参考:
可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,它与普通胶带输送机相比增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。
结构概述
伸缩胶带输送机分为固定部分和非固定部分两大部分。固定部分由机头传动装置、储带装置、收放胶带装置等组成;非固定部分由无螺栓连接的快速可拆支架、机尾等组成。
1、 机头传动装置由传动卷筒、减速器、液力联轴器、机架、卸载滚筒、清扫器组成。
n 机头传动装置是整个输送机的驱动部分,两台电机通过液力联轴器、减速器分别传递转距给两个传动滚筒(也可以用两个齿轮串联起来传动)。用齿轮传动时,应卸下一组电机、液力联轴器和减速器。
n 液力联轴器为YL-400型,它由泵轮、透平轮、外壳、从动轴等构成,其特点是泵轮侧有一辅助室,电机启动后,液流透过小孔进入工作室,因而能使负载比较平衡地启动而电机则按近于坚载启动,工作时壳体内加20号机械油,充油量为14m3,减速器采用上级齿轮减速,第一级为圆弧锥齿轮,第二、第三级为斜齿和直齿圆柱齿轮,总传动比为25.564,与SGW-620/40T型刮板输送机可通用互换,减速器用螺栓直接与机架连接。
n 传动卷筒为焊接结构,外径为Φ500毫米,卷筒表面有特制的硫化胶层,因此对提高胶带与滚筒的eua值,防止打滑、减少初张力,具有较好的效果。
n 卸载端和头部清扫器,带式逆止器,便于卸载,机头最前部有外伸的卸载臂,由卸载滚筒和伸出架组成,滚筒安装在伸出架上,其轴线位置可通过轴承两侧的螺栓进行调节,以调整胶带在机头部的跑偏,在卸载滚筒的下部装有两道清扫器,由于清扫器刮板紧压在胶带上,故可除去粘附着的碎煤,带式逆止器以防止停车时胶带倒转。
n 机架为焊接结构,用螺栓组装,机头传动装置所有的零部件均安装在机架上。电动机和减速器可根据具体情况安装在机架的左侧或右侧。
2、 储带装置包括储带转向架、储带仓架、换向滚筒、托辊小车、游动小车、张紧装置、张紧绞车等。
n 储带装置的骨架由框架和支架用螺栓连接而成,在机头传动装置两具转框架上装有三个固定换向滚筒与游动小车上的两个换向滚筒一起供胶带在储带装置中往复导向,架子上面安装固定槽形托辊和平托辊,以支撑胶带,架子内侧有轨道,供托辊不画和游动小车行走。
n 固定换向滚筒为定轴式,用于储带装置进行储带时,用以主承胶带,使其悬垂度不致过大,托辊小车随游动小车位置的变动,需要用人力拉出或退回。
n 游动小车由车架、换向滚筒、滑轮组、车轮等组成,滑轮组装在车身后都与另一滑轮组相适应,其位置可保证受力时车身不被抬起,这样,对保持车身稳定,防止换向滚筒上的胶带跑偏效果较好,车身下部还装着止爬钩,用以防止车轮脱轨掉道。
n 游动小车向左侧移动时,胶带放出,机身伸长,游动小车向右侧移动时,胶带储存,机身缩短,通过钢丝绳拉紧游动小车可使胶带得到适当的张紧度。
n 在储带装置的后部,设有张紧绞车,胶带张力指示器和张力缓冲器,张力缓冲器的作用是使输送机(在起动时让胶带始终保持一定的张力,以减少空载胶带的不适度和胶带层间的拍打)。
3、 收放胶带装置位于张紧绞车的后部,它由机架、调心托辊、减速器、电动机、旋杆等组成,其作用是将胶带增补到输送机机身上或从输送机机身取下,机架的两端和后端,各装一旋杆,当增加或减少胶带时用以夹紧主胶带,调心托辊组供卷筒收放胶带时导向,工作时将卷筒推进机架的一端用尾架顶起,另一端顶在减速器出轴的顶尖上,开动电动机通过减速器出轴的拨盘带动卷筒,收卷胶带,放出胶带,放出胶带时不开电机由外拖动卷筒反转,在不工作时活动轨可用插销挂在机架上,以缩小宽度,在活动轨上方应设置起重装置悬吊卷筒,巷道宽度可视具体情况适当拓宽,以利胶带收入时操作。
4、 中间架由无螺栓连接的快速可拆支架,由H型支架、钢管、平托辊和挂钩式槽形托辊、“V”型托辊等组成,是机器的非固定部分,钢管可作为拆卸的机身,用柱销固装在钢管上,用小锤可以打动,挂钩式槽形托辊胶接式,槽形角30°,用挂钩挂在钢管的柱销上,挂钩上制动的圆弧齿槽,托辊就是通过齿槽挂在柱销上的,可向前向后移动,以调节托辊位置控制胶带跑偏。
5、 上料装置、下料装置;上料装置安装在收放装置后边,由转向转导向接上料段,运送的物料从此段装上运至下料段,下料装置由下料段一组斜托辊将物料卸下,下料段直接极为,机尾由导轨(Ⅰ、Ⅱ、Ⅲ)和机尾滚筒座组成,导轨一端用螺栓固定在中支座上,并与另一导轨的前端用柱销胶接,藉以适应底板的不平,机尾滚筒与储带装置中的滚筒结构相同,能互换,其轴线位置可用螺栓调节,以调整胶带中在机尾的跑偏,机尾滚筒前端设有刮煤板,可使滚筒表面的碎煤或粉煤刮下,并收集泥槽中,用特制的拉泥板取出,机尾加上装有缓冲托辊组,受料时,可降低块煤对胶带的冲击,有利于提高胶带寿命
