Ⅰ 试例举几种啤酒发酵设备,并阐明其特点。
啤酒发酵设备-发酵罐介绍 发酵罐:承担产物的生产任务。它必须能够提供微生物生命活动和代谢所要求的条件,并便于操作和控制,保证工艺条件的实现,从而获得高产。
一个优良的发酵罐装置和组成
(1)应具有严密的结构
(2)良好的液体混合特性
(3)好的传质相传热速率
(4)具有配套而又可靠的检测,控制仪表啤酒发酵设备-发酵罐发展历史 第一阶段:1900年以前,是现代发酵罐的雏形,它带有简单的温度和热交换仪器。
第二阶段:1900-1940年,出现了200m3的钢制发酵罐,在面包酵母发酵罐中开始使用空气分布器,机械搅拌开始用在小型的发酵罐中。
第三阶段:1940-1960年,机械搅拌,通风,无菌操作和纯种培养等一系列技术开始完善,发酵工艺过程的参数检测和控制方面已出现,耐蒸汽灭菌的在线连续测定的pH电极和溶氧电极,计算机开始进行发酵过程的控制。发酵产品的分离和纯化设备逐步实现商品化。
第四阶段:1960-1979年,机械搅拌通风发酵罐的容积增大到80-150m3。由于大规模生产单细胞蛋白的需要,又出现了压力循环和压力喷射型的发酵罐,它可以克服—些气体交换和热交换问题。计算机开始在发酵工业上得到广泛应用。
第五阶段:1979年至今。生物工程和技术的迅猛发展,给发酵工业提出了新的课题。于是,大规模细胞培养发酵罐应运而生,胰岛素,干扰素等基因工程的产品走上商品化。啤酒发酵设备-发酵罐的特点 (1)发酵罐与其他工业设备的突出差别是对纯种培养的要求之高,几乎达到十分苛刻的程度。因此,发酵罐的严密性,运行的高度可靠性是发酵工业的显著特点。
(2)现代发酵工业为了获取更大的经济利益,发酵罐更加趋向大型化和自动化发展。在发酵罐的自动化方面,作为参数检测的眼睛如pH电极,溶解氧电极,溶解CO2电极等的在线检测在国外巳相当成熟。发酵检测参数还只限于温度,压力,空气流量等一些最常规的参数。啤酒发酵设备-发酵罐的种类发酵工业上最常用的是通风搅拌罐。除了通风搅拌发酵罐外,其它型式的发酵罐如:气提式发酵罐,压力循环发酵罐,带超滤膜的发酵罐等。
典型发酵设备:种子制备设备、主发酵设备、辅助设备(无菌空气和培养基的制备)、发酵液预处理设备、粗产品的提取设备、产品精制与干燥设备、流出物回收,利用和处理设备发酵罐工艺操作条件
1。温度:25~40℃。
2。压力:0~1kg/cm3(表压)。
3。灭菌条件;温度100~140℃,压力0~3kg/cm3(表压)。
4。pH:2~11。
5。需氧量:0。05~0。3kmo1/m3·h。
6。通气量:0。3~2VVM。
7。功率消耗:0。5~4kW/m3。
8。发酵热量:5000~20000kcal/m3。h。啤酒发酵设备-发酵罐的类型 1。按微生物生长代谢需要分类
好气:抗生素,酶制剂,酵母,氨基酸,维生素等产品是在好气发酵罐中进行的;需要强烈的通风搅拌,目的是提高氧在发酵液中的传质系数。厌气:丙酮丁醇,酒精,啤酒,乳酸等采用厌气发酵罐。不需要通气。
2。按照发酵罐设备特点分类
机械搅拌通风发酵罐:包括循环式,如伍式发酵罐,文氏管发酵罐,以及非循环式的通风式发酵罐和自吸式发酵罐等。非机械搅拌通风发酵罐:包括循环式的气提式,液提式发酵罐,以及非循环式的排管式和喷射式发酵罐。这两类发酵罐是采用不同的手段使发酵罐内的气,固,液三相充分混合,从而满足微生物生长和产物形成对氧的需求。
3。按容积分类
一般认为500L以下的是实验室发酵罐;500-5000L是中试发酵罐;5000L以上是生产规模的发酵罐。密闭厌氧发酵罐
对这类发酵罐的要求是:能封闭;能承受一定压力;有冷却设备;罐内尽量减少装置,消灭死角,便于清洗灭菌。
酒精和啤酒都属于嫌气发酵产物,其发酵罐因不需要通入昂贵的无菌空气,因此在设备放大,制造和操作时,都比好气发酵设备简单得多。
它的容积常大于50m3,H:Dt=1-2,罐的上,下部都是锥形的。
上部有物料口,冷却水口,CO2和气体出口,人孔和压力表开口等。
温度控制采用罐内蛇管和罐外壁直接水喷淋相结合,排料管在罐的底部。
一,酒精发酵罐
酵母将糖转化为酒精高转化率条件
(1)满足酵母生长和代谢的必要工艺条件
(2)一定的生化反应时间
(3)及时移走在生化反应过程中将释放的生物热
酒精发酵罐的结构要求:满足工艺要求,有利于发酵热的排出,从结构上有利于发酵液的排出,有利于设备清洗,维修以及设备制造安装方便等问题。
啤酒发酵设备-发展趋势 近年来,啤酒发酵设备向大型,室外,联合的方向发展,迄今为止,使用的大型发酵罐容量已达1500吨。大型化的目的是:
(1)由于大型化,使啤酒质量均一化;由于啤酒生产的罐数减少,使生产合理化,降低了主要设备的投资。
