1. 斜齿轮传动机构简图
2. 这种表示齿轮传动的简图叫什么图。我想学绘制这种图。
这是机械行业常用的一种机械传动的运动简图。想掌握这方面的技能,只需把常见的机械零件的代表符号记牢,参照机械设计装配图即可画出这类简图。但前提是必须要学会机械制图,能熟练绘制机械零件图和机械装配图。再说,这种图只是对机械传动原理做简单介绍,对生产加工一点指导意义也没有。真正有用的是绘制机械零件制图和机械装配图。用到这种机械传动运动简图的情况很少,而且还必须是有了完整的机械设计构思后,才能按实际结构再来绘制它。一句话,如果你已经能绘制机械制图(含装配图),那么学会它如虎添翼。但是,要是想仅凭绘制这种传动简图找工作,恐怕是不够的,而且是远远不够的。
3. 如图所示轮系传动装置,已知输入轴齿轮1的转速为,转向如图所示,求:
在轴2上,圆锥齿轮3的轴向力是从小端到大端(水平向左),为了使轴2的轴向力相互抵消一部分,则斜齿轮2的轴向力应“水平向右”。斜齿轮2和斜齿轮1的轴向力是一对作用力与反作用力,故斜齿轮1的轴向力应“水平向左”,斜齿轮1的转向是顺时针的(从轴1的左端看,轴1的转向是顺时针的)
。
根据主动轮螺旋定则,左旋用左手,右旋用右手,四指弯曲的方向为转动方向,大拇指指向为轴向力方向。结合斜齿轮1的轴向力“水平向左”,转向顺时针,可判断斜齿轮1是左旋的。
根据轴1的转向,可判断轴2的转向为“竖直向上”(从轴2的左端看为逆时针),轴3的转向为“水平向右”(从轴4的下端看为顺时针)。
在轴3上,圆锥齿轮4的轴向力是从小端到大端(竖直向下),为了使轴3的轴向力相互抵消一部分,则蜗杆的轴向力应“竖直向上”。蜗杆的轴向力 “竖直向上”且转向为“水平向右”,根据主动轮的螺旋定则,结合轴向力方向和旋转方向,可判断蜗杆是右旋的。
蜗杆的轴向力与涡轮的周向力是一对作用力与反作用力,蜗杆的轴向力“竖直向上”,则涡轮的圆周力“竖直向下”,则可知涡轮的转动方向为“逆时针”。
斜齿轮2的转向为“竖直向上”(从轴2的左端看为逆时针),故在斜齿轮1与斜齿轮2在啮合点处,斜齿轮2受到的圆周力应“垂直纸面向里”。斜齿轮2的径向力“指向斜齿轮2的中心”,轴向力“水平向右”。
4. 物理如图所示为齿轮传动示意图,齿轮a与b的齿数之比为2::5
A、大齿轮和小齿轮是同缘传动,边缘点的线速度大小相等,故A点和B点的线速度版大小之比为1:权1,故A正确;
B、C、A点和B点的半径之比为1:3,线速度相等,根据v=ωr,角速度之比为3:1,故B错误,C正确;
D、由于AC正确,故D错误;
故选:AC.
