴承与轴的周向定位是由过渡配合保证的,此外选轴的直径尺寸公差为 。
7、轴上齿轮所受切向力 ,径向力 ,轴向力
, 。
8、求两轴承所受的径向载荷 和
将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系
图一
图二
图三
9、求两轴承的计算轴向力 和
对于 型轴承,轴承的派生轴向力
故
10、求轴承的当量动载荷 和
, 。查表可得径向载荷系数和轴向载荷系数分别为:
对于轴承1 ,
对于轴承2 ,
因轴承运转载荷平稳,按表13-6, ,取
则 。
。
11、求该轴承应具有的额定载荷值
因为 则有
预期寿命 故合格
12、弯矩图的计算
水平面: , .
AB段:弯矩为0
BC段:
CD段:
铅垂面: , .
AB段弯矩为0
BC段:
CD段:
做弯矩图如下
从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表
表5
载荷 水平面
垂直面
支持力
弯矩
总弯矩
扭矩
13、按弯扭合成应力校核轴的强度
进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环 变应力,取 ,轴的计算应力
前已选定轴的材料为45钢,调质处理,查表可得 ,因此 ,故安全。
14、键的选择和校核
选键型为普通平键(A) 根据 ,从表6-1中查得键的截面尺寸为:宽度 =25 ,高度 。取键长 。键轴和毂的材料都是钢,有表6-2查得许用挤压应力 ,取平均值 。键的工作长度 ,键与轮毂键槽的接触高度 , 故选取键A: GB/T 1096-2003
7、确定轴上圆角和倒角尺寸
取轴端倒角为 ,各轴肩处圆角半径为2。
六.箱体结构的设计
减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,
大端盖分机体采用 配合.
1. 机体有足够的刚度
在机体为加肋,外轮廓为长方形,增强了轴承座刚度
2. 考虑到机体内零件的润滑,密封散热。
因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm
为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为
3. 机体结构有良好的工艺性.
铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.
4. 对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固
B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油尺安置的部位不能太低,以防油进入油尺座孔而溢出.
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 盖螺钉:
启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。
钉杆端部要做成圆柱形,以免破坏螺纹.
F 位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.
G 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.
减速器机体结构尺寸如下:
名称 符号 计算公式 结果
箱座壁厚
10
箱盖壁厚
9
箱盖凸缘厚度
12
箱座凸缘厚度
15
箱座底凸缘厚度
25
地脚螺钉直径
M24
地脚螺钉数目
查手册 6
轴承旁联接螺栓直径
M12
机盖与机座联接螺栓直径
=(0.5~0.6)
M10
轴承端盖螺钉直径
=(0.4~0.5)
10
视孔盖螺钉直径
=(0.3~0.4)
8
定位销直径
=(0.7~0.8)
8
, , 至外机壁距离
查机械课程设计指导书表4 34
22
18
, 至凸缘边缘距离
查机械课程设计指导书表4 28
16
外机壁至轴承座端面距离
= + +(8~12)
50
大齿轮顶圆与内机壁距离
>1.2
15
齿轮端面与内机壁距离
>
10
机盖,机座肋厚
9 8.5
轴承端盖外径
+(5~5.5)
120(1轴)125(2轴)
150(3轴)
轴承旁联结螺栓距离
120(1轴)125(2轴)
150(3轴)
七. 润滑密封设计
对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.
油的深度为H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化学合成油,润滑效果好。
密封性来讲为了保证机盖与机座联接处密封,联接
凸缘应有足够的宽度,联接表面应精创,其表面粗度应为
密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太
大,国150mm。并匀均布置,保证部分面处的密封性。
八、课程设计心得体会
作为一名机械设计制造及自动化大三的学生,我觉得能做类似的课程设计是十分有意义,而且是十分必要的。在已度过的大三的时间里我们大多数接触的是专业基础课。我们在课堂上掌握的仅仅是专业基础课的理论面,如何去锻炼我们的实践面?如何把我们所学到的专业基础理论知识用到实践中去呢?我想做类似的大作业就为我们提供了良好的实践平台。在做本次课程设计的过程中,我感触最深的当数查阅大量的设计手册了。为了让自己的设计更加完善,更加符合工程标准,一次次翻阅机械设计手册是十分必要的,同时也是必不可少的。我们是在作设计,但我们不是艺术家。他们可以抛开实际,尽情在幻想的世界里翱翔,我们是工程师,一切都要有据可依.有
理可寻,不切实际的构想永远只能是构想,永远无法升级为设计。
作为一名专业学生掌握一门或几门制图软件同样是必不可少的,由于本次大作业要求用 auto CAD制图,因此要想更加有效率的制图,我们必须熟练的掌握它。
虽然过去从未独立应用过它,但在学习的过程中带着问题去学我发现效率好高,记得大一学CAD时觉得好难就是因为我们没有把自己放在使用者的角度,单单是为了学而学,这样效率当然不会高。边学边用这样才会提高效率,这是我作本次课程设计的第二大收获。但是由于水平有限,难免会有错误,还望老师批评指正。
参考文献
〔1〕濮良贵,纪明刚. 机械设计. 7版. 北京:高等教育出版社, 2001
.
〔2〕张策, 机械原理与机械设计[M]. 北京:机械工业出版社, 2004.
[3] 吴宗泽,罗胜国. 机械设计课程设计手册. 北京: 高等教育出版社, 2007.
[4] 王伯平.互换性与测量技术基础(第2版). 北京: 机械工业出版社,2006
② 求自动化系的毕业设计课题大纲及内容步骤。
题 目:电动机的发展与维护
姓 名: 朱 中 辉
编 号:
平顶山工业职业技术学院
年 月 日
平顶山工业职业技术学院
毕 业 设 计 (论文) 任 务 书
姓名
专业
任 务 下 达 日 期 年 月 日
设计(论文)开始日期 年 月 日
设计(论文)完成日期 年 月 日
设计(论文)题目:
A•编制设计
B•设计专题(毕业论文)
指 导 教 师
系(部)主 任
年 月 日
平顶山工业职业技术学院
毕业设计(论文)答辩委员会记录
系 专业,学生 于 年 月 日
进行了毕业设计(论文)答辩。
设计题目:
专题(论文)题目:
指导老师:
答辩委员会根据学生提交的毕业设计(论文)材料,根据学生答辩情况,经答辩委员会讨论评定,给予学生 毕业设计(论文)成绩为 。
答辩委员会 人,出席 人
答辩委员会主任(签字):
答辩委员会副主任(签字):
答辩委员会委员: , , ,
, , ,
平顶山工业职业技术学院毕业设计(论文)评语
第 页
共 页
学生姓名: 专业 年级
毕业设计(论文)题目:
评 阅 人:
指导教师: (签字) 年 月 日
成 绩:
系(科)主任: (签字) 年 月 日
毕业设计(论文)及答辩评语:
目 录
摘 要 1
Abstract 2
引 言 4
第1章 电动机分类、发展现状及未来 5
1 电动机分类 5
2电动机技术发展现状 5
3 电动机的未来 6
第2章电动机的工作原理 7
1 三相异步电动机的结构及工作原理 7
2 三相异步电动机的结构 7
3 三相异步电动机的工作原理 7
第三章。电动机的运行维护 10
1 电动机启动前的准备 10
2 启动时应注意的问题 10
3 电动机运行中的监视 10
1) 监视电动机的温度 10
2) 监视电动机的电流 11
3)监视电动机的电压 11
4) 注意电动机的振动、响声和气味 11
5) 注意传动装置的检查 11
6) 注意轴承的工作情况 11
7) 注意交流电动机的滑环或直流电动机的换向器火花 11
4电动机的定期检查和保养 11
结 论 13
致 谢 14
参考文献 15
引 言
电动机是一种实现机、电能量转换的电磁装置。常见的电动机可分为交流电动机和直流电动机。电动机是随着生产力的发展而发展的,反过来,电动机的发展也促进了社会生产力的不断提高。从19世纪末期起,电动机就逐渐代替蒸汽机作为拖动生产机械的原动机,一个多世纪以来,虽然电动机的基本结构变化不大,但是电动机的类型增加了许多,在运行性能,经济指标等方面也都有了很大的改进和提高,而且随着自动控制系统和计算机技术的发展,在一般旋转电动机的理论基础上又发展出许多种类的控制电动机,控制电动机具有高可靠性、好精确度、快速响应的特点,已成为电动机学科的一个独立分支。
1.电动机分类、发展现状及未来