发酵容器材料的变化。由陶器向木材---水泥----金属材料演变。现在的啤酒生产,后两种材料都在使用。我国大多数啤酒发酵容器为内有涂料的钢筋水泥槽,新建的大型容器一般使用不锈钢。
(2)开放式发酵容器向密闭式转变。
小规模生产时,一般用开放式,对发酵的管理,泡沫形态的观察和醪液浓度的测定等比较方便。随着啤酒生产规模的扩大,发酵容器大型化,并为密闭式。从开放式转向密闭发酵的最大问题是发酵时被气泡带到表面的泡盖的处理。可用吸取法分离泡盖。
(3)密闭容器的演变。
原来是在开放式长方形容器上面加弓形盖子的密闭发酵槽;随着技术革新过渡到用钢板,不锈钢或铝制的卧式圆筒形发酵罐。后来出现的是立式圆筒体锥底发酵罐。目前使用的大型发酵罐主要是立式罐,如奈坦罐,联合罐,朝日罐等。由于发酵罐容量的增大,要求清洗设备装置也有很大的改进,大都采用CIP自动清洗系统。啤酒前,后发酵设备及计算。啤酒发酵设备-前后发酵设备(一)前发酵设备
传统的前发酵槽均置于发酵室内,发酵槽大部分为开口式。前发酵槽可为钢板制,常见的采用钢筋混凝上制成,也有用砖砌,外面抹水泥的发酵槽。形式以长方形或正方形为主。前发酵槽内要涂布一层特殊涂料作为保护层。采用不饱和聚脂树脂,环氧树脂或其他特殊涂料较为广泛,但还未完全符合啤酒低温发酵的防腐要求。
前发酵槽的底略有倾斜,利于废水排出离槽底10-15cm处,伸出有嫩啤酒放出管为了维持发酵槽内醪液的低温,在槽中装有冷却蛇管或排管。前发酵槽的冷却面积,根据经验,对下面啤酒发酵取每立方米发酵液约为0。2平方米冷却面积,蛇管内通入0-2度的冰水。注意CO2的排放,防止中毒。
后发酵设备
主要完成嫩啤酒的继续发酵,并饱和二氧化碳,促进啤酒的稳定,澄清和成熟。
根据工艺要求,贮酒室内要维持比前发酵室更低的温度,一般要求0-2℃,特殊产品要求达到-2℃左右。后发酵过程残糖较低,发酵温和,故槽内一般无须再装置冷却蛇管。贮酒室的建筑结构和保温要求,均不能低于前发酵,室内低温的维持,是借室内冷却排管或通入冷风循环而得。后发酵槽是金属的圆筒形密闭容器,有卧式和立式两种。工厂大多数采用卧式。发酵过程中需饱和CO2,后发酵槽应制成耐压0。1-0。2MPa表压的容器。后发酵槽槽身装有人孔,取样阀,进出啤酒接管,排出二氧化碳接管,压缩空气接管,温度计,压力表和安全阀等附属装置。后发酵槽的材料,一般用A3钢板制造,内壁涂以防腐层。贮酒槽全部放置在隔热的贮酒室内,维持一定的后酵温度。毗邻贮酒室外建有绝热保暖的操作通道,在通道内进行后发酵过程的调节和操作。贮酒室和通道相隔的墙壁上开有一定直径和数量的玻璃窥察窗,便于观察后发酵室内部情况。通道内保持常温,开启发酵液的管道和阀门都接通到通道里。啤酒发酵设备-新型啤酒发酵设备1。圆筒体锥底发酵耀
圆简体锥底立式发酵罐(简称锥形罐),已广泛用于上面或下面发酵啤酒生产。锥形罐可单独用于前发酵或后发酵,还可以将前,后发酵合并在该罐进行(一罐法)。这种设备的优点:在于能缩短发酵时间,而且具有生产上的灵活性,故能适合于生产各种类型啤酒的要求。
设备特点
这种设备一般置于室外。已灭菌的新鲜麦汁与酵母由底部进入罐内;发酵最旺盛时,使用全部冷却夹套,维持适宜的发酵温度。冷媒多采用乙二醇或酒精溶液,也可使用氨(直接蒸发)作冷媒;CO2气体由罐顶排出。罐身和罐盖上均装有人孔,罐顶装有压力表,安全阀和玻璃视镜。在罐底装有净化的CO2充气管。罐身装有取样管和温度计接管。设备外部包扎良好的保温层,以减少冷量损耗。
优点:
(1)是能耗低,采用的管径小,生产费用可以降低。
(2)最终沉积在锥底的酵母,可打开锥底阀门,把酵母排出罐外,部分酵母留作下次待用。
影响发酵设备造价的因素
发酵设备大小,形式,操作压力及所需的冷却工作负荷。容器的形式主要指其单位容积所需的表面积,以m2/100L表示,这是影响造价的主要因素。2.通用罐
用于多罐法及一罐法生产。因而它适合多方面的需要,故又称该类型罐为通用罐。
结构:主体是一圆柱体,是由7层1。2m宽的钢板组成。总的表面积是378m3,总体积765m3。
联合罐是由带人孔的薄壳垂直圆柱体,拱形顶及有足够斜度以除去酵母的锥底所组成。锥底的形式可与浸麦槽的锥底相似。联合罐的基础是一钢筋混凝土圆柱体,其外壁约3m高,20cm厚。基础圆柱体壁上部的形状是按照罐底的斜度来确定的。有30个铁锚均匀地分埋入圆柱体壁中,并与罐焊接。圆柱体与罐底之间填入坚固结实的水泥沙浆,在填充料与罐底之间留25。4cm厚的空心层以绝缘。
3。朝日罐
前发酵和后发酵合一的室外大型发酵罐朝日罐是用4—6mm的不绣钢板制成的斜底圆柱型发酵罐。其高度与直径比为1:1-2:1外部设有冷却夹套,冷却夹套包围罐身与罐底。外面用泡沫塑料保温内部设有带转轴的可动排油管,用来排出酒液,并有保持酒液中CO2含量均一的作用。