5. 同轴式齿轮设计时小齿轮是否对称
目录第一部分设计任务书----------------------------------------------------------------3第二部分电传动方案的分析与拟定---------------------------------------------------5第三部分电动机的选择计算----------------------------------------------------------6第四部分各轴的转速、转矩计算------------------------------------------------------7第五部分联轴器的选择-------------------------------------------------------------9第六部分锥齿轮传动设计---------------------------------------------------------10第七部分链传动设计--------------------------------------------------------------12第八部分斜齿圆柱齿轮设计-------------------------------------------------------14第九部分轴的设计----------------------------------------------------------------17第十部分轴承的设计及校核-------------------------------------------------------20第十一部分高速轴的校核---------------------------------------------------------22第十二部分箱体设计---------------------------------------------------------------23第十三部分设计小结---------------------------------------------------------------24第一部分设计任务书1.1机械设计课程的目的机械设计课程设计是机械类专业和部分非机械类专业学生第一次较全面的机械设计训练,是机械设计和机械设计基础课程重要的综合性与实践性教学环节。其基本目的是:(1)通过机械设计课程的设计,综合运用机械设计课程和其他有关先修课程的理论,结合生产实际知识,培养分析和解决一般工程实际问题的能力,并使所学知识得到进一步巩固、深化和扩展。(2)学习机械设计的一般方法,掌握通用机械零件、机械传动装置或简单机械的设计原理和过程。(3)进行机械设计基本技能的训练,如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据,进行经验估算和数据处理等。1.2机械设计课程的内容选择作为机械设计课程的题目,通常是一般机械的传动装置或简单机械。课程设计的内容通常包括:确定传动装置的总体设计方案;选择电动机;计算传动装置的运动和动力参数;传动零件、轴的设计计算;轴承、联轴器、润滑、密封和联接件的选择及校核计算;箱体结构及其附件的设计;绘制装配工作图及零件工作图;编写设计计算说明书。在设计中完成了以下工作:①减速器装配图1张(A0或A1图纸);②零件工作图2~3张(传动零件、轴、箱体等);③设计计算说明书1份,6000~8000字。1.3机械设计课程设计的步骤机械设计课程设计的步骤通常是根据设计任务书,拟定若干方案并进行分析比较,然后确定一个正确、合理的设计方案,进行必要的计算和结构设计,最后用图纸表达设计结果,用设计计算说明书表示设计依据。机械设计课程设计一般可按照以下所述的几个阶段进行:1.设计准备①分析设计计划任务书,明确工作条件、设计要求、内容和步骤。②了解设计对象,阅读有关资料、图纸、观察事物或模型以进行减速器装拆试验等。③浮系课程有关内容,熟悉机械零件的设计方法和步骤。④准备好设计需要的图书、资料和用具,并拟定设计计划等。2.传动装置总体设计①确定传动方案——圆柱齿轮传动,画出传动装置简图。②计算电动机的功率、转速、选择电动机的型号。③确定总传动比和分配各级传动比。④计算各轴的功率、转速和转矩。3.各级传动零件设计①减速器内的传动零件设计(齿轮传动)。4.减速器装配草图设计①选择比例尺,合理布置试图,确定减速器各零件的相对位置。②选择联轴器,初步计算轴径,初选轴承型号,进行轴的结构设计。③确定轴上力作用点及支点距离,进行轴、轴承及键的校核计算。