1.1 电动机分类
电动机应用广泛,种类繁多、性能各异,分类方法也很多。
1.根据电动机工作电源的不同,可分为直流电动机和交流电动机。其中交流电动机还分为单相电动机和三相电动机。
2.电动机按结构及工作原理可分为异步电动机和同步电动机。 同步电动机还可分为永磁同步电动机、磁阻同步电动机和磁滞同步电动机。异步电动机可分为感应电动机和交流换向器电动机。感应电动机又分为三相异步电动机、单相异步电动机和罩极异步电动机。交流换向器电动机又分为单相串励电动机、交直流两用电动机和推斥电动机。
3.电动机按起动与运行方式可分为电容起动式电动机、电容运转式电动机、电容起动运转式电动机和分相式电动机。按用途分类。电动机按用途可分为驱动用电动机和控制用电动机。驱动用电动机又分为电动工具用电动机、家电用电动机及其它通用小型机械设备用电动机。控制用电动机又分为步进电动机和伺服电动机等。
4.电动机按转子的结构可分为笼型感应电动机和绕线转子感应电动机。
5.电动机按运转速度可分为高速电动机、低速电动机、恒速电动机、调速电动机。
1.2电动机技术发展现状
电动机是一种实现机、电能量转换的电磁装置。它是随着生产力的发展而发展的,反过来,电动机的发展也促进了社会生产力的不断提高。从19世纪末期起,电动机就逐渐代替蒸汽机作为拖动生产机械的原动机,一个多世纪以来,虽然电动机的基本结构变化不大,但是电动机的类型增加了许多,在运行性能,经济指标等方面也都有了很大的改进和提高,而且随着自动控制系统和计算机技术的发展,在一般旋转电动机的理论基础上又发展出许多种类的控制电动机,控制电动机具有高可靠性、好精确度、快速响应的特点,已成为电动机学科的一个独立分支。电动机的功能是将电能转换成机械能,它可以作为拖动各种生产机械的动力,是国民经济各部门应用最多的动力机械。在现代化工业生产过程中,为了实现各种生产工艺过程,需要各种各样的生产机械。拖动各种生产机械运转,可以采用气动,液压传动和电力拖动。由于电力拖动具有控制简单、调节性能好、耗损小、经济,能实现远距离控制和自动控制等一系列优点,因此大多数生产机械都采用电力拖动。
按照电动机的种类不同,电力拖动系统分为直流电力拖动系统和交流电力拖动系统两大类。
纵观电力拖动的发展过程,交、直流两种拖动方式并存于各个生产领域。在交流电出现以前,直流电力拖动是唯一的一种电力拖动方式,19世纪末期,由于研制出了经济实用的交流电动机,致使交流电力拖动在工业中得到了广泛的应用,但随着生产技术的发展,特别是精密机械加工与冶金工业生产过程的进步,对电力拖动在起动,制动,正反转以及调速精度与范围等静态特性和动态响应方面提出了新的,更高的要求。由于交流电力拖动比直流电力拖动在技术上难以实现这些要求,所以20世纪以来,在可逆,可调速与高精度的拖动技术领域中,相当时期内几乎都是采用直流电力拖动,而交流电力拖动则主要用于恒转速系统。
虽然直流电动机具有调速性能优异这一突出特点,但是由于它具有电刷与换向器(又称整流子),使得他的故障率较高,电动机的使用环境也受到了限制(如不能在有易爆气体及尘埃多的场合使用),其电压等级,额定转速,单机容量的发展也受到了限制。所以,在20世纪60年代以后,随着电力电子技术的发展,半导体交流技术的交流技术的交流调速系统得以实现。尤其是70年代以来,大规模集成电路和计算机控制技术的发展,为交流电力拖动的广泛应用创造了有利条件。诸如交流电动机的串级调速,各种类型的变频调速,无换向器电动机调速等,使得交流电力拖动逐步具备了调速范围宽,稳态精度高,动态响应快以及在四象限做可逆运行等良好的技术性能,在调速性能方面完全可与直流电力拖动媲美。除此之外,由于交流电力拖动具有调速性能优良,维修费用低等优点,将广泛应用于各个工业电气自动化领域中,并逐步取代直流电力拖动而成为电力拖动的主流。
1.3 电动机的未来
经历了100多年的技术发展,电动机自身的理论基本成熟。随着电工技术的发展,对电能的转换、控制以及高效使用的要求越来越高。电磁材料的性能不断提高,电工电子技术的广泛应用,为电动机的发展注入了新的活力。未来电动机将会沿着体积更小、机电能量转换效率更高、控制更灵活的方向继续发展。
2.电动机的工作原理
2.1 三相异步电动机的结构及工作原理
目前较常用的主要是交流电动机,它可分为三相异步电动机和单相交流电动机两种。第一种多用在工业上,而第二种多用在民用电器上。下面以三相异步电动机为例介绍电动机的工作原理。
2.1.1 三相异步电动机的结构
三相异步电动机的结构主要由两个部分组成,一是固定不动的部分(简称定子),二是可以自由旋转的部分(简称转子)。定子与转子之间有一个很小的气隙。此外,还有机座、端盖轴承、接线盒、风扇等其他部分。异步电动机根据转子的绕组的结构不同,可分为鼠笼式和绕线式两种。鼠笼式异步电动机的转子绕组本身自成闭合回路,整个转子形成一个坚实的整体,其结构简单牢固、运行可靠、价格便宜,应用最为广泛,小型异步电动机绝大部分属于这类。绕线式异步电动机的结构比鼠笼式复杂,但启动性能较好,需要时还可以调节
1.定子
定子定子是用来产生旋转磁场的,主要由定子铁心、定子绕组和机座等部分组子成。鼠笼式和绕线式异步电动机的定子结构是完全一样的。
2.转子
转子是异步电动机的转动部分,它在定子绕组旋转磁场的作用下获得一定的转矩而旋转,通过联轴器或皮带轮带动其他机械设备做功。转子由转子铁心、转子绕组和转轴等部分组成。
3.机座
机座是电动机的外壳和支架,它的作用是固定和保护定子铁心、定子绕组并支撑端盖,所以要求机座具有足够的机械强度和刚度,能承受运输和运行过程中的各种作用力。中、小型异步电动机通常采用铸铁机座,定子铁心紧贴在机座的内壁,电动机运行时铁心和绕组产生的热量主要通过机座表面散发到空气中去,因此,为了增加散热面积,在机座表面装有散热片。对大型异步电动机,一般采用钢板焊接机座,此时为了满足通风散热的要求,机座内表面与铁心隔开适当距离,以形成空腔,作为冷却空气的通道。
2.1.2 三相异步电动机的工作原理
图2—1所示为用图解法分析旋转磁场的电机绕组结构图。图中交流电机的定子上嵌放着对称的三相绕组U1—U2、V1—V2、W1—W2,电流的流入端用符号 表示,流出端用⊙表示。
图2—1 图解法分析旋转磁场的电机绕组结构图
三相对称电流波形如图2—2所示。假定电流从绕组首端流入为正,末端流出为负。
图2-2 三相对称电流波形
对称三相交流电流通入对称三相绕组时,便产生一个旋转磁场。下面选取各相电流出现最大值的几个瞬间进行分析。
在图2—1中,当wt=0°时,U相电流达到正最大值,电流从首端U1流入,用 表示,从末端U2流出,用⊙表示;V相和W相电流均为负,因此电流均从绕组的末端流入,首端流出,故末端V2和W2应填上 ,首端V1和W1应填上⊙,如图2—2(a)所示。从图可见,合成磁场的轴线正好位于U相绕组的轴线上。
当wt=120°时,V相电流为正的最大值,因此V相电流从首端V1流入,用 表示,从末端V2流出,用⊙表示。U相和W相电流均为负,则U1和W1端为流出电流,用⊙表示,而U2和W2为流入电流,用⊙表示,如图2—2(b)所示。由图可见,此时合成磁场的轴线正好位于V相绕组的轴线上,磁场方向已从wt=0°时的位置沿逆时针方向旋转了120°。当wt=240°和wt=360°时,合成磁场的位置分别如图2—2(c)、(d)所示。当wt=360°时,合成磁场的轴线正好位于U相绕组的轴线上,磁场方向从起始位置逆时针方向旋转了360°,即电流变化一个周期,合成磁场旋转一周。由此可见,对称三相交流电流通入对称三相绕组所形成的磁场是一个旋转磁场。旋转的方向从U→V→W,正好和电流出现正的最大值顺序相同,即由电流超前相转向电流滞后相。如果三相绕组通入负序电流,则电流出现正的最大值的顺序是U→W→V。通过图解法分析可知,旋转磁场的旋转方向也为U→W→V。
综上分析可知,三相异步电动机转动的基本工作原则是:
(1)三相对称绕组中通入三相对称电流产生圆形旋转磁场。
(2)转子导体切割旋转磁场产生感应电动势和电流。
(3)转子载流导体在磁场中受到电磁力的作用,从而形成电磁转矩,驱使电动机转子转动,其转速小于同步转速。异步电动机的转速不可能达到定子旋转磁场的转速,即同步转速,因为如果到达同步转速,则转子导体与旋转磁场之间没有相对运动,随之在转子导体中不能感应出电势和电流,也就不能产生推动转子的电磁力。因此,异步电动机的转速总是低于同步转速,即两种转速之间总是存在差异,异步电动机因此而得名。又因为异步电动机转子电流是通过电磁感应作用产生的,所以又称为感应电动机。
(4)异步电动机的旋转方向始终与旋转磁场的旋转方向一致,而旋转磁场的方向又取决于异步电动机的三相电流相序,因此,三相异步电动机的转向与电流的相序一致。要改变转向,只要改变电流的相序即可,即任意对调电动机的两根电源线,便可使电动机反转。
3.电动机的运行维护
3.1 电动机启动前的准备
为了保证电动机正常安全地启动,一般启动前应作好下述准备:
(1)检查电源是否有电,电压是否正常,若电源电压过高或过低,都不宜启动。
(2)启动器是否正常,如零部件有无损坏,使用是否灵活,触头接触是否良好,接线是否正确、牢固等。
(3)熔丝规格大小是否合适,安装是否牢固,有无熔断或损伤。
(4)电动机接线板上接头有无松动或氧化。
(5)检查传动装置,如皮带轻紧是否合适,连接是否牢固,联轴器的螺丝、销子是否紧固等。
(6)传动电动机转子和负载机械的转轴,看其转动是否灵活。
(7)检查电动机及启动电器外壳是否接地,接地线有无断路,接地螺丝是否松动、脱落等。
