❶ 测温系统的发展历史、现状和动态
这是俺论文的第一部分,希望对你用!!!!!
1.1 国内外温度检测技术研究现状
温度是在工业、农业、国防和科研等部门中应用最普遍的被测物理量。有资料表明,温度传感器的数量在各种传感器中位居首位,约占50%左右。因此,温度测量在保证产品质量,提高生产效率,节约能源,安全生产,促进国民经济发展等诸多方面起到了至关重要的作用。
1.1.1 常用的温度测量方法
根据测温方式的不同,温度测量通常可分为接触式和非接触式测温两大类。
接触式测温的特点是感温元件直接与被测对象相接触,两者进行充分的热交换,最后达到热平衡,此时感温元件的温度与被测对象的温度必然相等,温度计就可据此测出被测对象的温度。因此,接触式测温一方面有测温精度相对较高,直观可靠及测温仪表价格相对较低等优点;另一方面也存在由于感温元件与被测介质直接接触,从而影响被测介质热平衡状态,而接触不良则会增加测温误差;被测介质具有腐蚀性及温度太高亦将严重影响感温元件性能和寿命等缺点。根据测温转换的原理,接触式测温又可分为膨胀式、热阻式、热电式等多种形式。
非接触式测温的特点是感温元件不与被测对象直接接触,而是通过接受被测物体的热辐射能实现热交换,据此测出被测对象的温度。因此,非接触式测温具有不改变被测物体的温度分布,热惯性小,测温上限可设计的很高,便于测量运动物体的温度和快速变化的温度等优点。两类测温方法的主要特点如下表1.1所示。
表1.1 两种测温方法的主要特点
方式 接触式 非接触式
测量条件 感温元件要与被测对象良好接触;感温元件的加入几乎不改变对象的温度;被测温度不超过感温元件能承受的上限温度;被测对象不对感温元件产生腐蚀。 需准确知道被测对象表面发射率;被测对象的辐射能充分照射到检测元件上。
测量范围 特别适合1200度、热容大、无腐蚀性对象的连续在线测温,对高于1300度以上的温度测量比较困难。 原理上测量范围可以从超高温到超低温。但1000度以下,测量误差比较大,能测运动物体或热容小的物体温度
精度 工业用表通常为1.0、0.5、0.2、0.1级,实验室用表可达0.01级。 通常为1.0、1.5、2.5级
响应速度 慢,通常为几十秒到几分钟 快,通常为2-3秒钟
其他特点 整个测温系统结构简单、体积小、可靠、维护方便、价格低廉。仪表读数直接反映被测物体温度,可方便的组成多路集中测量与控制系统。 整个测量系统结构复杂、体积大、调整麻烦、价格昂贵;仪表读数通常反映被测物体表面温度(需进一步转换);不易组成测温控温一体化的温度控制装置。
从温度检测使用的温度计来看,主要包括以下几种:
1.利用物体热胀冷缩原理制成的温度计
利用物体热胀冷缩制成的温度计分为如下三大类:
(1)玻璃温度计:利用玻璃感温包内的测温物质(水银、酒精、甲苯、油等)受热膨胀、遇冷收缩的原理进行温度测量。
(2)双金属温度计:采用膨胀系数不同的两种金属牢固粘合在上一起制的双金属片作为感温元件,当温度变化时,一端固定的双金属片,由于两种金属膨胀系数不同而产生弯曲,自由端的位移通过传动机构带动指针指示出相应温度。
(3)压力式温度计:由感温物质(氮气、水银、二甲苯、甲苯、甘油和沸点液体如氯甲烷、氯乙烷等)随温度变化,压力发生相应变化,用弹簧管压力表测出它的压力值,经换算得出被测物质的温度值。
2.利用热电效应技术制成的温度检测元件
利用此技术制成的温度检测元件主要是热电偶。热电偶发展较早,比较成熟,至今仍为应用最广泛的温度检测元件。热电偶具有结构简单、制作方便、测量范围宽、精度高、热惯性小等特点。常用的热电偶有以下几种。
(1)镍铬一镍硅,型号为WRN,分度号为K,测温范围0-900℃,短期可测1200℃。
(2)镍铬—康铜,型号为WRK,分度号为F,测温范围0-600℃,短期可测800℃。
(3)铂铑一铂,型号为WRP,分度号为S,在1300℃以下的使用,短期可测1600℃。