④分别进行轴系部件、传动零件、减速器箱体及其附件的结构设计。5.减速器装配图设计①标注尺寸、配合及零件序号。②编写明细表、标题栏、减速器技术特性及技术要求。③完成装配图。6.零件工作图设计①轴类零件工作图。②齿轮类零件工作图。③箱体类零件工作图。第一部分题目及要求卷扬机传动装置的设计1.设计题目设计一卷扬机的传动装置。传动装置简图如下图所示。(1)卷扬机数据卷扬机绳牵引力F(N)、绳牵引速度v(m/s)及卷筒直径D(mm)见附表。(2)工作条件用于建筑工地提升物料,空载启动,连续运转,三班制工作,工作平稳。(3)使用期限工作期限为十年,每年工作300天,三班制工作,每班工作4小时,检修期间隔为三年。(4)产批量及加工条件小批量生产,无铸钢设备。2.设计任务1)确定传动方案;2)选择电动机型号;3)设计传动装置;4)选择联轴器。3.具体作业1)减速器装配图一张;2)零件工作图二张(大齿轮,输出轴);3)设计说明书一份。4.数据表牵引力F/N121087牵引速度v/(m/s)0.3,0.40.3,0.4,0.5,0.6卷筒直径D/mm470,500420,430,450,470,500430,450,500440,460,480卷扬机传动装置的设计5.设计题目设计一卷扬机的传动装置。传动装置简图如下图所示。(1)卷扬机数据卷扬机绳牵引力F(N)、绳牵引速度v(m/s)及卷筒直径D(mm)见附表。(2)工作条件用于建筑工地提升物料,空载启动,连续运转,三班制工作,工作平稳。(5)使用期限工作期限为十年,每年工作300天,三班制工作,每班工作4小时,检修期间隔为三年。(6)产批量及加工条件小批量生产,无铸钢设备。6.设计任务1)确定传动方案;2)选择电动机型号;3)设计传动装置;4)选择联轴器。7.具体作业1)减速器装配图一张;2)零件工作图二张(大齿轮,输出轴);3)设计说明书一份。8.数据表牵引力F/N121087牵引速度v/(m/s)0.3,0.40.3,0.4,0.5,0.6卷筒直径D/mm470,500420,430,450,470,500430,450,500440,460,480第二部分传动方案的分析与拟定确定总传动比:由于Y系列三相异步电动机的同步转速有750,1000,1500和3000r/min四种可供选择.根据原始数据,得到卷扬机卷筒的工作转速为按四种不同电动机计算所得的总传动比分别是:电动机同步转速750100015003000系统总传动比32.7143.6165.42130.83确定电动机转速:综合考虑电动机和传动装置的尺寸、重量、价格以及总传动比,750转的低速电动机传动比虽小,但电动机极数大价格高,故不可取。3000转的电动机重量轻,价格便宜,但总传动比大,传动装置外廓尺寸大,制造成本高,结构不紧凑,也不可取。剩下两种相比,如为使传动装置结构紧凑,选用1000转的电动机较好;如考虑电动机重量和价格,则应选用1500转的电动机。现选用1500转的电动机,以节省成本。确定传动方案:验算:通常V带传动的传动比常用范围为,二级圆柱齿轮减速器为,则总传动比的范围为,因此能够满足以上总传动比为65.42的要求。第三部分电动机的选择计算1、确定电动机类型按工作要求和条件,选用Y系列笼型三相异步电动机,封闭式结构。2、确定电动机的功率工作机的功率KW效率的选择:1.V带传动效率:η1=0.962.7级精度圆柱齿轮传动:η2=0.983.滚动轴承:η3=0.994.弹性套柱销联轴器:η4=0.995.传动滚筒效率:η5=0.96传动装置总效率为工作机所需电动机功率kw因载荷平稳,电动机额定功率略大于即可。由Y系列电动机技术数据,选电动机的额定功率为7.5kw,结合其同步转速,选定电动机的各项参数如下:取同步转速:1500r/min——4级电动机型号:Y132M-4额定功率:7.5kW满载功率:1440r/min堵转转矩/额定转矩:2.2最大转矩/额定转矩:2.2第四部分确定传动装置总传动比和分配各级传动比1、确定总传动比2、分配各级传动比取V带传动的传动比,则减速器的传动比为取两级圆柱齿轮减速器高速级的传动比则低速级的传动比第五部分运动参数及动力参数计算0轴(电动机轴):P0=Pd=7.2kWn0=nm=1440r/minT0=9550×()=N•m1轴(高速轴):P1=P0η1=kWn1==r/minT1=9550×()=N•m2轴(中间轴):P2=P1η2η3=kWn2=r/minT2=9550×()=N•m3轴(低速轴):P3=P2η2η3=kWn3=r/minT3=9550×()=N•m4轴(输出轴):P4=P3η3η4=kWn4=r/