2
2. 我国古代很早就发明了齿轮传动和皮带传动的装置.
机械传动机械传动机械传动有很多形式,主要可分为两大类:①依靠机械摩擦驱动器之间的摩擦,包括转让的力量和运动的皮带传动,绳传动和摩擦四轮驱动系统。摩擦传动容易实现无级变速器,其中大多数是可以适应的轴间距较大的驱动器的场合,也能起到缓冲的作用和保护齿轮过载单,但该驱动器是高功率的场合,但不保证准确的传动比。 ②依靠活跃的成员和追随者参与的中间件啮合传递动力或运动的齿轮传动装置,齿轮,链传动,螺旋传动和谐波传动装置。啮合传动可用于高功率的情况下,传动比准确,但一般要求较高的制造精度和安装精度。
产品类别:减速机,制动器,离合器,联轴器,无级变速机,螺杆,滑动
机械驱动机构,可以提供电源的方式,方向或速度的发展历史运动将被改变,即,要使用的机械发送目的地。中国古代变速机构是许多类型的应用是非常广泛的,除了上述的,像一个地震仪,鼓风机等,是产品的机械传动。中国古代的传动机构,主要齿轮传动,绳传动和链传动。
1个齿轮。时报不迟引导车在西汉时期,西汉时期,记里鼓车,东汉张衡发明了液压天文仪器,是非常复杂的齿轮传动装置。这些用来传递运动,强度要求不高的齿轮。至于生产中所用的齿轮,通过一个大的功率,它是必要的力通常是较大的,更高的强度要求。古代畜力,水力和风力提水,食品加工,如齿轮的应用。上翻车,例如,需要使用的齿轮传动机构,定位和交付的运动去改变,去适应工作要求的翻车。
2,链传动。链条,线束,在古老的中国商代早期,有铜链,也可在其他青铜器和玉器的装饰链。秦铜车马出土于西安,一个非常精致的金属链。但是,这不能被视为一个链驱动器。作为动力传动链,出现在东汉。东汉时完成兰发明了第一台翻车的转移。根据其工作原理和运动的关系,可以看出,作为一个驱动链条。朝天上,下链轮,主动,从动的皮瓣周围的四轮驱动链,传动链满足抬水件,因此,翻车是一个特殊的情况下,链传动。平台到了宋代,苏颂的浑天仪“阶梯”实际上是一条铁索,在水平轴驱动横轴上通过的“阶梯”,从而形成一个真正的链传动。
3,盛带驱动器。一种摩擦驱动模式。在西汉时期,四川产盐在下沉,运水,牛带动大滑轮,滑轮的绳索绕提高下沉工具,盐水等。在西汉时期的手摇纺车,是一个典型的绳子驱动器。在西汉时期的石刻浮雕,手摇纺车图件,你可以清楚地看到:大型机械传动轮主动,用绳子主轴,大绳,手轮一转,主轴旋转数十个星期,非常高效率高。后出现的三,五,纺车,效率更高。元代游泳纺轮,绳驱动器。东汉末年,冶金工艺品的一项重要发明水排,爆炸。这根绳子驱动器的工作原理是:水电水平水车旋转,和水车轴的配有一个大轮带动小轮绳,小滑轮轴的上端的曲轴旋转,通过连杆鼓风机鼓风驱动。这水是行爆炸有效性高价值数亿马爆炸。它的出现标志着东汉开发的机器已经出现在国内,因而具有十分重要的意义。 /> <br传输类
机械驱动力传输来分,可分为:
1摩擦传动。
链传动。
3档。
4皮带传动。
涡轮蜗杆传动。
6的棘轮驱动器。
7曲轴,连杆驱动
8气动驱动器。
9液压传动液压刨
10万向节传动
11钢丝绳驱动器(电梯是使用最广泛的)
12耦合驱动器
13花键驱动。
传输模式详解,
皮带传动皮带传动皮带传动的中间灵活的成员驱动器的机械传动较为常见,特别是与V型皮带驱动器驱动器,广泛的应用。
皮带传动皮带驱动类型是作为一个中间传递运动或动力驱动器的柔性构件使用的频带。
传输原理,在带驱动器中被分为摩擦型(平带驱动器,V型带驱动器)和相互啮合的类别。
大多在机械设备摩擦皮带传动皮带驱动应用下面的例子来介绍的皮带传动V带传动的基本知识。
其次,皮带驱动
传动带套在驱动带轮1和从动带轮2,施加一定的张力带正压带和带轮的接触面之间产生的;绞盘的基本原理转动时,依靠皮带和皮带轮之间的摩擦驱动被驱动的轮子转动。
皮带传动的基本原理是依靠皮带与皮带轮之间的摩擦力来传递运动和动力。
特点和传动带驱动器比
皮带驱动器的功能
弹性和摩擦传动,因此,它具有结构简单,传动平稳,噪音低,可缓冲减震过载的皮带打滑皮带轮和其他部分从过载施加到中心的距离大的传输的优点。
皮带驱动器也具有很多的缺点是:不能保证的精度的传动比,传动效率低(约0.90至0.94),与寿命短,不能在高温下,易燃,油和水的场合。