朝日罐特点
朝日罐与锥形罐具有相同的功能,但生产工艺不同。
(1)利用离心机回收酵母
(2)利用薄板换热器控制发酵温度
(3)利用循环泵把发酵液抽出又送回去。
优点:
三种设备互相组合,解决了前,后发酵温度控制和酵母浓度的控制问题,加速了酵母的成熟。使用酵母离心机分离发酵液的酵母,可以解决酵母沉淀慢的缺点利用凝聚性弱的酵母进行发酵,增加酵母与发酵浓接触时间,促进发酵液中乙醛和双乙酰的还原,减少其含量。啤酒发酵设备-啤酒的连续发酵罐种类1。两个搅拌罐和一个酵母分离罐串联起来,加入酒花的麦芽汁流加入第一个搅拌罐,经发酵后,成熟啤酒从分离罐中流出。这种流程已达到日产100m2的规模。
2。由数个高度6~9m的塔式发酵罐串联起来,附加一些酵母分离和啤酒贮藏设备。
还有一个由主发酵塔和一个发酵塔组成,发酵周期40,50小时,连续发酵两个月,各项经济指标均优于间歇法。
丙酮—丁醇发酵罐
生产丙酮,丁醇的发酵罐比酒精发酵罐高,罐身需承受高压,罐壁较厚,用钢板制成。顶盖和底部采用球形封头,罐内表面平整光滑,无内部件,采用表面喷淋冷却。种子罐采用夹套冷却。一,机械搅拌发酵罐
机械搅拌发酵罐是发酵工厂常用类型之一。它是利用机械搅拌器的作用,使空气和醪液充分混合促使氧在醪液中溶解,以保证供给微生物生长繁殖,发酵所需要的氧气。
啤酒发酵设备-发酵罐的结构1,罐体
2,搅拌器和挡板
3,消泡器
4,联轴器及轴承
5,变速装置
6,空气分布装置
7,轴封
8,冷却装置
罐体
由圆柱体及椭圆形或碟形封头焊接而成,材料为碳钢或不锈钢,对于大型发酵罐可用衬不锈钢板或复合不锈钢制成,衬里用的不锈钢板厚为2-3毫米。为了满足工业要求,在一定压力下操作,空消或实消,罐为一个受压容器,通常灭菌的压力为2。5公斤/厘米2(绝对压力)。
搅拌器
搅拌器有平叶式,弯叶式,箭叶式三种其作用是打碎气泡,使氧溶解于醪液中,从搅拌程度来说,以平叶涡轮最为激烈,功率消耗也最大,弯叶次之,箭叶最小。为了拆装方便,大型搅拌器可做成两半型,用螺栓联成整体。
通用发酵罐的搅拌桨类型
(1)通用发酵罐的搅拌桨最广泛使用的是平叶涡轮搅拌桨,国内采用的大多数是六平叶式,其各部分尺寸比例已规范化。这种搅拌桨具有很大的循环液体输送量,功率消耗大。因此特别适用于丝状菌发酵。
(2)船用螺旋搅拌器,它具有比涡轮桨更为强烈的轴向流动,但是氧传递效率低。
(3)振动混合器,尽管可以提供较高的氧传递效率,但剪切力较低。
(4)多棒搅拌桨,已用于粘稠的丝状链霉菌发酵的发酵罐中。这种搅拌桨具有较好的剪切分散能力和较低的功率消耗,在整个发酵过程中功率变化相对涡轮桨要小的多。
(5)气体导入式搅拌器,是由一个空心的搅拌桨组成,安装在空心的搅拌轴上。搅拌桨上至少有一个暴露在液体中的开口。由于搅拌桨转动,开口处的压力随之减少,使导入的气体沿着搅拌轴向下流动。它适应于低粘度的发酵液。
消泡装置
消泡方式有两种:一是加入化学消泡剂消除泡沫,但高浓度的化学消泡剂会对发酵产生抑制作用,故不能添加太多;第二种方式,即机械消泡。机械消泡装置主要有四种。
一是锯齿式消泡桨。它安装于罐内顶部,高出液面的位置,固定在搅拌轴上,随搅拌轴转动,不断将泡沫打破。
二是半封闭式涡轮消泡器,它是由前者发展改进而来,泡沫可直接被涡轮打碎或被涡轮抛出撞击到罐壁而破碎。
三是离心式消泡器,它们置于发酵罐的顶部,利用高速旋转产生的离心力将泡沫破碎,液体仍然返回罐内。
第四种是刮板式消泡器,它安装于发酵罐的排气口处,泡沫从气液进口进到高速旋转的刮板中,刮板转速为1000—1450rpm,泡沫迅速被打碎,由于离心力作用,液体披甩向壳体壁上,返回罐内,气体则由汽孔排出。
挡板
挡板的作用是改变液流的方向,由径向流改为轴向流,促使液体激烈翻动,增加溶解氧。通常挡板宽度取(0。1-0。12)D,装设4-6块即可满足全挡板条件。所谓"全挡板条件"是指在一定转速下再增加罐内附件而轴功率仍保持不变。要达到全挡板条件必须满足下式要求:
D—罐的直径(mm)
Z—挡板数
W—挡板宽度(mm)
竖立的列管,排管,也可以起挡板作用,故一般具有冷却列管或排管的发酵罐内不另设挡板。(但冷却管为盘管时,则应设挡板。)挡板的长度自液面起到罐底为止。挡板与罐壁之间的距离为(1/5~1/9)W,避免形成死角,防止物料与菌体堆积。
联轴器及轴承