minT4=9550×()=N•m输出轴功率或输出轴转矩为各轴的输入功率或输入转矩乘以轴承效率(0.99),即P’=0.99P轴名功率P(kW)转矩T(N•m)转速n(r/min)传动比i效率η输入输出输入输出电动机轴7.2047.7514403.80.961轴6.913.047155.91154.35378.954.8090.972轴6.702.896811.99803.8378.803.4350.973轴6.502.7532705.972678.9122.9410.98输出轴6.372.5902651.852625.3322.94第六部分传动零件的设计计算高速级斜齿圆柱齿轮设计材料选择:小齿轮40Cr(调质)硬度280HBs;大齿轮45#钢(调质)硬度240HBs;(硬度差40HBs)七级精度,取Z1=21,Z2==4.809×21=100.989,取Z2=101,初选螺旋角β=14°,按齿轮面接触强度设计:1)试选载荷系数Kt=1.62)由动力参数图,小齿轮传递的转矩3)由表10-7(机械设计)选取齿宽系数4)由表10-6查得材料的弹性影响系数5)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限;大齿轮的接触疲劳强度极限;6)由式10-13计算应力循环次数7)由图10-19查得接触疲劳寿命系数;8)计算接触疲劳许用应力取失效概率为1%,安全系数S=1,由式(10-12)得9)由图10-26(机械设计)得εα1=0.76εα2=0.86则端面重合度10)由图10-30选取区域系数ZH=2.43311)计算许用接触应力=12)计算:试算小齿轮分度圆直径,由计算公式得计算圆周速度计算齿宽b及模数=1×60.59=60.59mmmnt==mmh=2.25mnt=mm计算纵向重合度纵向重合度=0.318×φdZ1tanβ=计算载荷系数K已知,KA=1,取Kv=1.05(由图10-8查得),由表10-4查得的计算公式∴KHβ=1.15+0.18(1+0.6φd2)+0.23×10-3×60.59=1.45由图10-13,得KFβ=1.4由表10-3,得∴K=KA•Kv•KHα•KHβ=1×1.05×1.3×1.45=1.98按实际得载荷系数校正所算得德分度圆直径,由试(10-10a)得计算模数mn==13)按齿根弯曲强度设计由图10-20c查得小齿轮的弯曲疲劳强度极限;大齿轮的弯曲疲劳强度极限;由图10-18查得弯曲疲劳寿命系数;计算弯曲疲劳许用应力取弯曲疲劳安全系数S=1.4,由式10-12得计算载荷系数K=KA•Kv•KFα•KFβ=1×1.05×1.3×1.4=1.91根据纵向重合度εβ=1.6650,由图10-28,查得螺旋角影响系数Yβ=0.88计算当量齿数=22.9883查取齿形系数由表10-5查得YFα1=2.69,YFα2=2.20,查取应力校正系数由表10-5查得YSα1=1.56,YSα2=1.79计算大、小齿轮的并加以比较大齿轮的数值较大。设计计算经园整,mn=2mm∵,∴mn=2.5mmZ1==,取Z1=25,Z2=120几何尺寸计算:中心距a=经园整,a=187mm修正螺旋角,=∵β变动不大,∴εα、εβ、ZH无需修正。计算大、小齿轮的分度直径mmmm计算齿轮宽度b=φdd1=mm园整后,B2=65mm,B1=70mmda1=d1+2ha1=69.48da2=d2+2ha2=315.08df1=d1-2hf1=49.48df2=d2-2hf2=305.08第九部分轴的设计1)高速轴:初定最小直径,选用材料45#钢,调质处理。取A0=112(下同)则dmin=A0=mm∵最小轴径处有键槽∴dmin’=1.07dmin=17.72mm∵最小直径为安装联轴器外半径,取KA=1.7,同上所述已选用TL4弹性套柱联轴器,轴孔半径d=20mm∴取高速轴的最小轴径为20mm。由于轴承同时受径向和轴向载荷,故选用单列圆锥滚子轴承按国标T297-94选取30206。D×d×T=17.25mm∴轴承处轴径d=30mm高速轴简图如下:2)取l1=38+46=84mm,l3=72mm,取挡圈直径D=28mm,取d2=d4=25mm,d3=30mm,l2=l4=26.5mm,d1=d5=20mm。齿轮轮毂宽度为46mm,取l5=28mm。联轴器用键:园头普通平键。b×h=6×6,长l=26mm齿轮用键:同上。