2,驱动皮带驱动比
皮带驱动,驱动轮被称为速度和从动车轮速度比的传动比,一个符号表示。
4两种形式,共同的皮带驱动器
皮带驱动,平带驱动器和V型皮带传动。
1,的
平带传动平矩形横截面的,工作是环状的内表面与滑轮接触的外表面的。平带驱动器的结构简单,平皮带更薄,弯曲和扭转,并因此适合于高速传输,交叉传染或交错轴平行的轴线之间的半交叉传动
2,V型皮带传动
截面是一个等腰梯形,带轮槽,两侧的表面接触放置在工作中,产生较大的摩擦力,传输能力。
5,皮带驱动的张紧装置
皮带驱动,磁带以获得所需的张力,在两个皮带轮中心距离应该是能够调整;皮带的张力,在驱动器中很长一段时间绑定到塑性变形和松弛现象,其传输容量降低,因此应是一般性的皮带驱动张紧装置。张紧的带驱动器的方法来调整的中心距离和2种张紧轮,他们每个人都有不同形式的张力和自动张紧定期使用。
6,安装和维护
做传输安装,维修和维护工作必须是正确的顺序,以提高效率的V形皮带驱动器“中的V形皮带的使用寿命延长,并确保皮带驱动器的正常操作。 /> 1,V形带必须被正确地安装在正受皮带轮槽,一般与轮辋的外边缘平齐。 /> 2,保持平行的轴线的两个滑轮的V形皮带驱动器,和两个相应的平面对称的V形槽应重合。
3,拆卸,安装的V型皮带应该强调的小的中心距的两个滑轮,以避免硬撬损坏V型皮带或设备。设置好带,中心距调整到正确的位置,松紧带,中度。
4,V型带驱动器必须安装一个保护盖,以防止影响由于润滑剂,切割或其他碎片飞溅到V型带驱动器,以防止发生意外的损伤。
5,一组V带,损伤一般组替换,与新老混合。
齿轮
齿轮传动装置被安装在驱动轴和从动轴制成的相互啮合的齿轮的齿轮。该齿轮是最广泛使用的一种形式的传输。
首先,齿轮
1,在齿轮传动装置的范围的功率和速度,几百几千千瓦功率的基本特征,从非常小的圆周速度,从非常小的越百每秒米。齿轮尺寸小于1毫米,大于10m。
2,齿轮啮合传动的齿轮的齿廓的一个特定的曲线,瞬时传动比恒定,传动平稳和可靠的。
3,传动效率高,使用寿命长。
4,各种各样的齿轮,并能满足各种形式的传输的需求。
5,高精度齿轮的制造和安装。
齿轮在齿轮的分类很多不同的类型,可以用不同的方法进行分类。
啮合点,外齿轮传动,内啮合传动齿轮。
不同点,齿轮直齿圆柱齿轮传动,斜齿圆柱齿轮,人字齿圆柱齿轮,直齿锥齿轮的齿轮齿。
标准的直齿圆柱齿轮
直齿圆柱齿轮传动齿轮是最基本的形式,它被广泛地使用在机械传动。的
称为直齿圆柱齿轮的直齿圆柱齿轮的圆柱齿轮,被称为直母线节圆的齿列。的
直齿圆柱齿轮参数
(1)的齿轮齿数z齿的总数称为齿的数目。
(2)齿角一个
上的平坦的端部,横向齿廓和节圆的径向线的交叉处,在该点的切线的齿廓,锐角的多文件夹,名为牙形角。
标准要求的标准线齿轮的渐开线齿形角α= 20°。齿轮(3)的模数m
间距p除以圆周率π从供应商,称为弹性模量,弹性模量的单位为mm,并且已经被标准化。常用的
齿轮
在除了正齿轮驱动器在其他类型的齿轮,斜齿圆柱齿轮,直齿锥齿轮和蜗杆传动等。
1,斜齿圆柱齿轮
称为螺旋圆柱齿轮,斜齿圆柱齿轮的齿轮线。
所述的斜齿圆柱齿轮的螺旋角的方向,分为2种L-齿轮和右旋齿轮,旋转它的右手规则可用来确定。伸出右手,掌心朝上,四根手指点到齿轮的轴向方向,牙齿,以拇指方向一致相比,用右手,左手,反之亦然。
一对放置的圆柱形表面上的螺旋形的圆筒状的齿轮齿螺旋,所以这两个齿轮的齿面啮合逐渐接触迁出的对直齿圆柱齿轮2啮合在牙齿上的齿面在同一接触的整个长度,和购买而脱离的时间。斜齿圆柱齿轮稳定性,耐冲击更加明显,尤其是在高速重载。的
斜齿圆柱齿轮传动之间的数据传输的两个平行轴平稳要求适用于。
2,被称为锥齿轮直齿锥齿轮
索引表面的圆锥表面的齿轮,它是一个齿分布在齿轮的锥形表面,当它的牙齿的分界线的圆锥形面直线发电机,称为直齿锥齿轮。的
用于在空间中的锥齿轮传动的两个相交的轴之间的数据传输,并且更一般为两轴垂直相交的角度为90°的场合。齿轮<br故障的
形式/>损坏齿轮的操作期间,由于某些原因,它失去了正常的工作能力的现象称为失效。齿轮失效形式有很多种,常见的失效形式:
1,牙齿磨损