大型发酵罐搅拌轴较长,常分为二至三段,用联轴器使上下搅拌轴成牢固的刚性联接。常用的联轴器有鼓形及夹壳形两种。小型的发酵罐可采用法兰将搅拌轴连接,轴的连接应垂直,中心线对正。为了减少震动,中型发酵罐一般在罐内装有底轴承,而大型发酵罐装有中间轴承,底轴承和中间轴承的水平位置应能适当调节。罐内轴承不能加润滑油,应采用液体润滑的塑料轴瓦(如石棉酚醛塑料,聚四氟乙烯等)。轴瓦与轴之间的间隙常取轴径的0。4-0。7%,以适应温度差的变化。罐内轴承接触处的轴颈极易磨损,尤其是底轴承处的磨损更为严重,可以在与轴承接触处的轴上增加一个轴套,用紧固螺钉与轴固定,这样仅磨损轴套而轴不会磨损,检修时只要更换轴套就可以了。
变速装置
试验罐采用无级变速装置,发酵罐常用的变速装置有三角皮带伸展动,圆柱或螺旋圆锥齿轮减速装置,其中以三角皮带变速传动效率较高,但加工,安装精度要求高。采用变极电动机作阶段变速,即在需氧高峰时采用高转速,而在不需较高溶解氧的阶段适当降低转速。这样,发酵产率并不降低,而动力消耗则有所节约。自动化程度较高的发酵罐,采用可控硅变频装置,根据溶氧测定仪连续测定发酵液中溶解氧浓度的情况,并按照微生物生长需要的耗氧及发酵情况,随时自动变更转速,这种装置进一步节约了动力消耗,并可相应提高发酵产率,但其装置颇为复杂。
空气分布装置
空气分布装置的作用是吹入无菌空气,并使空气均匀分布。分布装置的形式有单管及环形管等。常用的为单管式,管口对正罐底中央,装于最低一挡搅拌器下面,管口与罐低的距离约40mm,并且空气分散效果较好。若距离过大,空气分散效果较差。该距离可根据溶氧情况适当调整,空气由分布管喷出上升时,被搅拌器打碎成小气泡,并与醪液充分混合,增加了气液传质效果。通常通风管的空气流速取20米/秒。为了防止吹管吹入的空气直接喷击罐底,加速罐底腐蚀,在空气分布器下部罐底上加焊一块不锈钢补强。可延长罐底寿命。通风量在0。02~0。5ml/sec时,气泡的直径与空气喷口直径的1/3次方成正比。也就是说,喷口直径越小,气泡直径也越小。因而氧的传质系数也越大。但是生产实际的通风量均超过上述范围,因此气泡直径仅与通风量有关,而与喷口直径无关。
轴封
轴封的作用:使罐顶或罐底与轴之间的缝隙加以密封,防止泄露和污染杂菌。常用的轴封有填料函轴封和端面轴封两种。填料函轴封是由填料箱体,填料底衬套,填料压盖和压紧螺栓待零件构成,使旋转轴达到密封的效果。安装在旋转轴与设备之间的部件,它的作用是阻止工作介质(液体,气体)沿转动轴伸出设备之处泄漏冷却装置
5M3以下发酵罐一般采用夹套冷却。大型发酵罐采用列管冷却(四至八组)。带夹套的发酵罐罐体壁厚要按外压计算[即3。5Kg/厘米2(绝对压力)]夹套内设置螺旋片导板,来增加换热效果,同时对罐身起加强作用。冷却列管极易腐蚀或磨损穿孔,最好用不锈钢制造。啤酒发酵设备-标准通用式发酵罐编辑本段 通用式发酵罐是最广泛应用的深层好气培养设备。
在工业生产中,尤其是制药工业中,使用得最广泛的就是通用式发酵罐。这种发酵绕既具有机械搅拌装置,又具有压缩空气分布装置。发酵罐的搅拌轴既可置于发酵罐的顶部,也可置于其底部,其高径比为2:1-6:19有关的重要因素是氧传递效率,功率输入,混合质量,搅拌桨形式和发酵罐的几何比例等。
自吸式发酵罐
它与通用发酵罐的主要区别是:①有一个特殊的搅拌器,搅拌器由转子和定子组成;②没有通气管。
具有转子和定子的搅拌器的吸气原理:浸在发酵液中的转子迅速旋转,液体和空气在离心力的作用下,被甩向叶轮外缘。这时,转子中心处形成负压,转子转速愈大,所造成的负压也愈大。由于转子的空膛与大气相通,发酵罐外的空气通过过滤器不断地被吸入,随即甩向叶轮外缘,再通过异向叶轮使气液均匀分布甩出。转子的搅拌,又使气液在叶轮周围形成强烈的混合流,空气泡被粉碎,气液充分混合。
自吸式发酵罐的搅拌器
①回转翼片式自吸搅拌器;
②喷射式自吸搅拌器;
③具有转子和定子的自吸搅拌器。
气泡塔式发酵罐
塔式发酵罐系一直立长圆筒,筒内安装孔板,有的还在罐内安装搅拌器,罐壁四周装挡板。与分批的机械搅拌发酵罐类似,有的塔顶横截面扩大,供以降低流速,截留液体夹带的悬浮物。发酵液和空气可以并流,也可逆流。
_罐的特点是:罐身高,高径比为6;土霉素等生产用的设备,高径比达到7。由于液位高,空气利用率高,节省空气约5%,节省动力约30%,但底部存在沉淀现象;温度高时降温较难。
现代发酵罐的大型化给STF带来—系列难以克服的困难。要大于1000kW的机械搅拌;大量的冷却水和排除热量;能量的均匀分布;溶解氧,碳源和其它营养与pH控制等。
带升式发酵罐
带升式发酵罐也称为气流搅拌发酵罐,不用机械搅拌,借通风起到搅拌作用并供给氧气。
特点:结构简单,冷却面积小,无搅拌传动设备,料液充满系数大,无须加消泡剂,维修,操作及清洗简便,节省动力,减少染菌等。