b×h=6×6,长l=10mm,倒角为2×45°3)中间轴:中间轴简图如下:初定最小直径dmin==22.1mm选用30305轴承,d×D×T=25×62×18.25mm∴d1=d6=25mm,取l1=27mm,l6=52mml2=l4=10mm,d2=d4=35mm,l3=53mmd3=50mm,d5=30mm,l5=1.2×d5=36mm齿轮用键:园头普通键:b×h=12×8,长l=20mm4)低速轴:低速轴简图如下:初定最小直径:dmin==34.5mm∵最小轴径处有键槽∴dmin’=1.07dmin=36.915mm取d1=45mm,d2=55mm,d3=60mm,d4=d2=55mmd5=50mm,d6=45mm,d7=40mm;l1=45mm,l2=44mm,l3=6mm,l4=60mm,l5=38mm,l6=40mm,l7=60mm齿轮用键:园头普通键:b×h=16×6,长l=36mm选用30309轴承:d×D×T=40×90×25.25mm;B=23mm;C=20mm
6. 齿轮的机构运动简图怎么画
关于齿轮的运动简图可以参见附图中的画法进行,在齿轮上有小叉叉版的是固定齿轮,表示不滑权移,滑移齿轮在中心处有一短横,轴承是一个圆圈加一个短横
补充说明:
无论是在纸上用铅笔画还是用电脑画,都是一样的,国标不可能出台一个用铅笔画的标准,而另外出台一个用电脑画的标准的呀,用铅笔画、用电脑画没有区别
7. 齿轮传动的工作原理是什么
齿轮传动的原理:即一对相同模数(齿的形体)的齿轮相来互啮合将动力由甲轴版传送给乙轴,以完成权动力传递。
齿轮传动是指由齿轮副传递运动和动力的装置,它是现代各种设备中应源用最广泛的一种机械传动方式。齿轮传动是靠齿与齿的啮合进行工作的,轮齿是齿轮直接参与工作的部分,所以齿轮的失效主要发生在轮齿上。百主要的失效形式有轮齿折断、齿面点蚀、齿面磨损、齿面胶合以及塑性变形等。
(7)如图所示为齿轮传动装置简图扩展阅读
齿轮传动的特点
1、传动精度高。度现代常用的渐开线齿轮的传动比准确、恒定不变。这不但对精密机械与仪器是关键要求,也是高速重载下减轻动载荷、实现平稳传动的重问要条件。
2、适用范围宽。齿轮传动传递的功率范围极宽,可以从0.001W到60000kW;圆周速度可以很低,也可高达150m/s,带传动、链传动均难以比拟。
3、可以实现平行轴、相交轴、交错轴等空间任意两轴间的传动,这也是带传动、链传动做不到的。
4、使用寿命长,传动效率较高。
5、对环境条件要求较严,除少数低速答、低精度的情况以外,一般需要安置在箱罩中防尘防垢,还需要重视润滑。
8. 如何确定轴的支点位置和传动零 件上力的作用点
目 录
第一部分 设计任务书----------------------------------------------------------------3第二部分 电传动方案的分析与拟定---------------------------------------------------5第三部分 电动机的选择计算----------------------------------------------------------6第四部分 各轴的转速、转矩计算------------------------------------------------------7第五部分 联轴器的选择-------------------------------------------------------------9第六部分 锥齿轮传动设计---------------------------------------------------------10第七部分 链传动设计--------------------------------------------------------------12第八部分 斜齿圆柱齿轮设计-------------------------------------------------------14第九部分 轴的设计----------------------------------------------------------------17第十部分 轴承的设计及校核-------------------------------------------------------20第十一部分 高速轴的校核---------------------------------------------------------22第十二部分 箱体设计---------------------------------------------------------------23第十三部分 设计小结---------------------------------------------------------------24