2. 跪求...各位高手大哥帮帮小弟......带式输送机传动系统设计要带图
跪求...各位高手大哥帮帮小弟......带式输送机传动系统设计要带图
悬赏分:50 - 离问题专结束还有 12 天 0 小时属
设计题目:带式输送机传动系统设计
设计任务:设计带式输送机的传动装置。要求传动系统中含有V带传动及单级圆柱齿轮减速器。减速器设计寿命为五年(每年按250个工作日算)。
工作条件:运输机工作平稳,单向运转,单班工作(每班按8h计算)。
设计数据:输送带工作拉力F为3.0KN
输送带工作速度V为0.8m/s,允许误差正负5%;
卷筒直径D为250mm
设计工作量:1、减速器装配图一张(A1)
2、零件图2张
3、设计说明书一份
CAD图加说明书各位大侠发到我的邮箱[email protected] 小弟在这里万分感谢
3. 老师你知道CAD装配图中怎么表示链传动和带传动么有简化画法么没有
CAD并没有图样的规定,即使有规定,各国规定也不相同,在中国,就得按照中国规范绘图。你可以查看中国的相关规范。你是学这个的,那你应当知道这些规范的规定。
4. 求设计带式输送机传动装置减速器装配图一张和零件工作图两张。。谢谢
设计条件抄:
1、 输送带工作袭拉力:F = 2600N;
2、 输送带工作速度:v = 1.1m/s(允许输送带速度误差为5%);
3、 滚筒直径:D = 220mm;
4、 工作情况:两班制,连续单向运转,载荷较平稳;室内,灰尘较大,环境最高温度35;
5、 使用折旧期: 8年;
6、 检修间隔期: 四年一次大修,两年一次中修,半年一次小修;
7、 动力来源: 电力,三相交流,电压380/220V;
8、 运输带速度允许误差:
9、 制造条件及生产批量:一般机械厂制造,小批量生产。效率损失);
我去年做的和你的条件有一点差别,我同学可能有一样的吧
5. 机械设计课程设计带式运输机传动装置
机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
载荷平稳、单向旋转
三. 原始数据
鼓轮的扭矩T(N·m):850
鼓轮的直径D(mm):350
运输带速度V(m/s):0.7
带速允许偏差(%):5
使用年限(年):5
工作制度(班/日):2
四. 设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
1、 第一阶段:总体计算和传动件参数计算
2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大齿轮浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择
1) 工作机所需功率Pw
Pw=3.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.电动机转速的选择
nd=(i1’·i2’…in’)nw
初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求。
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=38.4
i=25.14
6. 机械设计课程设计---设计带式输送机传动装置
皮带传动很简单的:
1、焊接机架(钢管最好),机架两端是滚筒,主动电机--减速机--齿轮或链轮连接主动滚筒,滚筒两边安装张紧螺栓(一边滚筒两个,共四个)。
2、机架中间均匀分布两排托辊,拖辊间隔按传输的物料设计,一般在500毫米左右。
3、机架下方安装几个托回程皮带的拖辊。
4、为便于挪动,机架应设计上轮子。
7. 设计一带式运输机上用的蜗杆减速器。
------蜗杆减速器传动(单级)
1.设计参数
传动装置简图如右图所示。
(1) 带式运输回机数据
运输带工答作拉力F= 2200 N
运输带工作速度v= 1.0 m/s
运输带滚筒直径D= 380 mm
(2)工作条件
两班制工作,单向、连续运转,工作中有轻微振动。运输带速度允许速度误差为±5%。
(3)使用期限
工作期限为十年,检修期间隔为三年。
(4)生产批量及加工条件
小批量生产。
2.设计任务(具体见基本要求)
1)选择电动机型号;
2)设计减速器;
3)选择联轴器。
3.成果要求(具体见基本要求)
1)减速器装配图一张;
2)零件工作图三张;
3)设计说明书一份。
我设计了一部分,不知道数据正不正确!请高手帮忙!