(8)搬开电动机周围的杂物并清除机座表面灰尘、油垢等。
(9)检查负载机械是否妥善地作好了启动准备。
(10)对正常运行中的绕线式电动机,应经常观察电动机滑环有无偏心摆动现象;观察滑环的火花是否发生异常现象。滑环上碳刷是否要更换。
3.2 启动时应注意的问题
(1)接通电源后,如果电动机不转,应立即切断电源,绝不能迟疑等待,更不能带电检查电动机发故障,否则将会烧毁电动机和发生危险。
(2)启动时应注意观察电动机、传动装置、负载机械的工作情况,以及线路上的电流表和电压表的指示,若有异常现象,应立即断电检查,待故障排除后,载行启动。
(3)利用手动补偿器或手动星三角启动器启动电动机时,特别要注意操作顺序。一定要先将手柄推到启动位置,待电动机转速稳定后再拉到运转位置,防止误操作造成设备和人身事故。
(4)同一线路上的电动机不应同时启动,一般应由大到小逐台启动以免多太电动机同时启动,线路上电流太大。电压降低过多,造成电动机启动困难引起线路故障或使开关设备跳闸。
(5)启动时,若电动机的旋转方向反了,应立即切断电源,将三相电源线中的任意两相互换一下位置,即可改变电动机转向。
3.3 电动机运行中的监视
电动机在运行时,值班工作人员可以通过仪表和感觉器官监视其运行情况,以便及早发现问题,减少或避免故障的发生。
3.3.1 监视电动机的温度
电动机正常运行时会发热,使电动机温度升高,但不应超出允许的限度。如果电动机负载过大,使用环境温度过高,通风不畅或运行中发生故障,就会使其温度超出允许限度,导致绕组过热烧毁,因此电动机温度的高低是反映电动机运行的主要标志,在运行中经常检查。判断电动机是否过热,可以用以下方法:
(1)凭手的感觉:如果以手接触外壳,没有烫手的感觉,说明电动机温度正常;如果手放上去烫得马上缩回来,说明电动机已经过热。
(2)在电动机外壳上滴2-3滴水,如果只冒热气没有声音,则说明电动机没有过热,如果水滴急剧汽化同时伴有"咝咝"声,说明电动机已经过热。
(3)判别电动机是否过热的准确方法还是用温度计测量。
发现电动机过热应该立即停车检查,等查明原因,排除故障后再行使用。
3.3.2 监视电动机的电流
一般容量较大的电动机应装设电流表,随时对其电流进行监视。若电流大小或三相电流不平衡超过了允许值。应立即停车检查。容量较小的电动机一般不装电流表,但也经常用钳形表测量。
3.3.3 监视电动机的电压
电动机的电源上最好装设一只电压表和转换开关,以便对其三相电源、压进行监视。电动机的电源电压过高、过低或三相电压不平衡,特别是三相电源缺相,都会带来不良后果。如发现这种情况应立即停车,待查明原因,排除故障后再使用。
3.3.4 注意电动机的振动、响声和气味
电动机正常运行时,应平稳、轻快、无异常气味和响声。若发生剧烈振动,噪音和焦臭气味,应停车进行检查修理。
3.3.5 注意传动装置的检查
电动机运行时要随时注意查看皮带轮或联轴器有无松动,传动皮带是否有过紧、过松的现象等,如果有,应停车上紧或进行调整。
3.3.6 注意轴承的工作情况
电动机运行中应注意轴承声响和发热情况。若轴承声音不正常或过热,应检查润滑情况是否良好和有无磨损。
3.3.7 注意交流电动机的滑环或直流电动机的换向器火花
电动机运行中,电刷与换向器或滑环之间难免出现火花。如果所发生的火花大于某一规定限度,尤其是出现放电性的红色电弧火花时,将产生破坏作用,必须及时加以纠正。
3.4电动机的定期检查和保养
为了保证电动机正常工作,除了按操作规程正确使用,运行过程中注意监视和维护外还应进行定期检查和保养。间隔时间可根据电动机的类型、使用环境决定。主要检查和保养项目如下:
(1)及时清除电动机机座外部的灰尘、油泥,如使用环境灰尘较多,最好每天清扫一次。
(2)经常检查接线板螺丝是否松动或烧伤。
(3)定期测量电动机的绝缘电阻,若使用环境比较潮湿更应经常测量。
(4)定期用煤油清洗轴承并更换新油(一般半年更换一次),换油时不应上满,一般占油腔的1/2~1/3,否则,容易发热或甩出,油要从一面加人,可以把没有清洗干净的杂质,从另一面挤出来。
(5)定期检查启动设备,看触头和接线有无烧伤,氧化,接触是否良好等。
(6)绝缘情况的检查。绝缘材料的绝缘能力因干燥程度不同而异,所以保持电动机绕组的干燥是非常重要的。电动机工作环境潮湿、工作间有腐蚀性气体等因素的存在,都会破坏电动机的绝缘。最常见的是绕组接地故障即绝缘损坏,使带电部分与机壳等不应带电的金属部分相碰,发生这种故障,不仅影响电动机正常工作。还会危及人身安全。所以电动机在使用中,应经常检查绝缘电阻,还要注意查看电动机机壳接地是否可靠。
(7)除了按上述几项内容对电动机定期维护外,运行一年后要大修一次。大修的目的在于,对电动机进行一次彻底、全面的检查、维护,增补电动机缺少、磨损的元件,彻底清除电动机内外的灰尘、污物,检查绝缘情况,清洗轴承并检查其磨损情况。
结 论
电动机从发展至今,一代代的产品的问世,都是围绕着基本的工作原理而开发的,如何去运行和维护电动机是我们目前主要工作的重中之重。电动机在我国的经济建设中担当着重要的角色,随着我国加入WTO后,我国电动机行业所面临的国际社会的巨大竞争压力和挑战日益加剧。从节约能源,保护环境出发,高效率电动机是目前国际发展的趋势。这样看来,推广中国的高效率电动机是非常有必要的。
致 谢
本论文在各位老师的悉心指导和严格要求下已完成。在学习和生活期间,也始终感受着导师的精心指导和无私的关怀,我受益匪浅。在此向各位老师表示深深的感谢和崇高的敬意。不积跬步何以至千里,本论文能够顺利的完成,也归功于各位任课老师的认真负责,使我能够很好的掌握和运用专业知识,并在设计中得以体现。同时我在网上也搜集了不少资料,才使我的毕业论文顺利完成。在此向学院工程系的全体老师表示由衷的谢意。
③ 急求:两级圆柱齿轮减速器课程设计
设 计 任 务 书
一、 课程设计题目:
设计带式运输机传动装置(简图如下)
原始数据:
数据编号 3 5 7 10
运输机工作转矩T/(N.m) 690 630 760 620
运输机带速V/(m/s) 0.8 0.9 0.75 0.9
卷筒直径D/mm 320 380 320 360
工作条件:
连续单向运转,工作时有轻微振动,使用期限为10年,小批量生产,单班制工作(8小时/天)。运输速度允许误差为 。
二、 课程设计内容
1)传动装置的总体设计。
2)传动件及支承的设计计算。
3)减速器装配图及零件工作图。
4)设计计算说明书编写。
每个学生应完成:
1) 部件装配图一张(A1)。
2) 零件工作图两张(A3)
3) 设计说明书一份(6000~8000字)。
本组设计数据:
第三组数据:运输机工作轴转矩T/(N.m) 690 。
运输机带速V/(m/s) 0.8 。
卷筒直径D/mm 320 。
已给方案:外传动机构为V带传动。
减速器为两级展开式圆柱齿轮减速器。
第一部分 传动装置总体设计
一、 传动方案(已给定)
1) 外传动为V带传动。
2) 减速器为两级展开式圆柱齿轮减速器。
3) 方案简图如下:
二、该方案的优缺点:
该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。齿轮相对于轴承不对称,要求轴具有较大的刚度。高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。原动机部分为Y系列三相交流 异步电动机。
总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。
计 算 与 说 明 结果
三、原动机选择(Y系列三相交流异步电动机)
工作机所需功率: =0.96 (见课设P9)
传动装置总效率: (见课设式2-4)
(见课设表12-8)
电动机的输出功率: (见课设式2-1)
取
选择电动机为Y132M1-6 m型 (见课设表19-1)
技术数据:额定功率( ) 4 满载转矩( ) 960
额定转矩( ) 2.0 最大转矩( ) 2.0
Y132M1-6电动机的外型尺寸(mm): (见课设表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:270 AD:210 HD:315 BB:238 L:235
四、传动装置总体传动比的确定及各级传动比的分配
1、 总传动比: (见课设式2-6)
2、 各级传动比分配: (见课设式2-7)
初定
第二部分 V带设计
外传动带选为 普通V带传动
1、 确定计算功率:
1)、由表5-9查得工作情况系数
2)、由式5-23(机设)
2、选择V带型号
查图5-12a(机设)选A型V带。
3.确定带轮直径
(1)、参考图5-12a(机设)及表5-3(机设)选取小带轮直径
(电机中心高符合要求)
(2)、验算带速 由式5-7(机设)
(3)、从动带轮直径
查表5-4(机设) 取
(4)、传动比 i
(5)、从动轮转速
4.确定中心距 和带长
(1)、按式(5-23机设)初选中心距
取
(2)、按式(5-24机设)求带的计算基础准长度L0
查图.5-7(机设)取带的基准长度Ld=2000mm
(3)、按式(5-25机设)计算中心距:a
(4)、按式(5-26机设)确定中心距调整范围
5.验算小带轮包角α1
由式(5-11机设)
6.确定V带根数Z
(1)、由表(5-7机设)查得dd1=112 n1=800r/min及n1=980r/min时,单根V带的额定功率分呷为1.00Kw和1.18Kw,用线性插值法求n1=980r/min时的额定功率P0值。