在传输过程中,牙齿之间的接触面相对滑动的齿轮。的力的情况下,齿轮的齿面的磨损的齿面间的相对滑动发生。磨损会破坏牙齿表面的形状,导致传输不流畅,戴牙齿变薄引起的齿侧间隙增加,牙齿强度下降。牙齿磨损的主要失效模式的润滑条件不好的开式齿轮(齿轮)暴露出来,打开蜗杆传动的主要失效模式。
2,牙坏了
齿轮齿受力状况相当于悬臂工作齿根的弯矩,应力集中。在接合过程中,齿根的弯曲力矩的遭受被交替地改变,因此,在该地区最有可能产生的疲劳裂纹,这种故障的齿断齿形式的齿称为疲劳断裂。齿轮坏了,是另一个长期过载或过大的冲击负荷突然被打破,所谓的过载打破。
3,齿塑性变形
,在牙齿表面暴露于低速重的工作条件下,由于这些力的影响很大的压力和摩擦,该材料是相对较软的部分齿轮齿表面可能会产生塑性流动,使齿面的凹部或凸锥,从而破坏的齿轮的齿廓形状,使齿轮丧失工作能力。该齿轮故障表被称为塑性变形的齿。
齿轮齿面工作时,点蚀,反复接触挤压,而当接触表面,从而产生的压力因过量或长期使用,牙齿表面会产生细微的疲劳裂纹。随着连续的齿轮沿的工作表面,裂纹将继续扩大,剥离一小块金属,形成在牙齿表面的点蚀和斑坑。这种故障的齿面的形式被称为在牙齿表面的点蚀。牙齿表面严重点蚀会损坏,导致传输是不光滑的,产生噪声,甚至丧失工作能力的齿轮的齿轮齿的表面。
牙齿表面点蚀的失效形式多在封闭的齿轮的润滑条件。
5,齿面胶合
封闭的高速重载齿轮齿面的润滑是比较困难的,产生局部加热的配合面结合在重负载下,当齿轮运动撕下部分的金属材料在一个相对较软的齿面撕裂在牙齿表面的贴面,如粘附在牙齿表面和撕裂引起的故障称为槽。齿面胶合现象,这将严重损害牙齿表面,并导致齿轮失效。封闭蜗杆传动可以很容易地发生此故障。
链条传动
链传动由两个特殊的齿轮和一个封闭的链的组合物,在工作时活跃的连接的一个链驱动了该书的链条相啮合的齿轮啮合的从动链轮驱动器。链驱动??器主要用于为寻求更准确,和两轴的距离是链传动的传动比,并且不应该被用来放置齿轮。这是我们共同的自行车链轮链条传动的原则。
链传输特性
1)可以确保更准确的比较)的传动比(和皮带驱动
2)的情况下,可以通过在两个轴中心的距离更远的力(与齿轮)
3)只可用于驱动
平行轴4)链条磨损,链变长,容易起飞链现象。
辊子链
滚子链结构
机械传动,传动链的滚子链(也被称为套筒滚子链)。滚子链的链板外链板,内销3,套管4和辊5。
滚子链的链板与套筒内,外链板和引脚的使用干扰的固定销和套筒分别辊套之间的间隙配合;每个链路可以自由的弯曲和伸展,相对旋转的辊和套筒。滚子链与链轮的啮合,因为在辊的作用,直接与链轮齿的套筒的滑动摩擦接触转换成滚动摩擦,从而降低的链轮齿的磨损。
滚子链长会议。轻松连接链接数,应尽量选择开口销或弹簧夹锁定链的两端连接头。当奇数链条头需要使用的过渡段,过渡段不仅制造的复杂性和低的运输能力,并因此,应该避免使用。
2,商标
滚子链滚子链标准件,标记号
标签的例子:
链数 - 行数 - 总人数的链链接标准 /> 08A-1-88GB/T1243-1997说:链号08A(间距12.70毫米),单排滚子链,88。
3,使用
(1)的链传动链驱动,以确保正常的工作,两个链轮的轴应该是彼此平行的,并应位于两个链轮,在相同的垂直平面上。
(2)为了提高链传动的质量和使用寿命,应注意润滑。链传动可从时间来预压
(3),和张紧轮的移动设备可以在必要时使用。
(4)应加装带有保护盖的安全性和灰尘,链传动。
蜗杆传动
当一个齿轮有一个或多个螺旋齿和交错轴传动涡轮机(类似螺旋齿轮蜗轮蜗杆传动)的参与,该驱动器称为蜗杆传动。蜗杆齿轮的两个轴以90度角相交,但既不是彼此平行的,不交叉的情况下,通常在蜗轮传动,蜗轮是一个活跃的部件,并且是一个被动部件的蜗轮。
(1)蜗杆传动
单级传动的特点是能够得到很多的传动,结构紧凑,传动平稳,无噪音,低传输效率。
(2)蜗杆传动涡轮机操纵判定
蜗杆传动蜗轮蜗杆,涡轮机转向取决于两者之间,蜗轮旋转,其旋转方向的相对位置之间的关系。
判断涡轮右旋(蠕虫可以分为左,右旋转和斜齿轮方向的判断方法与判断方法相同)的右手定则,蠕虫左交给他的左手,而转向与他左手或右手定则,蜗轮蜗杆是相对的统治。拇指的相反方向弯曲四个手指点蜗轮的旋转方向(直箭头表示的可视侧的蜗杆的周向运动方向),是相对于涡轮机的运动方向的蜗杆。