问题补充:减速器里就只有一个蜗轮蜗杆,外面一端连电动机,一端连传送带.图不知道怎么粘上来.
8. 机械设计课程设计 带式运输机
武汉工程大学
机械设计课程
说明书
课题名称:带式运输机传动装置的设计
专业班级:2006级机制(中)1班
学生学号:0603070105
学生姓名:陈 明 伟
学生成绩:
指导教师:徐建生 教授
课题工作时间:2008.12.15至2008.01.02
武汉工程大学教务处
机械设计课程设计
-单级圆柱齿轮减速箱
机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器 目 录
第一节:设计任务书……………………………………………………2
第二节:传动方案的拟定及说明………………………………………3
第三节:电动机的选择…………………………………………………5
第四节:计算传动装置的运动和动力参数……………………………6
第五节:传动件的设计计算……………………………………………8
第六节:轴的设计计算…………………………………………………20
第七节:滚动轴承的选择及计算………………………………………23
第八节:键联接的选择及校核计算……………………………………23
第九节;连轴器的选择…………………………………………………23
第十节:减速器附件的选择……………………………………………23
第十一节:润滑与密封…………………………………………………23
第十二节:设计小结…………………………………………………… 23
第十三节参考资料目录………………………………………………. 24
第一节 机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中V带轮机展开式二级斜齿圆柱齿轮减速器
一. 总体布置简
图1—1
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
一般条件,通风良好,连续工作,近于平稳,单向旋转。
三. 原始数据
1.鼓轮的扭矩T(N/m):460
2.鼓轮的直径D(mm):380
3.运输带速度V(m/s):0.8
4.带速允许偏差(%):±5
5.使用年限(年):8年,大修期3年
6.工作制度(班/日):2
7.卷筒效率:∩=0.96
四.设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
第一阶段:机械系统方案设计,(选择传动装置的类型)
第二阶段:机械系统运动,动力参数计算,(电动机的 选择,传动装置运动动力参数计算)。
第三阶段:传动零件的设计计算,(传动系统中齿轮传动等的设计计算)。、 第四阶段:减速器装配图的设计。(轴系结构设计————初定轴颈,轴承型号,校核减速器中间轴及其键的强度,轴承寿命,减速器箱体及其附件结构设计)。
第五阶段:减速器装配图,零件图设计,(在绘图纸上绘制减器正式装配图,减速器中间轴及其中间轴上大齿轮的零件图)。
第六阶段:编写设计说明书。
第二节 传动方案的拟定及说明
一、 初拟三种方案如右图(图1—2、图1—3、图1—4)
图1—1
图1—1
图1—3
二、 分析各种传动方案的优缺点
方案a传动比小,齿轮及齿轮箱的尺寸小,制造成本低,工作可靠,传动效率高,维护方便,带的 寿命短,不宜在恶劣环境中工作。
方案b 传动比大,齿轮及齿轮箱的尺寸大,制造成本大,工作可靠,传动效率高,维护方便,环境适应性好。
方案c传动比小,齿轮及齿轮箱的尺寸小,制造成本高,工作可靠,传动效率高,维护方便,带的寿命短,不宜在恶劣环境中工作。
第三节 电动机的选择
一. 电动机类型和结构的选择
因为本传动的工作状况是:连续、载荷近于平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
二. 电动机容量的选择
1. 工作机所需功率Pw 。
由已知条件运输带速度(0.8m/s),鼓轮直径(380㎜) 得:
2. 电动机的输出功率
传动装置中的总效率 式中 , ………为从电动机至卷筒轴之间的各传动机构和轴承的效率。由表2—4(参考文献2)查得:闭式斜齿圆柱齿轮传动效率 ;滚动轴承(一对)的传动效率为 ;弹性联轴器的传动效率 ;卷筒效率 ;V带传动效率 ;卷筒滑动轴承的效率 。
3. 确定电动机的额定功率
根据计算出的电动机的功率 可选定电动机的额定功率
4. 电动机转速的选择及型号的确定
为了便于选择电动机的转速,先推算电动机的转速的可选范围。由表2—1(参考文献2 P4)查得V带传动常用的传动比范围 ;单级圆柱齿轮常用的传动比范围 。则电动机的转速可选范围为
可见同步转速为750r/min,1000r/min,和1500r/min的电动机均符合,这里初选同步转速为1000r/min 和1500r/min的两种电动机进行比较,如下 (表1)
方案 电动机型号 额定功率(KW) 电动机转速 电动机质量(kg) 传动装置的传动比 参考比价
同步 满载 总传动比 V带 高速级 低速级
1 Y100L2—4 3 1500 1420 38 35.3 3 3.678 3.2 1.87
2 Y132 5—6 3 .1000 960 63 23.88 3 3 2.65 3.09
由表中的数据可知两个方案均可行,但方案1参考比较较低,质量小,较方案2经济,可采用方案1,选定电动机型号为Y100L2—4,转速1500r/min..
三、电动机的技术数据和外形及安装尺寸
由表20—1表20—2查出Y100L1—4型电动机的主要技术数据和外形安装尺寸,并列表记录如下:(参考文献2 P197)
(表2)
电动机型号 H A B C D E F×GD G K AB AD AC HD AA BB HA L
4极 4极 4极 4极 4极
Y100L 100 160 140 63 28 60 8×7 24 12 205 180 105 245 40 176 14 380
第四节 计算传动装置的运动和动力参数
一、 传动装置的总传动比及其分配各级传动比
1.计算总传动比
由电动机的满载转速( )和工作机主动轴转速 可确定传动装置应有的总传动比为:
2.合理分配各级传动比
先试选皮带轮传动比 ,减速箱是展开式布置,为使两级大齿轮有相近的浸油深度,告诉级传动比 和低速级传动比 可按下列方法分配。
有 ,可取 , , 。
二.计算传动装置的运动和动力参数
如图各轴编号分别为轴Ⅰ、轴Ⅱ、轴Ⅲ。如图1—5
图1—5
1. 计算各轴转速
图1—5,所示传动装置中各轴的转速为
2. 计算各轴输入功率
各轴的输入功率为
式中: ——电动机与Ⅰ轴之间V带传动效率。
——高速级传动效率,包括高速级齿轮副和Ⅰ轴上一对轴承的效率。
——低速级传动效率,包括低速级齿轮副和Ⅱ轴上的一对轴承的效率。
3. 计算各轴输入转矩
图1—5所示传动系统中各轴转矩为
4. 将以上结果整理后列表如下
(| (表3)
项目 电动机轴 高速轴Ⅰ 中间轴Ⅱ 低速轴Ⅲ 滚筒滑动轴Ⅳ
转速(r/min) 1420 473.330 128.693 40.220 40.220
功率(k0w) 3 2.880 2.7660 2.656 2.603
转矩(n/m) 2.3 58.108 205.258 630.706 630.706
传动比 i01=3 I12=3.678 I23=3.2 I34=1
效率 ∩01=0.96 ∩12=0.963 ∩23=0.9603 ∩34=0.9801
第五节 传动件设计计算
一.V带传动的设计计算(参考文献1)
由已知条件电动机功率P=3KW ,转速n1=1420r/min ,传动比 i=3 ,每天工作8小时,两班制,要求寿命8年。
试设计该V带传动。
1. 计算功率 。
由表8----7工况系数 ,故:
2. 选择V带的带型。
根据 , .由图8----11选用A型。
3. 确定带轮的基准直径 ,并验算带速v。
(1)初选小带轮基准直径,查表8-6和表8-8,取小带轮的基准直径 .