(2)、由表(5-10机设)查得△P0=0.11Kw
(3)、由表查得(5-12机设)查得包角系数
(4)、由表(5-13机设)查得长度系数KL=1.03
(5)、计算V带根数Z,由式(5-28机设)
取Z=5根
7.计算单根V带初拉力F0,由式(5-29)机设。
q由表5-5机设查得
8.计算对轴的压力FQ,由式(5-30机设)得
9.确定带轮的结构尺寸,给制带轮工作图
小带轮基准直径dd1=112mm采用实心式结构。大带轮基准直径dd2=280mm,采用孔板式结构,基准图见零件工作图。
第三部分 各齿轮的设计计算
一、高速级减速齿轮设计(直齿圆柱齿轮)
1.齿轮的材料,精度和齿数选择,因传递功率不大,转速不高,材料按表7-1选取,都采用45号钢,锻选项毛坯,大齿轮、正火处理,小齿轮调质,均用软齿面。齿轮精度用8级,轮齿表面精糙度为Ra1.6,软齿面闭式传动,失效形式为占蚀,考虑传动平稳性,齿数宜取多些,取Z1=34 则Z2=Z1i=34×2.62=89
2.设计计算。
(1)设计准则,按齿面接触疲劳强度计算,再按齿根弯曲疲劳强度校核。
(2)按齿面接触疲劳强度设计,由式(7-9)
T1=9.55×106×P/n=9.55×106×5.42/384=134794 N?mm
由图(7-6)选取材料的接触疲劳,极限应力为
бHILim=580 бHILin=560
由图 7-7选取材料弯曲疲劳极限应力
бHILim=230 бHILin=210
应力循环次数N由式(7-3)计算
N1=60n, at=60×(8×360×10)=6.64×109
N2= N1/u=6.64×109/2.62=2.53×109
由图7-8查得接触疲劳寿命系数;ZN1=1.1 ZN2=1.04
由图7-9查得弯曲 ;YN1=1 YN2=1
由图7-2查得接触疲劳安全系数:SFmin=1.4 又YST=2.0 试选Kt=1.3
由式(7-1)(7-2)求许用接触应力和许用弯曲应力
将有关值代入式(7-9)得
则V1=(πd1tn1/60×1000)=1.3m/s
( Z1 V1/100)=1.3×(34/100)m/s=0.44m/s
查图7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.则KH=KAKVKβKα=1.42 ,修正
M=d1/Z1=1.96mm
由表7-6取标准模数:m=2mm
(3) 计算几何尺寸
d1=mz1=2×34=68mm
d2=mz2=2×89=178mm
a=m(z1+z2)/2=123mm
b=φddt=1×68=68mm
取b2=65mm b1=b2+10=75
3.校核齿根弯曲疲劳强度
由图7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齿轮的弯曲强度.
二、低速级减速齿轮设计(直齿圆柱齿轮)
1.齿轮的材料,精度和齿数选择,因传递功率不大,转速不高,材料按表7-1选取,都采用45号钢,锻选项毛坯,大齿轮、正火处理,小齿轮调质,均用软齿面。齿轮精度用8级,轮齿表面精糙度为Ra1.6,软齿面闭式传动,失效形式为点蚀,考虑传动平稳性,齿数宜取多些,取Z1=34
则Z2=Z1i=34×3.7=104
2.设计计算。
(1) 设计准则,按齿面接触疲劳强度计算,再按齿根弯曲疲劳强度校核。
(2)按齿面接触疲劳强度设计,由式(7-9)
T1=9.55×106×P/n=9.55×106×5.20/148=335540 N?mm
由图(7-6)选取材料的接触疲劳,极限应力为
бHILim=580 бHILin=560
由图 7-7选取材料弯曲疲劳极阴应力
бHILim=230 бHILin=210
应力循环次数N由式(7-3)计算
N1=60n at=60×148×(8×360×10)=2.55×109
N2= N1/u=2.55×109/3.07=8.33×108
由图7-8查得接触疲劳寿命系数;ZN1=1.1 ZN2=1.04
由图7-9查得弯曲 ;YN1=1 YN2=1
由图7-2查得接触疲劳安全系数:SFmin=1.4 又YST=2.0 试选Kt=1.3
由式(7-1)(7-2)求许用接触应力和许用弯曲应力
将有关值代入式(7-9)得
则V1=(πd1tn1/60×1000)=0.55m/s
( Z1 V1/100)=0.55×(34/100)m/s=0.19m/s
查图7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.则KH=KAKVKβKα=1.377 ,修正
M=d1/Z1=2.11mm
由表7-6取标准模数:m=2.5mm
(3) 计算几何尺寸
d1=mz1=2.5×34=85mm
d2=mz2=2.5×104=260mm
a=m(z1+z2)/2=172.5mm
b=φddt=1×85=85mm
取b2=85mm b1=b2+10=95
3.校核齿根弯曲疲劳强度
由图7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齿轮的弯曲强度.
总结:高速级 z1=34 z2=89 m=2
低速级 z1=34 z2=104 m=2.5
第四部分 轴的设计
高速轴的设计
1.选择轴的材料及热处理
由于减速器传递的功率不大,对其重量和尺寸也无特殊要求故选择常用材料45钢,调质处理.
2.初估轴径
按扭矩初估轴的直径,查表10-2,得c=106至117,考虑到安装联轴器的轴段仅受扭矩作用.取c=110则:
D1min=
D2min=
D3min=
3.初选轴承
1轴选轴承为6008
2轴选轴承为6009
3轴选轴承为6012
根据轴承确定各轴安装轴承的直径为:
D1=40mm
D2=45mm
D3=60mm
4.结构设计(现只对高速轴作设计,其它两轴设计略,结构详见图)为了拆装方便,减速器壳体用剖分式,轴的结构形状如图所示.
(1).各轴直径的确定
初估轴径后,即可按轴上零件的安装顺序,从左端开始确定直径.该轴轴段1安装轴承6008,故该段直径为40mm。2段装齿轮,为了便于安装,取2段为44mm。齿轮右端用轴肩固定,计算得轴肩的高度为4.5mm,取3段为53mm。5段装轴承,直径和1段一样为40mm。4段不装任何零件,但考虑到轴承的轴向定位,及轴承的安装,取4段为42mm。6段应与密封毛毡的尺寸同时确定,查机械设计手册,选用JB/ZQ4606-1986中d=36mm的毛毡圈,故取6段36mm。7段装大带轮,取为32mm>dmin 。
(2)各轴段长度的确定
轴段1的长度为轴承6008的宽度和轴承到箱体内壁的距离加上箱体内壁到齿轮端面的距离加上2mm,l1=32mm。2段应比齿轮宽略小2mm,为l2=73mm。3段的长度按轴肩宽度公式计算l3=1.4h;去l3=6mm,4段:l4=109mm。l5和轴承6008同宽取l5=15mm。l6=55mm,7段同大带轮同宽,取l7=90mm。其中l4,l6是在确定其它段长度和箱体内壁宽后确定的。
于是,可得轴的支点上受力点间的跨距L1=52.5mm,L2=159mm,L3=107.5mm。
(3).轴上零件的周向固定
为了保证良好的对中性,齿轮与轴选用过盈配合H7/r6。与轴承内圈配合轴劲选用k6,齿轮与大带轮均采用A型普通平键联接,分别为16*63 GB1096-1979及键10*80 GB1096-1979。
(4).轴上倒角与圆角
为保证6008轴承内圈端面紧靠定位轴肩的端面,根据轴承手册的推荐,取轴肩圆角半径为1mm。其他轴肩圆角半径均为2mm。根据标准GB6403.4-1986,轴的左右端倒角均为1*45。。
5.轴的受力分析
(1) 画轴的受力简图。
(2) 计算支座反力。
Ft=2T1/d1=
Fr=Fttg20。=3784
FQ=1588N
在水平面上
FR1H=
FR2H=Fr-FR1H=1377-966=411N
在垂直面上
FR1V=
Fr2V=Ft- FR1V=1377-352=1025N
(3) 画弯矩图
在水平面上,a-a剖面左侧
MAh=FR1Hl3=966 52.5=50.715N?m
a-a剖面右侧
M’Ah=FR2Hl2=411 153=62.88 N?m
在垂直面上
MAv=M’AV=FR1Vl2=352×153=53.856 N?m
合成弯矩,a-a剖面左侧
a-a剖面右侧
画转矩图
转矩 3784×(68/2)=128.7N?m
6.判断危险截面
显然,如图所示,a-a剖面左侧合成弯矩最大、扭矩为T,该截面左侧可能是危险截面;b-b截面处合成湾矩虽不是最大,但该截面左侧也可能是危险截面。若从疲劳强度考虑,a-a,b-b截面右侧均有应力集中,且b-b截面处应力集中更严重,故a-a截面左侧和b-b截面左、右侧又均有可能是疲劳破坏危险截面。
7.轴的弯扭合成强度校核
由表10-1查得
(1)a-a剖面左侧
3=0.1×443=8.5184m3
=14.57
(2)b-b截面左侧
3=0.1×423=7.41m3
b-b截面处合成弯矩Mb:
=174 N?m
=27
8.轴的安全系数校核:由表10-1查得 (1)在a-a截面左侧
WT=0.2d3=0.2×443=17036.8mm3
由附表10-1查得 由附表10-4查得绝对尺寸系数 ;轴经磨削加工, 由附表10-5查得质量系数 .则
弯曲应力
应力幅
平均应力
切应力
安全系数
查表10-6得许用安全系数 =1.3~1.5,显然S> ,故a-a剖面安全.