(4)铂铑3旺铂铐6,型号为WRR,分度号为B,测温范围300-1600℃,短期可测1800℃。
3.利用热阻效应技术制成的温度计
用热阻效应技术制成的温度计可分成以下几种:
(1)电阻测温元件,它是利用感温元件(导体)的电阻随温度变化的性质,将电阻的变化值用显示仪表反映出来,从而达到测温的目的。目前常用的有铂热电阻和铜热电阻。
(2)半导体测温元件,它与热电阻的温阻特性刚好相反,即有很大负温度系数,也就是说温度升高时,其阻值降低。
(3)陶瓷热敏元件,它的实质是利用半导体电阻的正温特性,用半导体陶瓷材料制作而成的热敏元件,常称为PCT或NCT热敏元件。PCT热敏分为突变型及缓变型二类。突变型PCT元件的温阻特性是当温度达到顶点时,它的阻值突然变大,有限流功能,多数用于保护电器。缓变型PCT元件的温阻特性基本上随温度升高阻值慢慢增大,起温度补偿作用。NCT元件特性与PCT元件的突变特性刚好相反,即随温度升高,它的阻值减小。
4.利用热辐射原理制成的高温计
热辐射高温计通常分为两种。一种是单色辐射高温计,一般称光学高温计;另一种是全辐射高温计,它的原理是物体受热辐射后,视物体本身的性质,能将其吸收、透过或反射。而受热物体放出的辐射能的多少,与它的温度有一定的关系。热辐射式高温计就是根据这种热辐射原理制成的。
1.1.2 国内外温度检测技术现状及发展趋势
近年来,在温度检测技术领域,多种新的检测原理与技术的开发应用,已经取得了重大进展。新一代温度检测元件正在不断出现和完善,它们主要有以下几种:
1.晶体管温度检测元件
半导体温度检测元件是具有代表性的温度检测元件。半导体的电阻温度系数比金属大l~2个数量级,二极管和三极管的PN结电压、电容对温度灵敏度很高。基于上述测温原理己研制了各种温度检测元件。
2.集成电路温度检测元件
利用硅晶体管基极一发射极间电压与温度关系(即半导体PN结的温度特性)进行温度检测,并把测温、激励、信号处理电路和放大电路集成一体,封装于小型管壳内,即构成了集成电路温度检测元件。目前,国内外也进行了生产。
3.核磁共振温度检测器
所谓核磁共振现象是指具有核自旋的物质置于静磁场中时,当与静磁场垂直方向加以电磁波,会发生对某频率电磁的吸收现象。利用共振吸收频率随温度上升而减少的原理研制成的温度检测器,称为核磁共振温度检测器。这种检测器精度极高,可以测量出千分之一开尔文,而且输出的频率信号适于数字化运算处理,故是一种性能十分良好的温度检测器。在常温下,可作理想的标准温度计之用。
4.热噪声温度检测器
它的原理是利用热电阻元件产生的噪声电压与温度的相关性。其特点如下:
(1)输出噪声电压大小与温度是比例关系;
(2)不受压力影响;
(3)感温元件的阻值几乎不影响测量精确度;
因此,它是可以直接读出绝对温度值而不受材料和环境条件限制的温度检测器。
5.石英晶体温度检测器
它采用LC或Y型切割的石英晶片的共振频率随温度变化的特性来制的。它可以自动补偿石英晶片的非线性,测量精度较高,一般可检测到0.001℃,所以可作标准检测之用。
6.光纤温度检测器
光纤温度检测器是目前光纤传感器中发展较快的一种,己开发了开关式温度检测器、辐射式温度检测器等多种实用型的品种。它是利用双折射光纤的传输光信号滞后量随温度变化的原理制成的双折射光纤温度检测器,检测精度在士1℃以内,测温范围可以从绝对0℃到2000℃。
7.激光温度检测器
激光测温特别适于远程测量和特殊环境下的温度测量,用氮氖激光源的激光作反射计可测得很高的温度,精度达l%;用激光干涉和散射原理制作的温度检测器可测量更高的温度,上限可达3000℃,专门用于核聚变研究但在工业上应用还需进一步开发和实验。
8.微波温度检测器
采用微波测温可以达到快速测量高温的目的。它是利用在不同温度下,温度与控制电压成线性关系的原理制成的。这种检测器的灵敏度为250kHZ/℃,精度为1%左右,检测范围为20~1400℃。