(2)验算带速V, 因为3<v<5m/s,故合适。
(3)计算大带轮大基准直径。
根据式8-15a,
根据表8-8,圆整为280mm。
4. 确定V带的中心距a和基准长度 。
(1) 根据式8-20,初定中心距
(2) 由式8-22,计算基准直径。
由表8-2选基准长度
(3) 验算小带轮的包角 。
6.计算带的根数Z.
(1) 计算单根v带的额定功率pr
△P0=0.17kw k =0.942. Kl=0.99,
于是
(2)计算V带的根数z
Z= 取4根V带。
7计算单根V带的拉力最小值
由表8-3得A型V带的长度质量为0.1kg/m所以
应使带的实际初拉力》
8计算压轴力Fp
9.带轮结构设计
材料HT200,A型,根数Z=4,长度Ld0=1600mm,中心距a=500mm
,
图1-6
二.高速级斜齿圆柱齿轮的设计计算:
有以上计算得,输入功率Pi=2.88kw,小齿轮转速n1=473.33r/min
齿数比u=i12=3.678.
1. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=24,大齿轮齿数z2=z1*u=24*3.678=88.272
取Z282齿轮;
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt
确定公式内的各计算数值
(1) 试选Kt=1.5
(2)计算小齿轮的转矩。T1=5.81076*104NM.
(3) 由表10-7选取尺宽系数φd=1
(4) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=650MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(6) 由式10-13计算应力循环次数 (8年,每天两班制,1年按300天计算)
N1=60n1jLh=60×473.33×1×(2×8×300×8)=1.09055×108
N2=N1/u=1.09055×108/3.678=2.965×107
(7) 由图10-19查得接触疲劳寿命系数KHN1=0.948;KHN2=0.99
(8) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]=1= =0.948×650MPa=616.2MPa
[σH]2= =0.99×550MPa=544.5MPa
= ([σH]+ [σH])/2=(616.2+544.5)/2=580.36Mpa
2) 计算
(1) 试算小齿轮分度圆直径d1t
d1t≥ = 43.469mm
(2) 计算圆周速度
v= = =1.0733m/s
(3) 计算齿宽b及其模数mnt
b=φd*d1t=1×43.469mm=43.469mm
mnt 1.7574
h=2.25mnt=2.25*1.7574mm=3.9542mm
b/h=43.469/3.9542=10.993
(4)计算重合度。
(5) 计算载荷系数K
已知载荷平稳,所以取KA=1 根据v=1.0773m/s,7级精度,由
10—8查得动载系数KV=1.05; KHα=KHβ=1
查表10-2得 KA=1.0、
查表10-4,用插值法查的7级精度,小齿轮相对支撑为非对称布置时KHβ=1.418
由b/h=10.993, KHβ=1.418插图10-13得KFβ=1.38
固载荷系数为:
K=KAKVKHαKHβ=1×1.05×1×1.418=1.6378
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 (取kt=1.2-1.4)
d1= =44.7613mm
(7) 计算模数mn
mn =
3.按齿根弯曲强度设计
由式m≥
1) 确定计算参数
(1) 由图10-20c,查得小齿轮的弯曲疲劳轻度极限σFE1=550mpa,大齿轮σFE2=400mpa。
(2) 由图10-18取疲劳寿命系数KFN1=0.92,KFN2=0.98
(3)查表10-28得螺旋角影响系数 .根据 。
(4)计算当量齿数
(5)计算弯曲疲劳许用应力 取S=1.4
[σF1]= = =361.429Mpa
[σF2]= = =280Mpa
(4) 计算载荷系数
K=KAKVKFαKFβ=1×1.05×1.1×1.38=1.5939
(5) 查取齿型系数
由表10-5查得YFa1=2.6;Yfa2=12.186
(6) 查取应力校正系数
由表10-5查得Ysa1=1.595;Ysa2=1.787
(7) 计算大小齿轮的 并加以比较
= =0.01147
= =0.01395
大齿轮的数值大。
2) 设计计算
mn≥ =1.3005mm
就近圆整为标准值(第一系列)为mn=1.5 分度圆直径d1=44.7613mm
则
z1 =d1cos /mn=44.7613*cos140/1.5=28.954,
取z1=28 z2=u*z1=3.678*24=106.662取107齿
4.几何尺寸计算
(1)计算中心距
a= = =105.123mm
将中心距圆整为105mm
(2)按圆整后的 中心距修正螺旋角。
因值改变不多,故参数 等不必修正。
(3)计算大小齿轮的分度圆直径。
d1=z1 mn /cos =29*1.5/cos13043’45”=44.781mm
d 2=z2mn/ cos =107*1.5/ cos13043’45”=165.225mm
(4)计算齿宽
1*44.781=44.781mm
圆整后取B2=45mm,B1=50mm.