(2)b-b截面右侧
抗弯截面系数 3=0.1×533=14.887m3
抗扭截面系数WT=0.2d3=0.2×533=29.775 m3
又Mb=174 N?m,故弯曲应力
切应力
由附表10-1查得过盈配合引起的有效应力集中系数 。 则
显然S> ,故b-b截面右侧安全。
(3)b-b截面左侧
WT=0.2d3=0.2×423=14.82 m3
b-b截面左右侧的弯矩、扭矩相同。
弯曲应力
切应力
(D-d)/r=1 r/d=0.05,由附表10-2查得圆角引起的有效应力集中系数 。由附表10-4查得绝对尺寸系数 。又 。则
显然S> ,故b-b截面左侧安全。
第五部分 校 核
高速轴轴承
FR2H=Fr-FR1H=1377-966=411N
Fr2V=Ft- FR1V=1377-352=1025N
轴承的型号为6008,Cr=16.2 kN
1) FA/COr=0
2) 计算当量动载荷
查表得fP=1.2径向载荷系数X和轴向载荷系数Y为X=1,Y=0
=1.2×(1×352)=422.4 N
3) 验算6008的寿命
验算右边轴承
键的校核
键1 10×8 L=80 GB1096-79
则强度条件为
查表许用挤压应力
所以键的强度足够
键2 12×8 L=63 GB1096-79
则强度条件为
查表许用挤压应力
所以键的强度足够
联轴器的选择
联轴器选择为TL8型弹性联轴器 GB4323-84
减速器的润滑
1.齿轮的润滑
因齿轮的圆周速度<12 m/s,所以才用浸油润滑的润滑方式。
高速齿轮浸入油里约0.7个齿高,但不小于10mm,低速级齿轮浸入油高度约为1个齿高(不小于10mm),1/6齿轮。
2.滚动轴承的润滑
因润滑油中的传动零件(齿轮)的圆周速度V≥1.5~2m/s所以采用飞溅润滑,
第六部分 主要尺寸及数据
箱体尺寸:
箱体壁厚
箱盖壁厚
箱座凸缘厚度b=15mm
箱盖凸缘厚度b1=15mm
箱座底凸缘厚度b2=25mm
地脚螺栓直径df=M16
地脚螺栓数目n=4
轴承旁联接螺栓直径d1=M12
联接螺栓d2的间距l=150mm
轴承端盖螺钉直径d3=M8
定位销直径d=6mm
df 、d1 、d2至外箱壁的距离C1=18mm、18 mm、13 mm
df、d2至凸缘边缘的距离C2=16mm、11 mm
轴承旁凸台半径R1=11mm
凸台高度根据低速轴承座外半径确定
外箱壁至轴承座端面距离L1=40mm
大齿轮顶圆与内箱壁距离△1=10mm
齿轮端面与内箱壁距离△2=10mm
箱盖,箱座肋厚m1=m=7mm
轴承端盖外径D2 :凸缘式端盖:D+(5~5.5)d3
以上尺寸参考机械设计课程设计P17~P21
传动比
原始分配传动比为:i1=2.62 i2=3.07 i3=2.5
修正后 :i1=2.5 i2=2.62 i3=3.07
各轴新的转速为 :n1=960/2.5=3.84
n2=384/2.61=147
n3=147/3.07=48
各轴的输入功率
P1=pdη8η7 =5.5×0.95×0.99=5.42
P2=p1η6η5=5.42×0.97×0.99=5.20
P3=p2η4η3=5.20×0.97×0.99=5.00
P4=p3η2η1=5.00×0.99×0.99=4.90
各轴的输入转矩
T1=9550Pdi1η8η7/nm=9550×5.5×2.5×0.95×0.99=128.65
T2= T1 i2η6η5=128.65×2.62×0.97×0.99=323.68
T3= T2 i3η4η3=323.68×3.07×0.97×0.99=954.25
T4= T3 η2η1=954.23×0.99×0.99=935.26
轴号 功率p 转矩T 转速n 传动比i 效率η
电机轴 5.5 2.0 960 1 1
1 5.42 128.65 384 2.5 0.94
2 5.20 323.68 148 2.62 0.96
3 5.00 954.25 48 3.07 0.96
工作机轴 4.90 935.26 48 1 0.98
齿轮的结构尺寸
两小齿轮采用实心结构
两大齿轮采用复板式结构
齿轮z1尺寸
z=34 d1=68 m=2 d=44 b=75
d1=68
ha=ha*m=1×2=2mm
hf=( ha*+c*)m=(1+0.25)×2=2.5mm
h=ha+hf=2+2.5=4.5mm
da=d1+2ha=68+2×2=72mm
df=d1-2hf=68-2×2.5=63
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
齿轮z2的尺寸
由轴可 得d2=178 z2=89 m=2 b=65 d4=49
ha=ha*m=1×2=2mm
h=ha+hf=2+2.5=4.5mm
hf=(1+0.5)×2=2.5mm
da=d2+2ha=178+2×2=182
df=d1-2hf=178-2×2.5=173
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
DT≈
D3≈1.6D4=1.6×49=78.4
D0≈da-10mn=182-10×2=162
D2≈0.25(D0-D3)=0.25(162-78.4)=20
R=5 c=0.2b=0.2×65=13
齿轮3尺寸
由轴可得, d=49 d3=85 z3=34 m=2.5 b=95
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.125=5.625
hf=(ha*+c*)m=(1+0.25)×2.5=3.125
da=d3+2ha=85+2×2.5=90
df=d1-2hf=85-2×3.125=78.75
p=πm=3.14×2.5=7.85
s=πm/2=3.14×2.5/2=3.925
e=s c=c*m=0.25×2.5=0.625
齿轮4寸
由轴可得 d=64 d4=260 z4=104 m=2.5 b=85
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.25=5.625
hf=(ha*+c*)m=(1+0.25)×0.25=3.125
da=d4+2ha=260+2×2.5=265
df=d1-2hf=260-2×3.125=253.75
p=πm=3.14×2.5=7.85
s=e=πm/2=3.14×2.5/2=3.925
c=c*m=0.25×2.5=0.625
D0≈da-10m=260-10×2.5=235
D3≈1.6×64=102.4
D2=0.25(D0-D3)=0.25×(235-102.4)=33.15
r=5 c=0.2b=0.2×85=17
参考文献:
《机械设计》徐锦康 主编 机械工业出版社
《机械设计课程设计》陆玉 何在洲 佟延伟 主编
第3版 机械工业出版社
《机械设计手册》
设计心得
机械设计课程设计是机械课程当中一个重要环节通过了3周的课程设计使我从各个方面都受到了机械设计的训练,对机械的有关各个零部件有机的结合在一起得到了深刻的认识。
由于在设计方面我们没有经验,理论知识学的不牢固,在设计中难免会出现这样那样的问题,如:在选择计算标准件是可能会出现误差,如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准
在设计的过程中,培养了我综合应用机械设计课程及其他课程的理论知识和应用生产实际知识解决工程实际问题的能力,在设计的过程中还培养出了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。
由于本次设计是分组的,自己独立设计的东西不多,但在通过这次设计之后,我想会对以后自己独立设计打下一个良好的基础。。。
④ 机械类专业毕业设计一般做什么题目
程设计 带式输送机传动装置 7毕业论文 桥式起重机副起升机构设计
8毕业论文 两齿辊破碎机设计 9 63CY14-1B轴向柱塞泵改进设计(共32页,19000字)
10毕业设计 连杆孔研磨装置设计
11毕业设计 旁承上平面与下心盘上平面垂直距离检测装置的设计
12.. 机械设计课程设计 带式运输机传动装置设计 13皮带式输送机传动装置的一级圆柱齿轮减速器
14毕业设计(论文) 立轴式破碎机设计 15毕业设计(论文) C6136型经济型数控改造(横向)
16高空作业车工作臂结构设计及有限元分析 17 2007届毕业生毕业设计 机用虎钳设计
18毕业设计无轴承电机的结构设计 19毕业设计 平面关节型机械手设计
20毕业设计 三自由度圆柱坐标型工业机器人
21毕业设计XKA5032A/C数控立式升降台铣床自动换刀设计
22毕业设计 四通管接头的设计 23课程设计:带式运输机上的传动及减速装置
24毕业设计(论文) 行星减速器设计三维造型虚拟设计分析
25毕业设计论文 关节型机器人腕部结构设计
26本科生毕业设计全套资料 Z32K型摇臂钻床变速箱的改进设计/
27毕业设计 EQY-112-90 汽车变速箱后面孔系钻削组合机床设计
28毕业设计 D180柴油机12孔攻丝机床及夹具设计
29毕业设计 C616型普通车床改造为经济型数控车床
30毕业设计(论文)说明书 中单链型刮板输送机设计
液压类毕业设计
1毕业设计 ZFS1600/12/26型液压支架掩护梁设计
2毕业设计 液压拉力器
3毕业设计 液压台虎钳设计
4毕业设计论文 双活塞液压浆体泵液力缸设计
5毕业设计 GKZ高空作业车液压和电气控制系统设计 数控加工类毕业设计
1课程设计 设计低速级斜齿轮零件的机械加工工艺规程
2毕业设计 普通车床经济型数控改造
3毕业论文 钩尾框夹具设计(镗φ92孔的两道工序的专用夹具)
...4 机械制造工艺学课程设计 设计“拨叉”零件的机械加工工艺规程及工艺装备(年产量5000件)
5课程设计 四工位专用机床传动机构设计
6课程设计说明书 设计“推动架”零件的机械加工工艺及工艺设备
7机械制造技术基础课程设计 制定CA6140车床法兰盘的加工工艺,设计钻4×φ9mm孔的钻床夹具
8械制造技术基础课程设计 设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备
9毕业设计 轴类零件设计
10毕业设计 壳体零件机械加工工艺规程制订及第工序工艺装备设计
11毕业设计 单拐曲轴零件机械加工规程设计说明书
12机械制造课程设计 机床传动齿轮的工艺规程设计(大批量)
13课程设计 轴零件的机械加工工艺规程制定
14毕业论文 开放式CNC(Computer Numerical Control)系统设计
15毕业设计 单拐曲轴工艺流程
16毕业设计 壳体机械加工工艺规程
17毕业设计 连杆机械加工工艺规程
18毕业设计(论文) 子程序在冲孔模生产中的运用——编制数控加工(1#-6#)标模点孔的程序
19毕业设计 XKA5032A/C数控立式升降台铣床自动换刀装置的设计
20机械制造技术基础课程设计 设计“减速器传动轴”零件的机械加工工艺规程(年产量为5000件)
21课程设计 杠杆的加工
22毕业设计 2SA3.1多回转电动执行机构箱体加工工艺规程及工艺装备设计
23毕业论文 数控铣高级工零件工艺设计及程序编制
24毕业论文 数控铣高级工心型零件工艺设计及程序编制
25毕业设计 连杆的加工工艺及其断面铣夹具设计
26机械制造工艺学课程设计说明书:设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 杂合
XKA5032AC数控立式升降台铣床自动换刀装置设计
机用虎钳课程设计.rar
行星齿轮减速器减速器的虚拟设计(王少华).rar
物流液压升降台的设计
自动加料机控制系统.rar全向轮机构及其控制设计.rar
齿轮齿条转向器.rar
出租车计价系统.rar
(毕业设计)油封骨架冲压模具
连杆孔研磨装置设计 .rar