从以上材料可以看出,当前温度检测的发展趋势组合要集中在以下几个方面:
a.扩展检测范围
现在工业上通用的温度检测范围为一200~3000℃,而今后要求能测超高温与超低温。尤其是液化气体的极低温度检测更为迫切,如10K以下的度检测是当前重点研究课题。
b.扩大测温对象
温度检测技术将会由点测温发展到线、面,甚至立体的测量。应用范围己经从工业领域延伸到环境保护、家用电器、汽车工业及航天工业领域。
C.新产品的开发
利用以前的检测技术生产出适应于不同场合、不同工况要求的新型产品,以满足用户需要。同时利用新的检测技术制造出新的产品。
d.加强新原理、新材料、新加工工艺的开发。
如近来已经开发的炭化硅薄膜热敏电阻温度检测器,厚膜、薄膜铂电阻温度检测器,硅单晶热敏电阻温度检测器等。
e.向智能化、集成化、适用化方向发展。
新产品不仅要具有检测功能,又要具有判断和指令等多功能,采用微机向智能化方向发展。向机电一体化方向发展。
1.2课题的工程背景
在工业领域,温度、压力、流量是最常见的三大被检测的物理参数,其中最广泛的还是温度量的测量,随着电子技术、计算机技术的飞速发展,对现场温度的测量也由过去的刻度温度计、指针温度计向数字显示的智能温度计发展,而且,对测量的精度要求也越来越高。当然,对不同的工艺要求,其测量的精度要求不尽相同,这些是显而易见的,譬如,在测量电机的轴温时,可能测量的允许差达l℃以上,但在某些场合,温度的检测与控制需要达到很高的精度。以化工生产中联碱行业为例,联碱外冷器液氨致冷技术作为80年代中期化工部重点推广的技改项目之一,已被各联碱厂相继采用,并在生产实践中得到不断改进,已成为业内公认的一项成熟、有效的节能降耗技术。但至今仍存在外冷器生产能力偏低、运行周期短和节能效果不理想等问题。而外冷器进出口母液温差是影响外冷器生产能力和运行周期的一个重要因素,从长期的生产经验看,混合溶液每次流经外冷器时,进、出口温差以0.5℃为宜。因此,精确测量与控制通过外冷器混合溶液的进、出口温差是指导该生产工艺的一个重要环节。
事实上,由于精度要求较高,在实际生产中该环节的温差测控问题一直没能得到很好解决。经调研知,在全国范围内几乎所有化工集团的联碱行业的生产情况都如此,他们迫切希望能解决这一问题。在其它许多场合(如发酵工艺)中,温度的准确测量与控制同样具有相当强的实践指导作用。目前,虽然国内外已有很多温度测控装置,但温度测量的精度达到0.5℃,并能适用于类似制碱工艺要求的外冷器低温差的精确检测与控制在国内尚属空白。该课题的研究能实现外冷器温差的高精度检测与控制,可推广应用到其它化工生产过程及其相关领域中需要对温差与温度进行高精度实时测控的场合。因此,研发高精度温度与温差测控系统具有很好的应用前景。
❷ 急求 恒温槽的性能测试 实验报告
一、实验目的和要求
1、了解恒温槽的构造及恒温原理,初步掌握装配和调试技术。
2、学会分析恒温槽的性能。
3、掌握接触温度计的调节和使用。
二、实验内容和原理
本实验研究的是常用的控温装置—恒温水浴。它通过温度控制器控制加热器的工作状态从而实现恒温的目的。当恒温水浴热量散失导致其温度下降到设定值时,控制器使控制加热器工作,系统温度升高,当系统再次达到设定温度时,则自动停止加热。如此循环,可以使系统温度在一定范围内保持恒定。一般恒温槽都用水作为恒温介质,使用温度为20~50℃左右。若需要更高恒温温度(不超过90℃)时,可在水面上加少许白油以防止水的蒸发,90℃以上则可用甘油、白油或其他高沸点物质作为恒温介质。
恒温槽一般由浴槽、温度调节器、温度控制器、加热器、搅拌器和温度指示器等部件组成。
装配和使用恒温槽的时候,应注意各元件在恒温槽中的布局是否合理,注意各元件的灵敏度,注意感温、温度传递、控制器、加热器等的滞后现象。通常,灵敏度越高,恒温槽内温度波动越小,各区域温度越均匀。灵敏度是恒温槽恒温好坏的一个主要标志。为了提高恒温槽的灵敏度,在设计恒温槽时要注意以下几点:恒温槽介质的热容量要大些,传热效果要好些,尽可能加快电热器与接触温度计间传热的速率,感温元件的热容尽可能小,感温元件与电加热器间距离要近一些,搅拌器效率要高,作调节温度用的加热器功率要恰当。