第一部分 设计任务书
1.1 机械设计课程的目的
机械设计课程设计是机械类专业和部分非机械类专业学生第一次较全面的机械设计训练,是机械设计和机械设计基础课程重要的综合性与实践性教学环节。其基本目的是:
(1) 通过机械设计课程的设计,综合运用机械设计课程和其他有关先修课程的理论,结合生产实际知识,培养分析和解决一般工程实际问题的能力,并使所学知识得到进一步巩固、深化和扩展。
(2) 学习机械设计的一般方法,掌握通用机械零件、机械传动装置或简单机械的设计原理和过程。
(3) 进行机械设计基本技能的训练,如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据,进行经验估算和数据处理等。
1.2 机械设计课程的内容
选择作为机械设计课程的题目,通常是一般机械的传动装置或简单机械。
课程设计的内容通常包括:确定传动装置的总体设计方案;选择电动机;计算传动装置的运动和动力参数;传动零件、轴的设计计算;轴承、联轴器、润滑、密封和联接件的选择及校核计算;箱体结构及其附件的设计;绘制装配工作图及零件工作图;编写设计计算说明书。
在设计中完成了以下工作:
① 减速器装配图1张(A0或A1图纸);
② 零件工作图2~3张(传动零件、轴、箱体等);
③ 设计计算说明书1份,6000~8000字。
1.3 机械设计课程设计的步骤
机械设计课程设计的步骤通常是根据设计任务书,拟定若干方案并进行分析比较,然后确定一个正确、合理的设计方案,进行必要的计算和结构设计,最后用图纸表达设计结果,用设计计算说明书表示设计依据。
机械设计课程设计一般可按照以下所述的几个阶段进行:
1.设计准备
① 分析设计计划任务书,明确工作条件、设计要求、内容和步骤。
② 了解设计对象,阅读有关资料、图纸、观察事物或模型以进行减速器装拆试验等。
③ 浮系课程有关内容,熟悉机械零件的设计方法和步骤。
④ 准备好设计需要的图书、资料和用具,并拟定设计计划等。
2.传动装置总体设计
① 确定传动方案——圆柱齿轮传动,画出传动装置简图。
② 计算电动机的功率、转速、选择电动机的型号。
③ 确定总传动比和分配各级传动比。
④ 计算各轴的功率、转速和转矩。
3.各级传动零件设计
① 减速器内的传动零件设计(齿轮传动)。
4.减速器装配草图设计
① 选择比例尺,合理布置试图,确定减速器各零件的相对位置。
② 选择联轴器,初步计算轴径,初选轴承型号,进行轴的结构设计。
③ 确定轴上力作用点及支点距离,进行轴、轴承及键的校核计算。
④ 分别进行轴系部件、传动零件、减速器箱体及其附件的结构设计。
5.减速器装配图设计
① 标注尺寸、配合及零件序号。
② 编写明细表、标题栏、减速器技术特性及技术要求。
③ 完成装配图。
6.零件工作图设计
① 轴类零件工作图。
② 齿轮类零件工作图。
③ 箱体类零件工作图。
第一部分 题目及要求
卷扬机传动装置的设计
1. 设计题目
设计一卷扬机的传动装置。传动装置简图如下图所示。
(1)卷扬机数据
卷扬机绳牵引力F(N)、绳牵引速度v(m/s)及卷筒直径D(mm)见附表。
(2)工作条件
用于建筑工地提升物料,空载启动,连续运转,三班制工作,工作平稳。
(3) 使用期限
工作期限为十年,每年工作300天,三班制工作,每班工作4小时,检修期间隔为三年。
(4) 产批量及加工条件
小批量生产,无铸钢设备。
2. 设计任务
1)确定传动方案;
2)选择电动机型号;
3)设计传动装置;
4)选择联轴器。
3. 具体作业
1)减速器装配图一张;
2)零件工作图二张(大齿轮,输出轴);
3)设计说明书一份。
4. 数据表
牵引力F/N 12 10 8 7
牵引速度v/(m/s) 0.3,0.4 0.3,0.4,0.5,0.6
卷筒直径D/mm 470,500 420,430,450,470,500 430,450,500 440,460,480
卷扬机传动装置的设计
5. 设计题目
设计一卷扬机的传动装置。传动装置简图如下图所示。
(1)卷扬机数据
卷扬机绳牵引力F(N)、绳牵引速度v(m/s)及卷筒直径D(mm)见附表。
(2)工作条件
用于建筑工地提升物料,空载启动,连续运转,三班制工作,工作平稳。
(5) 使用期限
工作期限为十年,每年工作300天,三班制工作,每班工作4小时,检修期间隔为三年。
(6) 产批量及加工条件
小批量生产,无铸钢设备。
6. 设计任务
1)确定传动方案;
2)选择电动机型号;
3)设计传动装置;
4)选择联轴器。
7. 具体作业
1)减速器装配图一张;
2)零件工作图二张(大齿轮,输出轴);