工作原理:外循环气流搅拌罐是将空气上升管装在罐外,下端与罐底连通,管底装空气喷嘴,压缩空气以250~300m/s高速喷出,与上升管内醪液接触,由于气液混合体密度小于罐内醪液,所以在管内上升,管上端与罐身切线相连,液体由切线进入在罐内回旋下降,形成激烈循环。
液提式发酵罐
液提发酵罐是液体借助于一个液体泵进行输送,同时气体在液体的喷嘴处被吸入发酵罐。
喷嘴是这类发酵罐的一个特殊部件,制造要求精密。
气提式发酵罐
空气压缩机是气提式发酵罐的重要组成部分,它的效率决定于它的形式。
压缩气体通过空气分布器进入液体后,最初形成的气泡是由液体剧烈翻动来分散的,所以气泡的分散程度决定于功率消耗速率。
(一)喷嘴塔式
这是由一个两相喷嘴和鼓泡柱组成的发醉罐,它的通气效率比多孔管式或多孔板式好得多。
这种形式的反应器常用于废水处理,如在一个15000m'的活性污泥池中,安装56个喷嘴,每天可转化30000kg的氧。
(二)喷嘴塔循环式
它以两相喷嘴作为通气装置,具有高的液体循环速度。
(三)喷璃循环式
它利用喷嘴的喷射力,吸入气体,使气体在罐体内部循环,达到较好的传氧效果。
的传氧效果。
(四)喷射通道式
在这种反应器里,液体在细长形的喷嘴里被加速,使循环液体的位能更有效地转变成动能。喷嘴最窄处液体的速度最大,而静压最低,空气通过小孔或狭窄处被吸入和分散,在喷嘴处形成的气泡被向下流动的液体带到罐的底部。在窄管的终端,气体向上运动并离开液体排出。
(五)滴流床式
液体在罐顶部被分散,然后向下滴流通过已被固定化的微生物细胞。空气是在罐底导入并与液体逆向流动。它在好氧废水处理中有着广泛的应用。
(六)多级塔循环式
这种罐以多孔盘管或筛孔发作为一级分离器。液休平面由溢流管控制。(七)管道循环式
空气以3-4m/s的速度导入液体流中,然后通过—个多孔过滤器在
旋风分离器中分离,最后排出系统。这种液流以单向通过泵和流量计。采用这种可以有很高的细胞浓度〔可达t659(干重细胞)/L和高的氧传递速率。然而功率输入也是相当高的。(八)液体流化床式
近年来,沉化床生化反应器的研究报道很多,它主要应用在3个方面
①酶固定在固体基质上;
②完整细胞固定在固体基质上进行纯培养;
③生化流化床广泛应用于废水处理过程。
Ⅱ SCR脱硝技术
世界上流行的SCR工艺主要分为氨法SCR和尿素法SCR2种。此2种方法都是利用氨对回NOx的还原功能 ,在催化剂的作用答下将 NOx (主要是一氧化氮)还原为对大气没有多少影响的氮气和水 ,还原剂为氨气。
一类是从源头上治理,控制煅烧中生成NOx,其技术措施:
1、采用低氮燃烧器。
2、分解炉和管道内的分段燃烧,控制燃烧温度。
3、改变配料方案,采用矿化剂,降低熟料烧成温度。
(2)加氨装置上的缓冲罐作用扩展阅读:
氮氧化物危害:
氮氧化物可刺激肺部,使人较难抵抗感冒之类的呼吸系统疾病,呼吸系统有问题的人士如哮喘病患者,会较易受二氧化氮影响。对儿童来说,氮氧化物可能会造成肺部发育受损。研究指出长期吸入氮氧化物可能会导致肺部构造改变,但仍未可确定导致这种后果的氮氧化物含量及吸入气体时间。
SCR脱硝技术特点:
该法脱硝效率高,价格相对低廉,广泛应用在国内外工程中,成为电站烟气脱硝的主流技术。国内外SCR系统大多采用高温,反应温度区间为315℃~400℃。
Ⅲ 高中化学 实验题液封作用是什么
液封装置1:防止氢氧化钠吸收空气中的水蒸气和二氧化碳导致变质,也是为了固定装有浓NaOH的瓶子
液封装置2:防止氨气溢出是为了不污染空气,另一方面则是处理尾气
Ⅳ 液氨的性质介绍,液氮的用途有哪些
液氮:液态的氮气。是惰性的,无色,无臭,无腐蚀性,不可燃,温度极低。氮构成了大气的大部分(体积比78.03%,重量比75.5%)。氮是不活泼的,不支持燃烧。汽化时大量吸热接触造成冻伤。
液氮是一个较为方便的冷源,因液氮特有的性质,已逐步受到人们的重视和认可,在畜牧业、医疗事业、食品工业、以及低温研究领域等方面得到越来越普遍的应用。在电子、冶金、航天、机械制造等方面应用不断拓宽和发展。
一、液氮在畜牧业方面的应用
1、广泛用于家畜冻配改良技术。
2、家畜及多种动物的
中,制备生存胚胎
现在多接纳胚胎冷冻仪,属智能型冷冻仪。该仪器接纳微机控制技能,专用软件,能较正确地控制液氮的施放量,从而包管被冻存的生物成品以相宜的冷冻速率降温冷冻。
3、液氮超低温收藏微生物技能
将菌种收藏在-196℃的液氮恒久收藏方法,它的原理是利用微生物在-130℃以下新陈代谢趋于制止而有用地收藏微生物。
4、农业生物基因生存
5、生存液氮疫苗
6、用液氮治疗奶牛乳头乳孔外口闭合、家畜皮肤瘤子等也较为平凡。
二、液氮在医疗奇迹应用
1、低温医学
2、
液氮是现在冷冻外科中应用最广泛的冷冻剂。是现在为止发明的一种最好的制冷剂,把它注入低温医疗器内,就像手术刀一样,可以做任何手术。