三、主要仪器和设备
仪器:玻璃缸1个;温度调节器(导电表)1支;精密电子温差测量仪1台;温度计1支;搅拌器1套;温度控制器(继电器)1台;加热器1只。
四、操作方法和实验步骤
(1)将蒸馏水灌入浴槽至容积的4/5处,然后将恒温槽所需元件按合理的排布组装成一套恒温槽,并接好所有的线路。
(2)打开搅拌器和加热器,使恒温槽内的水温度升高,等温度计显示温度为25℃左右时通过调节调节帽调节温度调节器的温度使之温度在23-25℃之间,固定好调节帽。当指示灯的显示呈红绿交替时即可开始下一步骤。
(3)用精密温差测量仪测量已达设定温度的恒温槽的温度波动值,测定点选择恒温槽的上、中、下、左、中、右六点。
(4)分别测定加热器在100V和200V电压下恒温槽的温度波动曲线,每隔30s读数一次,连续记录15min。
五、实验数据记录和处理
测温元件位置(50v电压测定所有数据) 上 下 左 中 右
温度/℃ 最高 0.110 0.015 0.010 0.027 0.011
最低 0.067 -0.025 -0.012 -0.024 -0.022
波动值/℃ 温差 0.043 0.040 0.022 0.051 0.033
平均值 0.038
100V加热功率数据:
-0.003 -0.019 0.012 0.007 -0.009 -0.025 0.011 -0.001 -0.018 0.009
0.007 -0.009 -0.024 0.014 0.001 -0.012 0.008 0.004 -0.006 -0.018
0.014 0.002 -0.015 0.002 0.013 -0.003 -0.019 0.015 0.004 -0.009
200V加热功率数据:
0.000 0.087 0.080 0.062 0.047 0.031 0.015 -0.001 0.095 0.084
0.067 0.043 0.030 0.012 0.001 0.084 0.079 0.061 0.045 0.034
0.018 0.001 0.088 0.086 0.070 0.056 0.038 0.020 0.003 0.094
表一:100V加热功率曲线
表二:200V加热功率曲线
六、实验结果与讨论
1、从温度波动曲线对比可以看出,当温度稳定后,使用小功率加热明显能够减小温度的波动程度,因为温度波动的数量级是小的,所需要的外部稳定热量也是小的,因此只要小功率加热即可满足,使用大功率加热反而更容易引起温度的波动。
2、使用温度调节器设定的温度往往比1/10℃温度计显示的温度低0.5~1℃。这与仪器的灵敏度以及信号在各个仪器间传输时的损耗有关,真实的温度要以1/10℃温度计显示的温度为准,温度调节器只是起到一个相对调节的作用,而不需要关心它的读数。
3、恒温时不能以接触温度计的刻度为依据,也不能以控温器的温度显示器为依据,必须以恒温槽中1/10℃温度计为准。
4、本实验中水的温度降低的速度比较慢,所以要谨慎操作,在水温达到25℃之前调节好控制器,如果不慎温度超过25℃的话可加入少量的冷水。
5、课后思考题
(1)如何提高恒温槽的灵敏度?
答:a 恒温介质流动性好,传热性能好,控制灵敏度高
b 加热器功率要适宜
c 搅拌器速度要足够大
d 继电器电磁吸引电键,后者发生机械作用的时间愈短,断电时线圈中的铁芯剩磁愈小,控制灵敏度就高。
e 电接点温度计热容小,对温度的变化敏感,则灵敏度高
f 环境温度与设定温度差值越小,控温效果越好
(2)从能量守恒的角度来讨论应如何选择加热器的功率大小?
答:应选择小功率加热。
(3)你认为可以用哪些测温元件来测量恒温槽温度波动?
答:1/10℃玻璃温度计,贝克曼温度计。