蜗轮蜗杆传动.rar
用单片机实现温度远程显示.doc
基于Alter的EP1C6Q240C8的红外遥器(毕业论文).doc
变频器 调试设计及应用
镍氢电池充电器的设计.doc
铣断夹具设计 q 348414338
⑤ 求数控专业毕业设计课题。
提供一些数控专业毕业设计课题,供参考。
课题一:零件的数控加工工艺编制
课题二:手机外壳造型设计
课题三:数控车床零件加工
课题四:数控铣床及加工中心产品加工
课题五:CA6140普通车床数控化改造
课题六:MasterCAM软件应用课程设计
课题七:机械手控制设计
课题八:《数控加工工艺》课程多媒体课件制作
课题九: 挂图制作
课题十: 基于×××企业的生产管理模式调研
⑥ 急需一级斜齿圆柱齿轮减速器课程设计.带式运输机传动装置。拉力F=1500, 速度V=1.1,卷直径为220mm.
仅供参考
一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW
3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m
五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.
六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm
II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N?m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm
(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N?m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危险截面C的强度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。
⑦ 机械专业简单的毕业设计有哪些题目
简单的毕业设计有:
1、可伸缩带式输送机结构设计。
2、AWC机架现场扩孔机设计 。
3、ZQ-100型钻杆动力钳背钳设计 。
4、带式输送机摩擦轮调偏装置设计。
5、封闭母线自然冷却的温度场分析 。
⑧ 机械设计基础课程设计指导书——设计输送机传动装置课程设计
给你做个参考
一、前言
(一)
设计目的:
通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。
(二)
传动方案的分析
机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。
带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。
齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。
减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。
二、传动系统的参数设计
原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。
工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。
工作环境:室内灰尘较大,环境最高温度35°。
动力来源:电力,三相交流380/220伏。
1
、电动机选择
(1)、电动机类型的选择: Y系列三相异步电动机
(2)、电动机功率选择:
①传动装置的总效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作机所需的输入功率:
因为 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③电动机的输出功率:
=3.975/0.87=4.488KW
使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。
⑶、确定电动机转速:
计算滚筒工作转速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’ =3~6。取V带传动比I’ =2~4,则总传动比理时范围为I’ =6~24。故电动机转速的可选范围为n’ =(6~24)×96=576~2304r/min
⑷、确定电动机型号
根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。
其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。
2
、计算总传动比及分配各级的传动比
(1)、总传动比:i =1440/96=15
(2)、分配各级传动比:
根据指导书,取齿轮i =5(单级减速器i=3~6合理)
=15/5=3
3
、运动参数及动力参数计算
⑴、计算各轴转速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵计算各轴的功率(KW)
电动机的额定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶计算各轴扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、传动零件的设计计算
(一)齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm
(2)确定有关参数和系数如下:
传动比i
取小齿轮齿数Z =20。则大齿轮齿数:
=5×20=100
,所以取Z
实际传动比
i =101/20=5.05
传动比误差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齿数比:
u=i
取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°;
则
h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圆直径:d =×20mm=60mm
d =3×101mm=303mm
由指导书取
φ
齿宽:
b=φ =0.9×60mm=54mm
=60mm ,
b
齿顶圆直径:d )=66,
d
齿根圆直径:d )=52.5,
d )=295.5
基圆直径:
d cos =56.38,
d cos =284.73
(3)计算齿轮传动的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm
(二)轴的设计计算
1
、输入轴的设计计算
⑴、按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据指导书并查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴选d=25mm
⑵、轴的结构设计
①轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定
②确定轴各段直径和长度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以长度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L =(2+20+55)=77mm
III段直径:
初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直径:
由手册得:c=1.5
h=2c=2×1.5=3mm
此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm
因此将Ⅳ段设计成阶梯形,左段直径为41mm
+2h=35+2×3=41mm
长度与右面的套筒相同,即L
Ⅴ段直径:d =50mm. ,长度L =60mm
取L
由上述轴各段长度可算得轴支承跨距L=80mm
Ⅵ段直径:d =41mm, L
Ⅶ段直径:d =35mm, L <L3,取L
2
、输出轴的设计计算
⑴、按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)
根据课本P235页式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考虑有键槽,将直径增大5%,则
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、轴的结构设计
①轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。
②确定轴的各段直径和长度
初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。
则
d =42mm
L
= 50mm
L
= 55mm
L
= 60mm
L
= 68mm
L
=55mm
L
四、滚动轴承的选择
1
、计算输入轴承
选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
2
、计算输出轴承
选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm
五、键联接的选择
1
、输出轴与带轮联接采用平键联接
键的类型及其尺寸选择:
带轮传动要求带轮与轴的对中性好,故选择C型平键联接。
根据轴径d =42mm ,L =65mm
查手册得,选用C型平键,得: 卷扬机
装配图中22号零件选用GB1096-79系列的键12×56
则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56
2
、输出轴与齿轮联接用平键联接
=60mm,L
查手册得,选用C型平键,得:
装配图中 赫格隆36号零件选用GB1096-79系列的键18×45
则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45
3
、输入轴与带轮联接采用平键联接
=25mm
L
查手册
选A型平键,得:
装配图中29号零件选用GB1096-79系列的键8×50
则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50
4
、输出轴与齿轮联接用平键联接
=50mm
L
查手册
选A型平键,得:
装配图中26号零件选用GB1096-79系列的键14×49
则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49
六、箱体、箱盖主要尺寸计算
箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下:
七、轴承端盖
主要尺寸计算
轴承端盖:HT150 d3=8
n=6 b=10
八、减速器的
减速器的附件的设计
1
、挡圈 :GB886-86
查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58
2
、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
设计参考资料目录
1、吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1999.6
2、解兰昌等编著.紧密仪器仪表机构设计.杭州:浙江大学出版社,1997.11
⑨ 机电一体化毕业设计!答出来加100分
数控技术