三、液氮在食品产业应用
1、液氮在食品速冻中的应用
液氮速冻具有以下明显的长处:
① 冷冻速率快(冻结速率比一样通常冻结方法约快30-40倍):接纳液氮速冻,可使食品敏捷通过0℃~5℃最大冰晶生长带,食品研究职员已在这方面做了有益的实验。
②连结食品品格:由于液氮速冻时间短,经液氮速冻的食品可以最大限度地连结加工前的色、香、味及营养代价。段振华等人用液氮对槟榔举行速冻处置处罚,结果评释经液氮处置处罚后的槟榔连结有较高叶绿素含量,风韵好。
③物料干耗小:一样通常冻结的干耗丧失率为3~6%,而液氮速冻可淘汰到0.25~0.5%。
④设置装备部署与动力用度低,易于实现机器化和主动化流水线,进步生产率。
现在液氮速冻重要有喷淋冻结、浸渍冻结和冷氛围冻结三种方法,此中又以喷淋冻结应用最为广泛。
2、液氮在饮料加工中的应用
现在,已有不少饮料生产厂家接纳氮或氮与C02的混淆物代替传统的C02,对饮料举行充气包装。充了氮的高碳酸型饮料,比仅充填二氧化碳的饮料引起的题目要少;氮对付灌装无泡饮料,如酒和果汁也是很抱负的。在非充气饮料罐头中加注液氮的利益是,所注入的少量液氮可清除每只罐头顶部空间中的氧气,使贮罐上部空间的气体呈惰性,从而延伸了易腐品的贮存限期。
3、液氮在果蔬贮存保鲜中的应用
液氮用于果蔬的贮存保鲜具有气调的长处,可调治农副产物旺季和淡季供需方面的抵牾,淘汰贮存上的丧失。气调的功效是进步氮气的浓度,同时控制氮、氧与C02的气体比例,并使其连结在稳固状态,低落果蔬的呼吸强度,延缓后熟历程,从而使果品、蔬菜连结采摘时的奇怪状态和原有营养代价,延伸果蔬保鲜期。
4、液氮在肉成品加工中的应用
5、液氮在食品低温粉碎中的应用
低温粉碎,便是将冷却到脆化点温度的物质,在外力作用下破裂成粉体的历程。食品的低温粉碎是近几年生长起来的一种食品加工新技能,该技能分皮毛宜于加工含芳香身分多、含脂量高、含糖量多和含胶状物质多的食品。用液氮举行低温粉碎处置处罚,可连质料的骨、皮、肉、壳等一次性全部粉碎,使成品颗料微小并连结其有用营养。
6、液氮在
中的应用
英国伦敦一家公司开辟出一种简朴实用的食品保鲜包装方法,便是在给食品举行包装时,往包装袋内参加几滴液氮。当液氮蒸发转化成气体时它的体积敏捷扩大,在包装袋内快速代替原有的大部分气体,淘汰食品因氧化而造成的变质,从而大大延伸食品的保鲜期。
7、液氮在食品冷藏运输中的应用
冷藏运输是食品产业中很重要的一部分。开辟液氮制冷技能,生长液氮冷藏火车、
及
是现今国际上的共同生长趋向。
8、液氮在食品产业中的别的应用
由于液氮的制冷作用,蛋汁、液体调味品、酱油可以大概加工成可自由活动并能倒出的颗粒状
,这些食品可随时利用并且很容易配制。在研磨香料和吸水的食品添加剂,如糖的替换品和卵磷脂时,液氮被注入到研磨机中来掩护有代价的身分,同时也增长了研磨产量。
四、液氮在电子产业中应用
1、超导技能
超导体得天独厚的特性,使它大概在种种范畴得到广泛的应用。以液态氮代替液态氦作超导制冷剂得到超导体,使超导技能走向大范围开辟应用,以为是2 0世纪科学上最巨大的发明之一。
2、电子元件制造与检测
液氮是一种更快和更有用的屏蔽和测试电子元器、电路板的方法。
3、低温球磨技能
低温
是将液氮气体源源不停地输入装有保温罩的
中,这些寒气将高速旋转的球磨罐产生的热量实时吸取,使装有物料、磨球的球磨罐始终处于肯定的低温环境中。在低温环境中混淆、细磨、新产物研制和小批量生产高新技能质料的必备装置。该产物体积小、功效全、服从高、噪声低,广泛应用于医药、化工、环保、轻工、建材、冶金、陶瓷、矿产等部分。。
4、绿色切削加工技能
五、液氮其它的应用范畴
酒泉卫星发命中央特燃站生产液氮,它是
的推送剂,大量的液氮用高压把
推向燃烧室。
应用于
开辟;应用于告急维修中对液体管道举行冻结;应用于物质的低温稳固和低温淬火;液氮冷装置技能(热胀冷缩征象在产业中的应用)也广泛利用;液氮人工增雨技能;液氮排液技能实时降液诱喷,正在不停深入研究。接纳氮气井下灭火,火势被敏捷毁灭,同时又消除了瓦斯爆炸伤害等。
选择液氮:由于比别的方法冷却得更快,并且不与别的物质起化学反响,大大地节流空间,提供了干燥的氛围,它是环保的(液氮利用后直接挥发成气体返回大气中,不会留下任何污染),它用起来简朴方便。
Ⅳ 保证常减压蒸馏装置的安全措施有哪些
常减压蒸馏装置是石油加工中最基本的工艺设备,随着减压蒸馏技术的改造和发展、原油蒸馏装置的平均能耗大幅下降、轻油拔出率和产品质量大大提高,危险、危害因素也随之增加。