丝杆传动
丝杆传动用螺丝和螺母丝杆副,主要表现为旋转运动变为直线运动,同时传递运动和动力传输的要求。
螺杆驱动分类:
1)传力螺旋的传输功率,扭矩较小,产生较大的轴向推力的工作,克服阻力。如提升或螺旋形的加压装置。这样的传力螺旋主要是承受较大的轴向力,一般简称的工作,每个工作很短的时间,运行速度不高。 [电子邮件= 7 _at_&X]×[/电子邮件]
2)传导螺旋:,发送运动,有时也承受较大的轴向载荷。如机床的进给机构的螺旋。传导螺旋主要工作持续了很长一段的时间,较高的操作速度,因此,需要更高的传输精度。
3)调整螺钉:为了调整的固定部分的相对位置。如机床,仪器仪表和测试设备的微调机构的螺旋。不频繁的调节螺钉旋转一般卸载的调整。
螺杆传动的特点:传动精度高,工作平稳,无噪音,易于自锁,并能传递更大的功率。
工作机的重要性一般要依靠原动机提供某种形式的能量,但是,原动机和工作直接挂钩,往往需要添加的运动或变化的电源状态之间的传输齿轮:
(1)机器速度一般是不相符的最佳速度的主要推动者。 。
(2)大量的工作机的速度调整,根据生产要求,但依靠此目的的主要推动者的速度是不经济的,这是不可能的。
(3)在某些情况下,这是必要的原动机驱动若干不同的工作机的操作速度。
(4)安全和维护方便,由于机器的外形尺寸有限,或因不能直接连接在一起的原始动机和工作机。设计概要
当设计传输的发送功率,传动比和工作条件,如已设定时,不同类型的传输有其自己的优点和缺点。
1)的功率和效率
可以通过各种发射功率的传输原理,承载能力和负荷分配,速度制造精密机械效率,发热情况及其他因素的影响。
效率是评估传输性能的重要指标之一。
2)
速度的传输速度的主要运动特性之一。提高传输速度的机器是一个重要的发展方向。
3)的外形尺寸,质量,成本
驱动器以外的功率和速度的大小的尺寸和质量是密切相关的传动部件的机械性能。
传动比变速器的运动特性之一。
成本的重要经济指标的驱动器类型的选择。
3. 在生活中,有哪些物体应用了传动装置
钟表的齿轮传动,自行车的链条传动,拖拉机的皮带传动。
4. 如何正确调整手扶拖拉机三角皮带的松紧度
手扶拖拉机的三角皮带传动装置如图3-1所示。

图3-1 三角皮带传动装置
1.主动皮带轮 2.从动皮带轮 3.三角皮带 4.飞轮
调整方法:松开柴油机横架和机架之间的4个六角螺母,将柴油机向前移动为调紧,向后移动为调松。调整恰当与否,可用拇指按压三角皮带的中部(用力48~76牛),皮带下降量在20~30毫米,即为调整合适,然后再拧紧4个六角螺母。调整时,主、从动皮带轮轮轴中心线平行,轮槽中心线应对齐,不允许有偏斜。
5. 皮带传动装置摩擦力方向及原因
摩擦力:
C点,抄按C点切线向袭上,作用在主动轮上。摩擦力为阻力,阻碍N转动,与N转动方向相反。
D点,按D点切线向下,作用在皮带上。摩擦力对皮带来讲是动力,与传送带运动方向相同。
A点,按A点切线向下,作用在皮带上,阻碍皮带转动,与皮带转动方向相反。
B点,按B点切线向上,作用在M轮上,带动M轮转动,与轮转动方向相同。
6. 皮带运输机的设计
题目Ⅰ:皮带运输机传动装置设计
设计一用于带式运输机上的单极圆柱齿轮减速器。运输机两班制连续工作,单向运转,工作时有轻度振动。使用期限10年。
1-电机、2-带传动、3-减速器、4-联轴器、5-滚筒、6-传送带
原始数据
题号
Ⅰ-1
Ⅰ-2
Ⅰ-3
Ⅰ-4
Ⅰ-5
Ⅰ-6
Ⅰ-7
Ⅰ-8
输送带曳引力F(N)
240
2600
2800
3000
3200
3400
3600
3800
输送带运行速度v(m/s)
2.1
1.8
1.6
1
1.1
1.2
1
1.1
滚筒直径D(mm)
350
350
350
350
350
400
360
380
题目Ⅱ:皮带运输机传动装置设计
设计一用于带式运输机上的双极圆柱齿轮减速器。运输机两班制连续工作,单向运转,工作时有轻度振动。使用期限10年。
1
2
3
4
5
6
1-电机、2-带传动、3-减速器、4-联轴器、5-滚筒、6-传送带
原始数据
题号
∏-1
∏-2
∏-3
∏-4