装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。
数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。
1 数控技术的发展趋势
数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面
1.1 高速、高精加工技术及装备的新趋势
效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。
在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。
从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国CINCINNATI公司的HyperMach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60 000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12*!000r/mm和1g。
在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。
在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h以上,表现出非常高的可靠性。
为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。
1.2 5轴联动加工和复合加工机床快速发展
采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。
当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。
在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国DMG公司展出DMUVoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制。
1.3 智能化、开放式、网络化成为当代数控系统发展的主要趋势
21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。
为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。目前许多国家对开放式数控系统进行研究,如美国的NGC(The Next Generation Work-Station/Machine Control)、欧共体的OSACA(Open System Architecture for Control within Automation Systems)、日本的OSEC(Open System Environment for Controller),中国的ONC(Open Numerical Control System)等。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。
网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山崎马扎克(Mazak)公司展出的“CyberProction Center”(智能生产控制中心,简称CPC);日本大隈(Okuma)机床公司展出“IT plaza”(信息技术广场,简称IT广场);德国西门子(Siemens)公司展出的Open Manufacturing Environment(开放制造环境,简称OME)等,反映了数控机床加工向网络化方向发展的趋势。
1.4 重视新技术标准、规范的建立
1.4.1 关于数控系统设计开发规范
如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACA、OSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临。我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定。
1.4.2 关于数控标准
数控标准是制造业信息化发展的一种趋势。数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何(how)加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要。为此,国际上正在研究和制定一种新的CNC系统标准ISO14649(STEP-NC),其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化。
STEP-NC的出现可能是数控技术领域的一次革命,对于数控技术的发展乃至整个制造业,将产生深远的影响。首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上。而在新标准下,NC程序可以分散在互联网上,这正是数控技术开放式、网络化发展的方向。其次,STEP-NC数控系统还可大大减少加工图纸(约75%)、加工程序编制时间(约35%)和加工时间(约50%)。
目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划(1999.1.1~2001.12.31)。参加这项计划的有来自欧洲和日本的20个CAD/CAM/CAPP/CNC用户、厂商和学术机构。美国的STEP Tools公司是全球范围内制造业数据交换软件的开发者,他已经开发了用作数控机床加工信息交换的超级模型(Super Model),其目标是用统一的规范描述所有加工过程。目前这种新的数据交换格式已经在配备了SIEMENS、FIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证。
2 对我国数控技术及其产业发展的基本估计
我国数控技术起步于1958年,近50年的发展历程大致可分为3个阶段:第一阶段从1958年到1979年,即封闭式发展阶段。在此阶段,由于国外的技术封锁和我国的基础条件的限制,数控技术的发展较为缓慢。第二阶段是在国家的“六五”、“七五”期间以及“八五”的前期,即引进技术,消化吸收,初步建立起国产化体系阶段。在此阶段,由于改革开放和国家的重视,以及研究开发环境和国际环境的改善,我国数控技术的研究、开发以及在产品的国产化方面都取得了长足的进步。第三阶段是在国家的“八五”的后期和“九五”期间,即实施产业化的研究,进入市场竞争阶段。在此阶段,我国国产数控装备的产业化取得了实质性进步。在“九五”末期,国产数控机床的国内市场占有率达50%,配国产数控系统(普及型)也达到了10%。
纵观我国数控技术近50年的发展历程,特别是经过4个5年计划的攻关,总体来看取得了以下成绩。
a.奠定了数控技术发展的基础,基本掌握了现代数控技术。我国现在已基本掌握了从数控系统、伺服驱动、数控主机、专机及其配套件的基础技术,其中大部分技术已具备进行商品化开发的基础,部分技术已商品化、产业化。
b.初步形成了数控产业基地。在攻关成果和部分技术商品化的基础上,建立了诸如华中数控、航天数控等具有批量生产能力的数控系统生产厂。兰州电机厂、华中数控等一批伺服系统和伺服电机生产厂以及北京第一机床厂、济南第一机床厂等若干数控主机生产厂。这些生产厂基本形成了我国的数控产业基地。
c.建立了一支数控研究、开发、管理人才的基本队伍。
虽然在数控技术的研究开发以及产业化方面取得了长足的进步,但我们也要清醒地认识到,我国高端数控技术的研究开发,尤其是在产业化方面的技术水平现状与我国的现实需求还有较大的差距。虽然从纵向看我国的发展速度很快,但横向比(与国外对比)不仅技术水平有差距,在某些方面发展速度也有差距,即一些高精尖的数控装备的技术水平差距有扩大趋势。从国际上来看,对我国数控技术水平和产业化水平估计大致如下。
a.技术水平上,与国外先进水平大约落后10~15年,在高精尖技术方面则更大。
b.产业化水平上,市场占有率低,品种覆盖率小,还没有形成规模生产;功能部件专业化生产水平及成套能力较低;外观质量相对差;可靠性不高,商品化程度不足;国产数控系统尚未建立自己的品牌效应,用户信心不足。
c.可持续发展的能力上,对竞争前数控技术的研究开发、工程化能力较弱;数控技术应用领域拓展力度不强;相关标准规范的研究、制定滞后。
分析存在上述差距的主要原因有以下几个方面。
a.认识方面。对国产数控产业进程艰巨性、复杂性和长期性的特点认识不足;对市场的不规范、国外的封锁加扼杀、体制等困难估计不足;对我国数控技术应用水平及能力分析不够。
b.体系方面。从技术的角度关注数控产业化问题的时候多,从系统的、产业链的角度综合考虑数控产业化问题的时候少;没有建立完整的高质量的配套体系、完善的培训、服务网络等支撑体系。
c.机制方面。不良机制造成人才流失,又制约了技术及技术路线创新、产品创新,且制约了规划的有效实施,往往规划理想,实施困难。
d.技术方面。企业在技术方面自主创新能力不强,核心技术的工程化能力不强。机床标准落后,水平较低,数控系统新标准研究不够。
3 对我国数控技术和产业化发展的战略思考
3.1 战略考虑
我国是制造大国,在世界产业转移中要尽量接受前端而不是后端的转移,即要掌握先进制造核心技术,否则在新一轮国际产业结构调整中,我国制造业将进一步“空芯”。我们以资源、环境、市场为代价,交换得到的可能仅仅是世界新经济格局中的国际“加工中心”和“组装中心”,而非掌握核心技术的制造中心的地位,这样将会严重影响我国现代制造业的发展进程。
我们应站在国家安全战略的高度来重视数控技术和产业问题,首先从社会安全看,因为制造业是我国就业人口最多的行业,制造业发展不仅可提高人民的生活水平,而且还可缓解我国就业的压力,保障社会的稳定;其次从国防安全看,西方发达国家把高精尖数控产品都列为国家的战略物质,对我国实现禁运和限制,“东芝事件”和“考克斯报告”就是最好的例证。
3.2 发展策略
从我国基本国情的角度出发,以国家的战略需求和国民经济的市场需求为导向,以提高我国制造装备业综合竞争能力和产业化水平为目标,用系统的方法,选择能够主导21世纪初期我国制造装备业发展升级的关键技术以及支持产业化发展的支撑技术、配套技术作为研究开发的内容,实现制造装备业的跨跃式发展。
强调市场需求为导向,即以数控终端产品为主,以整机(如量大面广的数控车床、铣床、高速高精高性能数控机床、典型数字化机械、重点行业关键设备等)带动数控产业的发展。重点解决数控系统和相关功能部件(数字化伺服系统与电机、高速电主轴系统和新型装备的附件等)的可靠性和生产规模问题。没有规模就不会有高可靠性的产品;没有规模就不会有价格低廉而富有竞争力的产品;当然,没有规模中国的数控装备最终难以有出头之日。
在高精尖装备研发方面,要强调产、学、研以及最终用户的紧密结合,以“做得出、用得上、卖得掉”为目标,按国家意志实施攻关,以解决国家之急需。
在竞争前数控技术方面,强调创新,强调研究开发具有自主知识产权的技术和产品,为我国数控产业、装备制造业乃至整个制造业的可持续发展奠定基础。
参考文献:
〔1〕 中国机床工具工业协会 行业发展部.CIMT2001巡礼〔J〕.世界制造技术与装备市场,2001(3):18-20.
〔2〕 梁训王宣 ,周延佑.机床技术发展的新动向〔J〕.世界制造技术与装备市场,2001(3):21-28.
〔3〕 中国机床工具工业协会 数控系统分会.CIMT2001巡礼〔J〕.世界制造技术与装备市场,2001(5):13-17.
〔4〕 杨学桐,李冬茹,何文立,等?距世纪数控机床技术发展战略研究〔M〕.北京:国家机械工业局,2000.