3)设计说明书一份。
8. 数据表
牵引力F/N 12 10 8 7
牵引速度v/(m/s) 0.3,0.4 0.3,0.4,0.5,0.6
卷筒直径D/mm 470,500 420,430,450,470,500 430,450,500 440,460,480
第二部分 传动方案的分析与拟定
确定总传动比:
由于Y系列三相异步电动机的同步转速有750,1000,1500和3000r/min四种可供选择.根据原始数据,得到卷扬机卷筒的工作转速为
按四种不同电动机计算所得的总传动比分别是:
电动机同步转速
750 1000 1500 3000
系统总传动比
32.71 43.61 65.42 130.83
确定电动机转速:
综合考虑电动机和传动装置的尺寸、重量、价格以及总传动比,750转的低速电动机传动比虽小,但电动机极数大价格高,故不可取。3000转的电动机重量轻,价格便宜,但总传动比大,传动装置外廓尺寸大,制造成本高,结构不紧凑,也不可取。剩下两种相比,如为使传动装置结构紧凑,选用1000转的电动机较好;如考虑电动机重量和价格,则应选用1500转的电动机。现选用1500转的电动机,以节省成本。
确定传动方案:
验算:通常V带传动的传动比常用范围为 ,二级圆柱齿轮减速器为 ,则总传动比的范围为 ,因此能够满足以上总传动比为65.42的要求。
第三部分 电动机的选择计算
1、确定电动机类型
按工作要求和条件,选用Y系列笼型三相异步电动机,封闭式结构。
2、确定电动机的功率
工作机的功率
KW
效率的选择:
1. V带传动效率: η1 = 0.96
2. 7级精度圆柱齿轮传动:η2 = 0.98
3. 滚动轴承: η3 = 0.99
4. 弹性套柱销联轴器: η4 = 0.99
5. 传动滚筒效率: η5 = 0.96
传动装置总效率为
工作机所需电动机功率
kw
因载荷平稳,电动机额定功率 略大于 即可。由Y系列电动机技术数据,选电动机的额定功率 为7.5 kw,结合其同步转速,选定电动机的各项参数如下:
取同步转速: 1500r/min ——4级电动机
型号: Y132M-4
额定功率: 7.5kW
满载功率: 1440r/min
堵转转矩/额定转矩: 2.2
最大转矩/额定转矩: 2.2
第四部分 确定传动装置总传动比和分配各级传动比
1、确定总传动比
2、分配各级传动比
取V带传动的传动比 ,则减速器的传动比 为
取两级圆柱齿轮减速器高速级的传动比
则低速级的传动比
第五部分 运动参数及动力参数计算
0轴(电动机轴):
P0 = Pd =7.2 kW
n0 = nm = 1440 r/min
T0 = 9550×( )= N?m
1轴(高速轴):
P1 = P0η1 = kW
n1 = = r/min
T1 = 9550×( )= N?m
2轴(中间轴):
P2 = P1η2η3 = kW
n2 = r/min
T2 = 9550×( )= N?m
3轴(低速轴):
P3 = P2η2η3 = kW
n3 = r/min
T3 = 9550×( )= N?m
4轴(输出轴):
P4 = P3η3η4 = kW
n4 = r/min
T4 = 9550×( )= N?m
输出轴功率或输出轴转矩为各轴的输入功率或输入转矩乘以轴承效率(0.99),即
P’= 0.99P
轴名 功率P(kW) 转矩T(N?m) 转速
n(r/min) 传动比
i 效率
η
输入 输出 输入 输出
电动机轴 7.20 47.75 1440
3.8 0.96
1轴 6.91 3.047 155.91 154.35 378.95
4.809 0.97
2轴 6.70 2.896 811.99 803.83 78.80
3.435 0.97
3轴 6.50 2.753 2705.97 2678.91 22.94
1 0.98
输出轴 6.37 2.590 2651.85 2625.33 22.94
第六部分 传动零件的设计计算
高速级斜齿圆柱齿轮设计
材料选择:小齿轮40Cr (调质)硬度280HBs;
大齿轮45#钢(调质)硬度240HBs;(硬度差40HBs)
七级精度,取Z1=21,Z2= =4.809×21=100.989,取Z2=101,
初选螺旋角β=14°,
按齿轮面接触强度设计:
1) 试选载荷系数 Kt=1.6
2) 由动力参数图,小齿轮传递的转矩
3) 由表10-7(机械设计)选取齿宽系数
4) 由表10-6查得材料的弹性影响系数
5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 ;
6) 由式10-13计算应力循环次数