∏-5
∏-6
∏-7
∏-8
输送带曳引力F(N)
4200
4100
4000
3800
3700
3600
3500
3400
输送带运行速度v(m/s)
0.45
0.47
0.5
0.52
0.53
0.55
0.58
0.62
滚筒直径D(mm)
320
320
350
350
380
380
380
400
题目Ⅲ:链式运输机传动装置设计
设计一用于传送设备的单极圆锥齿轮减速器。两班制连续工作,单向运转,工作时有轻度振动,使用期限5年。传送速度允许误差为±5% 。
1-电机、2-带传动、3-减速器、4-联轴器、5-链式运输机
原始数据
题号
Ⅲ-1
Ⅲ-2
Ⅲ-3
Ⅲ-4
Ⅲ-5
Ⅲ-6
Ⅲ-7
曳引力F(kN)
2
2.1
2.1
2.3
2.4
2.5
2.7
传送速度v(m/s)
0.85
0.75
0.8
1
0.8
0.95
0.9
链轮节圆直径D(mm)
100
100
115
125
125
125
150
题目Ⅳ:链式运输机传动装置设计
设计某车间链式运输机上用的单极蜗杆减速器。单班制连续工作,单向运转。曳引链允许速度允许误差为±5% 。工作时有轻度振动,减速器通风不良,使用期限6年。
1-电机、2-联轴器、3-减速器、4-链式运输机
原始数据
题 号
Ⅳ-1
Ⅳ-2
Ⅳ-3
Ⅳ-4
Ⅳ-5
Ⅳ-6
曳引链拉力F(kN)
2
2.5
2.75
3.0
3.2
3.5
传送速度v(m/s)
0.9
0.8
0.7
0.75
0.7
0.65
链节距(mm)
80
100
100
80
80
100
链轮齿数
16
14
12
16
14
15
题目Ⅴ:皮带运输机传动装置设计
设计铸工车间的型砂运输设备。该运输设备的传动系统由电机-减速器-传送带组成。两班制工作,传送带允许的速度误差为±5%。工作时有轻度振动,使用期限10年。
1-电机、2-联轴器、3-减速器、4-滚筒、5-传送带
原始数据
题 号
Ⅴ-1
Ⅴ-2
Ⅴ-3
Ⅴ-4
Ⅴ-5
传送带曳引力F(N)
3000
3500
3800
6000
8500
传送带运行速度v(m/s)
1.3
1.25
1.35
1.45
1.48
滚筒直径D(mm)
260
260
280
280
280
7. 皮带传动的特点
皮带传动的主抄要特点:
皮带有良好的弹性,在工作中能缓和冲击和振动,运动平稳无噪音。
载荷过大时皮带在轮上打滑,因而可以防止其他零件损坏,起安全保护作用。
皮带是中间零件。它可以在一定范围内根据需要来选定长度,以适应中心距要求较大的工作条件。
结构简单制造容易,安装和维修方便,成本较低。

(7)皮带传动装置举例扩展阅读:
皮带传动亦称“带传动”。机械传动的一种。由一根或几根皮带紧套在两个轮子(称为“皮带轮”)上组成。两轮分别装在主动轴和从动轴上。利用皮带与两轮间的摩擦,以传递运动和动力。
根据皮带的剖面形状,可分为平皮带传动、三角皮带(三角胶带)传动和圆皮带传动等
平皮带的剖面为扁矩形,皮带轮的表面为光滑的圆柱形,皮带在皮带轮上工作时,其内面是工作面。
三角皮带剖面为梯形,三角皮带和皮带轮槽在两侧面接触,故其侧面是工作面。由图可见,在同样的Q力作用下,三角皮带在工作表面上产生的正压力N较平皮带大。故在其它条件相同时,三角皮带能传递较大的圆周力。
圆皮带一般只适用于小功率的传动,如缝纫机和某些仪器上的传动装置。三角皮带传动较平皮带传动应用广泛,而两者的计算原理基本相同。
8. 带式输送机传动装置的设计
一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW
3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m
五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.
六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm
II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N•m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm
(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N•m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危险截面C的强度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。
主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N•m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够
(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min
(1)已知nII=121.67(r/min)
两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够
二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够
七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。
八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳.
放油螺塞
选用外六角油塞及垫片M18×1.5
根据《机械设计基础课程设计》表5.3选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:
:
(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12
(4)箱座凸缘厚度b=1.5z=1.5×8=12
(5)箱座底凸缘厚度b2=2.5z=2.5×8=20
(6)地脚螺钉直径df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)
(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位销直径d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距离C1
(15) Df.d2
(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>9.6 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3
D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.
九、润滑与密封
1.齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2.滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4.密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。
十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。
十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版
9. 【高中物理】如图所示的皮带轮传动装置中,A为主动轮,B为被动轮,L为扁平的传动皮带,A轮与B轮的轮轴水
选A,我认为。
主要就是为了增在摩擦。这样不至于效率低下。如果摩擦力小,会容易打滑,就相当于空转了一些,这样轮的转动效率就没有传给皮带。
所以首先得选宽的。
然后因为A是主动轮。所以得逆时针转。如果顺时针,相当于上面是放了。下面拉。但是因为地球的引力,会使得下面的皮带因为自重,而往下垂。会让它咬合不严。摩擦力减小。因为这时的弹力=皮带的拉伸的弹力-皮带的自重。
而逆时针,会因为自重,使得咬合力更严。
因为这时的弹力=皮带的拉伸的弹力+皮带的自重。