三.低速级斜齿圆柱齿轮的设计计算:
有以上计算得,输入功率Pi=2.766kw,小齿轮转速n1=128.693r/min
齿数比u=i12=3.
2. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=24,大齿轮齿数z2=z1*u=24*3=72
取Z72齿轮;
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt
确定公式内的各计算数值
(1) 试选Kt=1.5
(2)计算小齿轮的转矩。T1=2.0526*105NM.
(3) 由表10-7选取尺宽系数φd=1
(4) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=650MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(6) 由式10-13计算应力循环次数 (8年,每天两班制,1年按300天计算)
N1=60n1jLh=60×128.69×1×(2×8×300×8)=2.965×108
N2=N1/u=2.965×108/3=9.883×107
(7) 由图10-19查得接触疲劳寿命系数KHN1=0.972;KHN2=0.99
(8) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]=1= =0.972×650MPa=631.8MPa
[σH]2= =0.99×550MPa=544.5MPa
= ([σH]1+ [σH]2)/2=(631.8+544.5)/2=587.75Mpa
2) 计算
(1) 试算小齿轮分度圆直径d1t
d1t≥ = 55.974mm
(2) 计算圆周速度
v= = =0.3772m/s
(3) 计算齿宽b及其模数mnt
b=φd*d1t=1×55.974mm=43.469mm
mnt 2.263
h=2.25mnt=2.25*2.263mm=5.0917mm
b/h=55.974/5.0917=10.993
(4)计算重合度。
(5) 计算载荷系数K
已知载荷平稳,所以取KA=1
根据v=0.3772m/s,7级精度,由图10—8查得动载系数KV=1.03; KHα=KHβ=1.1
查表10-4,用插值法查的7级精度,小齿轮相对支撑为非对称布置时由b/h=10.993, KHβ=1.4206插图10-13得KFβ=1.399
固载荷系数为:
K=KAKVKHαKHβ=1×1.03×1.1×1.42.6=1.6095
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 (取kt=1.2-1.4)
d1= =57.303mm
(7) 计算模数mn
mn =
3.按齿根弯曲强度设计
由式m≥
1) 确定计算参数
1.由图10-20c,查得小齿轮的弯曲疲劳轻度极限σFE1=550mpa,大齿轮σFE2=400mpa。
2.由图10-18取疲劳寿命系数KFN1=0.969,KFN2=1
3.查表10-28得螺旋角影响系数 .根据 。
4 计算当量齿数
(5)计算弯曲疲劳许用应力 取S=1.4
[σF1]= = =380.679Mpa
[σF2]= = =285.714Mpa
5 计算载荷系数
K=KAKVKFαKFβ=1×1.03×1.1×1.399=1.585
(6) 查取齿型系数
由表10-5查得YFa1=2.6;Yfa2=2.236
(7) 查取应力校正系数
由表10-5查得Ysa1=1.595;Ysa2=1.734
(8) 计算大小齿轮的 并加以比较
= =0.01089
= =0.01357
大齿轮的数值大。
2) 设计计算
mn≥ =1.982mm
就近圆整为标准值(第一系列)为mn=2 分度圆直径d1=57.303mm
则
z1 =d1cos /mn=57.303*cos140/2=27.8,
取z1=31 z2=u*z1=3*31=93取93齿
4.几何尺寸计算
(1)计算中心距
a= = =127.8mm
将中心距圆整为128mm
(2)按圆整后的 中心距修正螺旋角。
因值改变不多,故参数 等不必修正。
(3)计算大小齿轮的分度圆直径。
d1=z1 mn /cos =31*2/cos14021’41”=64mm
d 2=z2mn/ cos =93*2/ cos14021’41”=192.010mm
(4)计算齿宽
1*64=64mm
圆整后取B2=65mm,B1=70mm.