常减压蒸馏装置的重点设备包括加热炉、蒸馏塔、机泵和高低压瓦斯缓冲罐等几部分。加热炉的作用是为油品的汽化提供热源,为蒸馏过程提供稳定的汽化量和热量。加热炉的平稳运行是常减压装置生产运行的必要保证,加热炉发生事故不能运行,整个装置都将被迫停工。而塔则是整个常减压蒸馏装置的核心,包括初馏塔、常压塔、常压汽提塔、减压塔及附属部分。原油在分馏塔中被分馏成不同组分的各测线油品,同时,塔内产生大量的易燃易爆气体和液体,直接影响生产的正常进行和装置的安全运行。机泵是常减压蒸馏装置的动力设备,它为输送油品及其他介质提供动力和能源,机泵故障将威胁到装置的平稳运行,特别是塔底泵的事故将导致装置全面停产。高低压瓦斯缓冲罐因其储存的介质为危害极大的瓦斯,瓦斯一旦发生泄漏将可能导致燃烧爆炸等重大事故的发生。因此高低压瓦斯缓冲罐在开工前要按照标准对其进行严格的试压和验收,检查是否泄漏。运行中要时常对其检查维护,如有泄漏等异常现象应立即停用并处理,同时还要定期排残液。
常减压蒸馏装置存在的主要危险因素,根据不同的阶段,存在不同的危险因素,避免或减轻这些危险因素的影响,可以采取相应的一些安全预防管理措施。
开工时危险因素及其安全预防管理措施
常减压装置的开工按照以下顺序步骤进行:
开工前的设备检查→设备、流程贯通试压→减压塔抽真空气密性试验→柴油冲洗→装置开车。
装置开车的顺序是:原油冷循环→升温脱水→250℃恒温热紧→常压开侧线→减压抽真空开侧线→调整操作。
在开工过程中,容易产生的危险因素主要是:机泵、换热器泄漏着火、加热炉升温过快产生裂纹等,其危险因素为油品泄漏、蒸汽试压给汽过大、机泵泄漏着火等,具体介绍如下:
油品泄漏
(1)事故原因:
①开工操作波动力大,检修质量差,或垫片不符合质量要求。
②改流程、设备投用或切换错误造成换热器憋压。
(2)产生后果:换热器憋压漏油,特别是自燃点很低的重质油泄漏,易发生自燃引起火灾。
(3)安全预防管理措施:
①平稳操作。
②加强检修质量的检查。
③选择合适的垫片。
④改流程、设备投用或切换时,严格按操作规程执行。
⑤发生憋压,迅速找出原因并进行处理。
蒸汽试压给汽过大
(1)事故原因:开工吹扫试压过程中,蒸汽试压给汽过大。
(2)产生后果:吹翻塔盘,开工破坏塔的正常操作,影响产品质量。
(3)安全预防管理措施:调节给汽量。
机泵泄漏着火
(1)事故原因:
①端面密封泄漏严重。
②机泵预热速度太快。
③法兰垫片漏油。
④泵体砂眼或压力表焊口开裂,热油喷出。
⑤泵排空未关,热油喷出着火。
(2)产生后果:机泵泄漏着火。
(3)安全预防管理措施:
①报火警灭火。
②立即停泵。若现场无法停泵,通过电工室内停电关闭泵出入口,启动备用泵。
③若泵出入口无法关闭,应将泵抽出阀及进换热器等关闭。
④若塔底泵着火,火势太大,无法关闭泵入口时,应将加热器熄火,切断进料。灭火后,迅速关阀。
停工时危险因素及其安全预防管理措施
在停工过程中,容易产生的主要危险因素有:炉温降低过快导致炉管裂纹,洗塔冲翻塔盘。停工主要危险因素有停工时炉管变脆断裂、停工蒸洗塔时吹翻塔盘等。
停工时炉管变脆断裂
(1)事故原因:停工过程中,炉温降温速度过快,可能会造成高铬炉管延展性消失而硬度增加,炉管变脆,炉管受到撞击而断裂。
(2)产生后果:炉管出现裂纹或断裂。
(3)安全预防管理措施:
①停工过程中,炉温降温不能过快,按停工方案执行。
②将原炉重新缓慢加到一个适当的温度,然后缓慢降温冷却,可以使炉管脆性消失而恢复延展性,继续使用。
③停工,将已损坏的炉管更换。
停工蒸洗塔时吹翻塔盘
(1)事故原因:停工蒸洗塔过程中,蒸汽量给的过大,又发生水击,吹翻塔盘。
(2)产生后果:停工蒸洗塔时吹翻塔盘。
(3)安全预防管理措施:适当控制吹气量。
正常生产中的危险因素及其安全预防管理
开工正常生产过程中的主要危险因素有原油进料中断加热炉炉管结焦、炉管破裂、瓦斯带油、分馏塔冲塔真空度下降、汽油线憋压、减压塔水封破坏、常顶空冷器蚀穿漏洞转油线蚀穿等。
原油进料中断加热炉炉管结焦
(1)事故原因:
①原油进料中断。
②处理量过低,炉管内油品流速低。
③加热炉进料流。
④加热炉火焰扑炉管。
⑤原料性质变重。
(2)产生后果:
①塔底液位急剧下降,造成塔底泵抽空,加热炉进料中断,加热炉出口温度急剧上升。
②结焦严重时会引起炉管破裂。
(3)安全预防管理措施:
①加强与原油罐区的联系,精心操作。
②若发生原油进料中断,联系原油罐区尽快恢复并减低塔底抽出量,加热炉降温灭火。
③炉管注汽以增加加热炉炉管内油品流速,防止结焦。
④保持炉膛温度均匀,防止炉管局部过热而结焦,防止物料偏流。
炉管破裂
(1)事故原因:
①炉管局部过热。
②炉管内油品流量少,偏流,造成结焦,传热不好,烧坏漏油。
③炉管质量有缺陷,炉管材料等级低,炉管内油品高温冲蚀,炉管外高温氧化爆皮及火焰冲蚀,造成砂眼及裂口。