对中国制造业信息化的战略思考
伴随中国加入WTO和经济全球化,中国正在成为世界制造业的中心。中国的制造业企业面临更加激烈的国际国内市场竞争,如何迅速提高企业的核心竞争力,很重要的一点,就是加快企业的信息化进程。 制造业信息化作为国民经济和社会信息化的核心,我国政府给予了高度的重视。国家科技部已正式启动制造业信息化重大专项,将投资八个亿大力推进制造业信息化关键技术研究及应用示范工程。 从八十年代中期企业逐步开始应用CAD软件,到国家在九十年代实施CAD应用工程,到企业广泛应用财务软件,我国的制造业企业在实施信息化的道路上已经度过了近二十年时间,取得了很多经验和教训。本文将对中国制造业企业在实施信息化过程中的深层次的战略问题进行深入的剖析,以帮助制造业企业能够在信息化的道路上少走弯路,使信息技术能够真正为企业经营服务,成为企业发展的原动力。 二.构成制造业信息化价值链的基本要素 国家和地方主管部门、制造业企业、咨询服务企业、系统软件供应商、制造业应用软件供应商、电脑与外设供应商、网络产品供应商、渠道与代理商和软件及系统集成商,是构成制造业信息化价值链的基本要素。制造业信息化价值链的每个基本要素之间都是相互联系、相互作用、相互影响的。每个环节出问题,都可能导致制造业信息化工程的失败。 图1 制造业信息化的价值链 1.国家和地方主管部门是制造业信息化工程的管理者和推动者,其职责是: 1)负责对国家和地方的信息化工作进行宏观引导与管理。 2)负责制定政策,实施项目和计划,以点带面,重点扶持,树立样板,推动信息化应用工程的发展。 3)负责推广先进的信息技术。 4)负责建立和维护公正的市场秩序和竞争机制,保证各个基本要素实现多赢。 2.制造业企业是信息化的最终客户,是主体,其他要素都是为这个客户服务的。 每个制造业企业,都需要根据自己的行业、规模、发展阶段、管理体制,来选择个性化的信息化解决方案。要实施好信息化工程,企业必须注意以下问题: 1)企业领导必须对信息化建立基本的认识,必须认识到,信息化是一个工具,是一种手段,需要为我所用,为企业的发展服务。 2)信息化是首长工程,企业领导必须把它当作一个企业发展的战略任务来抓,必须真抓实干。 3)信息化是一个复杂的系统工程,企业必须把信息化作为一个长期的分阶段实施的大项目来进行科学地管理。在项目实施前,必须对信息化工程这个大项目的实施所要解决的问题、每个阶段的目标、项目的人员组织、成本、考核标准进行计划。在实施过程中,必须进行监控,必须对每一个阶段的实施成果进行评估和分析。信息化工程这一关系到企业生死存亡的项目的成功实施,必须满足项目成功的三个基本条件,即实施周期、实施成本和实施效果。 4)任何一个试图提高效率、降低成本的革新,一开始总是会降低效率、提高成本。企业这个大系统需要一段时间的适应,才能把革新的成果融入企业,信息化工程也不例外。因此,对信息化过程中的困难和问题,制造业企业应有客观、理智的认识,企业领导要敢于冒有准备的风险。 5)信息化工程的关键,是企业能够在咨询服务商或者软件公司的帮助下,弄清自己的需求。信息化软件实际上是企业管理思想和理念的一种载体,如果软件本身所包含的管理思想和理念与制造业企业相冲突,信息化工程是不可能成功的。因此,企业需要有既懂管理,又能够清晰地描述自身企业的管理模式与信息化需求,并能够与咨询公司或软件企业进行交流和配合的管理人才队伍。 6)软件既然是一种工具,就必须有能够熟练使用这种工具的人。因此,企业需要培训一批能够熟练软件的应用人才队伍。 7)随着技术的发展,软件的应用平台日趋复杂。因此,企业需要有熟练掌握计算机硬件、网络和数据库的维护人才,确保系统正常运行。在国外,越来越多的企业将这类工作外包给专业的软件服务和集成商。 8)信息化建设需要消耗相当大的资金,因此,企业要充分考虑资金的获取渠道与方式,做好预算与成本控制,避免信息化工程因为资金问题而中途夭折。 3.咨询服务企业是制造业信息化的枢纽,其职责是: 1)帮助企业进行信息化需求的诊断和分析,制定制造业企业信息化的总体规划。 2)帮助企业进行信息化软件、硬件和系统集成方案的选型、实施与监理。 3)帮助企业进行多层次信息化人才的培训。 4)不断跟踪和研究制造业信息化领域的技术、市场、产品和服务的发展变化趋势,深入企业进行调查研究,为制造业企业推荐最合适的信息化解决方案。 4.制造业软件企业是制造业信息化的工具制造商,其职责是: 1)提供能够满足制造业企业功能需求,能够在企业的计算机和网络平台安全、可靠运行,并能实现与其它应用软件集成的软件产品。 2)软件产品应具备先进性、实用性、可靠性、兼容性、开放性、易学易用性等特性。 3)为制造业提供软件产品的安装、培训与服务。其中服务包含软件实施、软件升级、客户化开发、解决应用中的问题等。 5.软件服务和集成商是制造业信息化的桥梁,其职责是: 1)帮助企业进行信息化软件的客户化开发、培训和系统升级。 2)帮助企业实现不同应用系统的信息集成。 3)帮助企业维护整个信息系统,并解决信息备份、信息安全问题。 6.电脑与外设供应商、网络产品供应商和系统软件供应商组成了制造业信息化的基础的、与具体应用无关的平台。该平台必须保证整个信息化系统运行的可靠性、安全性和兼容性。 7.渠道与代理商负责帮助产品供应商进行产品的销售、服务与技术支持。大多数硬件与网络供应商和系统软件供应商以分销和渠道销售为主;而制造业应用软件公司则主要采用直销,自主从事产品的销售、服务和技术支持工作。 三.决定制造业信息化工程成败的关键因素 制造业信息化的价值链中的各个环节都是决定信息化工程成败的因素,而其中,政府主管部门、咨询服务体系和制造业软件企业,是最重要的因素。 首先,政府主管部门对于整个价值链的影响是巨大的,政府主管部门制定的政策如何、导向如何,对制造业信息化工程的成功至关重要。 在“九五”期间,国家科技部提出的CAD应用工程,就顺应了当时的企业信息化状况,带动了一大批企业甩掉图板,使用CAD软件,使企业真正尝到了信息化的甜头,激发了企业实现信息技术深化应用的热情。反之,有些地方和行业的主管部门,在推进信息化的过程中,采取了计划经济时代的一些地方保护、行业垄断等做法,规定企业只能用某某产品、某某软件,这就不利于信息技术的推广应用。 第二,在制造业信息化工程实施的过程中,有没有咨询服务企业的参与,参与的程度与方式如何,也是导致信息化成功的关键因素。 许多制造业企业在实施信息化工程时,考虑得比较多的是建网络、买软件和硬件,在购买前看演示时令人眼花缭乱的好功能,到了企业就是用不起来,数据格式不兼容、借口连不上等问题随着而来。有的企业甚至成了“软件展示厅”,买了一大堆软件,但还是一个混合物,没有真正实现“化合”,没有真正集成起来。究其原因,就是没有引进咨询服务企业,进行认真、仔细的需求分析,缺乏有实际指导意义的总体规划和实施及集成方案。 另一方面,咨询服务业在中国还处于起步阶段,还比较缺乏专业性的制造业信息化咨询企业,高校的专家、教授和研究生是从事咨询服务的主要力量。他们的优势是对国内外先进技术和发展趋势进行跟踪研究,但是往往缺乏在企业工作和实施项目的实际经验。 不少制造业软件企业除了为制造业企业提供应用软件之外,实际上也扮演了咨询服务的角色。企业常常要求制造业软件公司为企业制定信息化方案,甚至进行软件与系统集成等。但是,由于制造业软件企业是以卖自己的软件为目的,所以免不了王婆卖瓜,少数软件甚至用一些模糊、错误的概念来误导制造业企业。因此,制造业信息化呼唤专业、独立、中立的咨询服务企业,来真正站在企业的角度,制定合理的制造业信息化解决方案。 武汉市制造业信息化工程技术研究中心于2002年1月成立,它是在制造业信息化工程深化实施的过程中应运而生的,在全国首创了由政府引导、高校和企业投资、市场化运作的新型运作模式。工程中心致力于通过深入的研究,来为不同行业、不同规模、不同体制和不同发展阶段的制造业企业推荐最优化、最佳性能价格比的解决方案,使企业通过实现信息化,真正提升自己的核心竞争力和创新能力、显著降低成本,获得显著的经济和社会效益,避免信息化投资的失误。 第三,制造业应用软件的选型、实施、客户化开发与信息集成,也是制造业信息化工程成功与否的关键环节。 目前,我国的制造业企业没有执行统一的标准。许多企业采用行业标准、甚至是企业标准。连标准化程度最高的产品设计过程,也存在许多不同的要求,例如明细表的书写方式等。在后续的工艺编制环节,则根据企业的产品、行业的特点不同,需求差别更大。有的以装配工艺为主,有的以机加工工艺为主,有的以焊接工艺为主等。企业生成各种清单、报表的方式以及编码方式也是五花八门,各不相同。 企业的管理模式则差别更大,一些传统的大型制造业企业以纵向一体化为主,在整个企业集团建立了严格的分工,建立了内部的供应链,如一汽。而在一些民营经济发达的地区,如浙江、江苏、广东等地,则建立了横向一体化,形成了外部的供应链,如广东南海的铝行材供应链、重庆的摩托车供应链和浙江永康的小五金供应链等。不同的企业生产组织方式、产品特点、营销模式、采购方式不同,形成了不同的管理模式,因此,不可能用一种类型的管理软件来适应所有的企业。对于流程型企业,如石油、化工、钢铁企业,所使用的管理软件与离散型制造业又有根本的区别。 制造业的内部管理环节众多,差别巨大,因此,应用软件的选型、客户化开发和信息集成十分关键。每个应用软件都有不同的市场定位