四齿轮设计计算结果列表:.表1--4
齿轮
参数 齿轮1 齿轮2 齿轮3 齿轮4
mn(mm) 1 1 2 2
d(mm) 44.781 165.225 192.01
b(mm) 45 50 65 70
z 29 107 31 93
a(mm)圆整 105 128
材料 45Gr 45 45Gr 45
精度等级 IT7
六 轴的设计计算
一.中间轴的设计:
1.初选轴的材料为45号钢。查表15-3可知A0=112,最小直径为:
mm
由于此轴上要安装两个齿轮,且直径都较大,固按强度准则需加大轴的直径为0.7%/键。则最小直径d=31.140 由于最小直径地方是安装轴承的,而为了使安装齿轮的地方强度足够,应适当的加大开键槽段的轴径。固取安装轴承的地方为35mm,需根据轴承的标准系列选用。
2.轴的结构设计
(1)拟定轴上的装配方案
图四
(1) 如上图,轴上的零件分别为轴承,封油盘,小齿轮,大齿轮,封油盘。
① 径向尺寸的确定
左端1-2段选用的角接触球轴承为7307c,轴径为35mm,2-3段安装齿轮,为达到强度取42mm(也是轴承的安装定位尺寸),3-4段为一轴肩为达到齿轮定位齿轮的强度,取52mm,4-5段为了便于加工取同样直径段42mm,5-6段安装轴承同右边,按标准为35mm。
② 轴向尺寸的确定
由于齿轮2和齿轮一是要啮合的,且齿轮一的宽度比齿轮二宽5mm,平均分配到两边,又由于所有安装的轴承的内圈必须在同一直线上,所以二轴的1-2段的距离减去轴承的宽度应等于一小齿轮轮毂宽减去2-3段长度加封油盘的 宽度。3-4段为一轴肩,距离取12.5mm;4-5d段为齿轮3的宽度-2.5mm=41mm;5-6段的距离等于支撑的距离加封油盘的距离14+12=49mm。轴二的轴向尺寸确定后,轴一的部分尺寸也可以确定了。
③ 轴上零件的周向定位
齿轮2和3用两个键槽固定,根据轴的直径,查表14-1取标准,键槽为 ,键槽宽为12mm长为50mm,32mm。轴承不需考虑。
④ 轴上零件的轴向固定
左端轴承右端用封油盘固定,左端用端盖固定;齿轮2右端由封油盘固定,左端由轴肩固定;齿轮3左端用轴肩固定,右端用封油盘固定;右端轴承左端用封油盘固定,右端用端盖固定。
二. 高速级轴:
1.经过计算高速级的小齿轮,其x 2.5m;也就是说从键槽的顶端到齿根圆直径的距离小于2.5倍的模数,根据 要求将其做成齿轮轴。具体计算如下:
初选轴的材料为40Cr,调质处理。查表15-3可知,A0=112.最小直径为:
mm
由于安装带轮的地方需要开一键槽,固最小直径必须加大0.7%得d=20.447 (1+0.7%)=21.795mm为了和带轮相配合,取最小处直径为22mmm。
2.轴的结构设计
(1)拟定轴上的装配方案
图三
如上图,轴上共装有三个零件,一个带轮,两个轴承。
①径向尺寸的确定
为了满足带轮的安装要求,7-8段右端必须制出一轴肩,所以6-7段的直径d2-2=28mm,在轴的3-3段需安装一个轴承,根据计算,该处的轴承圆锥滚子轴承为30306,其内径为30mm,右端有一 当油盘并与一轴肩配合,更具轴承的安装定位尺寸可知为37mm,所以当油盘右端的轴肩为37mm,3-4段为小齿轮,其宽度为50mm,2-3段五任何零件安装,,便于加工取37mm,1-2段也需一轴承支撑,因为轴承一般配对使用,也用30306轴承,内径为35mm。
②轴向尺寸的确定
7-8段为了安装带轮,带轮的宽度是60mm固取60mm,6-7段五严格要求初取50mm,5-6段要安装一轴承宽度为20.75mm,在加上一当油盘,宽度为14mm,总长为34.75mm,2-3段单独不可确定,必须与另外亮根轴相配合后才能定其长度,5-5段是加工齿轮的宽度为50mm, 1-2段和5-6段情况一样,尺寸也一样为30mm。
③轴上零件的周向定位
带轮出用一键槽,根据轴的直径和长度查表14-1,取标准,键槽为c6*6,键槽宽为6mm长为100mm。轴承不需考虑。
④轴上零件的轴向固定