7) 由图10-19查得接触疲劳寿命系数 ;
8) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
9)由图10-26(机械设计)得
εα1 = 0.76
εα2 = 0.86
则端面重合度
10)由图10-30选取区域系数ZH = 2.433
11) 计算许用接触应力
=
12)计算:
试算小齿轮分度圆直径 ,由计算公式得
计算圆周速度
计算齿宽b及模数
= 1×60.59 = 60.59 mm
mnt = = mm
h = 2.25 mnt = mm
计算纵向重合度
纵向重合度 =0.318×φdZ1tanβ =
计算载荷系数K
已知,KA=1,取Kv=1.05(由图10-8查得),由表10-4查得的计算公式
∴KHβ = 1.15+0.18(1+0.6φd2)+0.23×10-3×60.59 = 1.45
由图10-13,得KFβ = 1.4
由表10-3,得
∴K = KA?Kv?KHα?KHβ = 1×1.05×1.3×1.45 = 1.98
按实际得载荷系数校正所算得德分度圆直径,由试(10-10a)得
计算模数
mn= =
13) 按齿根弯曲强度设计
由图10-20c查得小齿轮的弯曲疲劳强度极限 ;大齿轮的弯曲疲劳强度极限 ;
由图10-18查得弯曲疲劳寿命系数 ;
计算弯曲疲劳许用应力
取弯曲疲劳安全系数S=1.4,由式10-12得
计算载荷系数
K = KA?Kv?KFα?KFβ = 1×1.05×1.3×1.4= 1.91
根据纵向重合度εβ=1.6650,由图10-28,查得螺旋角影响系数Yβ=0.88
计算当量齿数
= 22.9883
查取齿形系数
由表10-5查得 YFα1=2.69,YFα2=2.20,
查取应力校正系数
由表10-5查得 YSα1=1.56,YSα2=1.79
计算大、小齿轮的 并加以比较
大齿轮的数值较大。
设计计算
经园整,mn=2 mm
∵ ,∴mn=2.5 mm
Z1 = = ,取Z1=25,Z2=120
几何尺寸计算:
中心距 a =
经园整,a = 187 mm
修正螺旋角, =
∵β变动不大,
∴εα、εβ、ZH无需修正。
计算大、小齿轮的分度直径
mm
mm
计算齿轮宽度
b = φdd1 = mm
园整后,B2=65mm,B1=70mm
da1 = d1+2ha1 =69.48
da2 = d2+2ha2 = 315.08
df1 = d1-2hf1 = 49.48
df2 = d2-2hf2 =305.08
第九部分 轴的设计
1) 高速轴:
初定最小直径,选用材料45#钢,调质处理。取A0=112(下同)
则dmin = A0 = mm
∵最小轴径处有键槽
∴dmin’ = 1.07 dmin = 17.72mm
∵最小直径为安装联轴器外半径,取KA=1.7,同上所述已选用TL4弹性套柱联轴器,轴孔半径d=20mm
∴取高速轴的最小轴径为20mm。
由于轴承同时受径向和轴向载荷,故选用单列圆锥滚子轴承按国标T297-94选取30206。
D×d×T=17.25mm
∴轴承处轴径d=30mm
高速轴简图如下:
2)
取l1=38+46=84mm,l3=72mm,取挡圈直径D=28mm,取d2=d4=25mm,d3=30mm,l2=l4=26.5mm,d1=d5=20mm。
齿轮轮毂宽度为46mm,取l5=28mm。
联轴器用键:园头普通平键。
b×h=6×6,长l=26mm
齿轮用键:同上。b×h=6×6,长l=10mm,倒角为2×45°
3) 中间轴:
中间轴简图如下:
初定最小直径dmin= =22.1mm
选用30305轴承,
d×D×T = 25×62×18.25mm
∴d1=d6=25mm,取l1=27mm,l6=52mm
l2=l4=10mm,d2=d4=35mm,l3=53mm
d3=50mm,d5=30mm,l5=1.2×d5=36mm
齿轮用键:园头普通键:b×h=12×8,长l=20mm
4) 低速轴:
低速轴简图如下: 初定最小直径:
dmin = = 34.5mm
∵最小轴径处有键槽
∴dmin’=1.07dmin=36.915mm
取d1=45mm,d2=55mm,d3=60mm,d4=d2=55mm
d5=50mm,d6=45mm,d7=40mm;
l1=45mm,l2=44mm,l3=6mm,l4=60mm,l5=38mm,l6=40mm,l7=60mm
齿轮用键:园头普通键:b×h=16×6,长l=36mm
选用30309轴承:d×D×T = 40×90×25.25mm;B=23mm;C=20mm