7-8-段为一带轮,左端需用一轴肩固定,6-7段安装轴承,其右端轴肩固定,但是由于轴承的是用润滑脂润滑的,为了防止轴承中的润滑脂被箱内齿轮啮合时挤出的油冲刷,稀释而流失,需在轴承内侧设置封油盘。于是轴承便由封油盘固定内圈,由端盖固定外圈。1-1段和5-6段一样处理。
三 低速级轴的设计
三轴的材料为45号钢,A0=112,最小直径为:
其上要开键槽,固需加大轴的直径。d=45.270 (1+0.7%)=49.637mm。
具体尺寸设计计算省略。
四 轴的强度校核
通过对以上三根轴的强度进行计算和分析,均达到了强度要求。
具体计算省略。
第七节 滚动轴承的选择
一 滚动轴承的选择:
通过以上计算出了三根轴的最小直径分别为d1min20.447mm=,d2min=31.140mm,d3min=45.270mm.前面计算出了每根轴所受到的力矩分别为T1=57.42N,T2=189.90N,T3=551.78.
由于减速箱使用的是两级齿轮传动,总传动比为35.4,但是外面用了一V带传动,分取了3个传动比,固减速其内部就只有35.4/3=11.8.再将11.8分给两级齿轮,则每一级的传动比就减小了许多,因此三根轴所受到了轴向力就不大,但齿轮较大,轴上零件安装的较多,径向力就较大,根据轴承的类型和各自的特性,本减速器选用了既可以承受较大径向力又可承受较大轴向力的角接触球轴承和圆锥滚子轴承。
一轴选用圆锥滚子轴承30306,二轴选用角接触球轴承7607c,三轴选用圆锥滚子轴承30311.尺寸如下表:
轴承型号 外形尺寸(mm) 安装尺寸(mm) 额定动载荷(KN) 额定静载荷(KN)
d D B D1 D2 ra
GB297-84 30306 30 72 19 40 37 1 55.8 38.5
GB292-80 7307C 35 80 21 44 71 1.5 34.2 26.8
GB297-84 30311 55 120 31.5 70 65 2 145 112
第七节 键的选择
本减速器共用键连接5个,分别是中间轴两个,低速轴一个,高速机接带轮处一个,输出轴接联轴器一个。
高速轴 C6×6×45 中间轴 A12×8×32头)A12*8*50 低速轴 A18×11×45 C14*9*70由于键采用静联接,冲击轻微,所以许用挤压力为 ,所以上述键皆安全。
第九节 连轴器的选择
由于弹性联轴器的诸多优点,所以考虑选用它。
二、高速轴用联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以考虑选用弹性柱销联轴器TL4(GB4323-84)其主要参数如下:
材料HT200
公称转矩 1250nm
轴孔直径48mm ,
轴孔长 112mm,
第八节 减速器附件的选择
1.通气器
由于在室内使用,选通气器(一次过滤),采用M12×1.5
2.油面指示器
选用游标尺M16
3.起吊装置
采用箱盖吊耳、箱座吊耳
4放油螺塞
选用外六角油塞及垫片M14×1.5
润滑与密封
第九节 齿轮的润滑
采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。
第十节 密封方法的选取
选用嵌入式缘式端盖易于制造安装,密封圈型号按所装配轴的直径确定为
21*32*3.5 54*71*7 摘自(FZ/T92010-91)
轴承盖结构尺寸按用其定位的轴承的外径决定。
第十一节 设计小结
由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的
第十二节 参考目录
《机械设计》第八版 濮良贵 高等教育出版社
《机械设计 课程设计》 王昆 高等教育出版社
《机械原理》第七本 孙恒 高等教育出版社
《机械制造技术基础》 赵雪松 华中科技大学出版社
《机械基础》 倪森寿 高等教育出版社
《机械制图》第四版 刘朝儒 高等教育出版社
《机械设计简明手册》 杨黎明 国防工业出版社
《AUTOCAD机械制图习题集》 崔洪斌 清华大学出版社