④操作超温超压。
(2)产生后果:烟囱冒黑烟,炉膛温度急剧上升。
(3)安全预防管理措施:
①多火嘴、齐水苗可防止炉管局部过热造成破裂。
②选择适合材质的炉管。
③平稳操作,减少操作波动。
瓦斯带油
(1)事故原因:
①瓦斯罐排凝罐液位上升,未及时排入低压瓦斯罐网。
②瓦斯罐排凝罐加热盘管未投用。
(2)产生后果:烟囱冒黑烟,炉膛变正压,带油严重时,炉膛内发生闪爆,防爆门开,甚至损坏加热炉。
(3)安全预防管理措施:
①控制好瓦斯罐排凝罐液面,及时排油入低压瓦斯罐网。
②投用瓦斯罐排凝罐加热盘管。
③瓦斯带油严重时,要迅速灭火,带油消除后正常操作。
分馏塔冲塔真空度下降
(1)事故原因:
①原油带水。
②塔顶回流带水。
③过热蒸汽带水,塔底吹汽量过大。
④进料量偏大,进料温度突然。
⑤塔底吹汽量过大(湿式、微湿式),或炉管注汽量过大(湿式),汽提塔吹汽量过大(润滑油型),或炉出口温度波动或塔底液面波动。
⑥抽真空蒸汽压力不足或中断,减顶冷却器汽化,抽真空器排凝器气线堵,设备泄漏倒吸空气。
(2)产生后果:
①塔顶压力升高。
②油品颜色变深,甚至变黑。
③破坏塔的正常操作,影响产品质量。
④倒吸空气造成爆炸。
(3)安全预防管理措施:
①加强原油脱水。
②加强塔顶回流罐切水。
③调整塔底吹汽量。
④稳定适当进料量和进料温度。
⑤控制好塔底液位。
⑥保持适当的吹汽量,稳定的抽真空蒸汽,稳定的炉温。
⑦调整好抽真空系统的冷却器,保证其冷却负荷。
⑧加强设备检测维护。
汽油线憋压
(1)事故原因:管线两头阀门关死,外温高时容易憋坏管线。
(2)产生后果:管线爆裂,汽油流出,易起火爆炸。
(3)安全预防管理措施:夏季做好轻油的防憋压工作。
减压塔水封破坏
(1)事故原因:
①水封罐放大气线中存油凝线或堵塞,造成水封罐内压力升高,将水封水压出,破坏水封。
②水封罐放大气排出的瓦斯含对人有害的硫化氢,将其高点排空,排空高度与一级冷却器平齐。若水封罐内的减顶污油排放不及时,污油憋入罐内,当污油积累至一定程度时,水封水被压出,水封水变油封,影响末级真空泵工作。
(2)产生后果:易造成空气倒吸入塔,发生爆炸事故。
(3)安全预防管理措施:
①加强水封罐检查。
②水封破坏,迅速给上水封水,然后消除破坏水封的原因。
③若水封罐放大气线堵或凝,迅速处理畅通。
④水封变油封,迅速拿净罐内存油,并检查放大气线是否畅通。
常顶空冷器蚀穿漏洞转油线蚀穿
(1)事故原因:
①油品腐败,制造质量有问题或材质等级低。
②转油线高速冲刷及高温腐蚀穿孔,制造质量有问题或材质等级低。
(2)产生后果:
①漏油严重时,滴落在高温管线上引起火灾。
②高温油口泄漏。
(3)安全预防管理措施:
①做好原油一脱四注工作,加大防腐力度。
②报火警消防灭火,汽油罐给水幕掩护(降温)原油降量,常炉降温,关小常底吹汽,降低常顶压力,迅速切换漏油空冷器,灭火后检修空冷器。
③做好防腐工作。
④选择适当材质。
⑤将漏点处补板焊死或包盒子处理。
设备防腐
随着老油田原油的继续开采,原油的重质化、劣质化日益明显,原油的含酸介质量不断增加,加上对具有高含酸量的进口高硫原油的加工,都对设备的防腐提出更高的要求。原油中引起设备和管线腐蚀的主要物质是无机盐类及各种硫化物和有机酸等。常减压装置设备腐蚀的主要部位:
(1)初馏塔顶、常压塔顶以及塔顶油气馏出线上的冷凝冷却系统。
①腐蚀原因及结果:蒸馏过程中,原油中的盐类受热水解,生成具有强烈腐蚀性的HCl,HCl与H2S的蒸馏过程中随原油的轻馏和水分一起挥发和冷凝,在塔顶部和冷凝系统易形成低温HCl-H2S-H2O型腐蚀介质,使塔顶及塔顶油气馏出线上的冷凝冷却系统壁厚变薄,降低设备壳体的使用强度,威胁安全生产。原油中的硫化物(参与腐蚀的主要是H2S、元素硫和硫醇等活性硫及易分解为H2S的硫化物)在温度小于120℃且有水存在时,也形成低温HCl-H2S-H2O型腐蚀性介质。
②防腐预防管理措施:在电脱盐罐注脱盐剂、注水、注破乳剂,并加强电脱盐罐脱水,尽可能降低原油含盐量。在常压塔顶、初馏塔顶、减压塔顶挥发线注氨、注水、注缓蚀剂,这能有效抑制轻油低温部位的HCl-H2S-H2O型腐蚀。
(2)常压塔和减压塔的进料及常压炉出口、减压炉转油线等高温部位的腐蚀。
①腐蚀原因及结果:充化物在无水的情况下,温度大于240℃时开始分解,生成硫化氢,形成高温S-H2S-RSH型腐蚀介质,随着温度升高,腐蚀加重。当温度大于350℃时,H2S开始分解为H2和活性很高的硫,在设备表面与铁反应生成FeS保护膜,但当HCl或环烷酸存在时,保护膜被破坏,又强化了硫化物的腐蚀,当温度达到425℃时,高温硫对设备腐蚀最快。
②防腐预防管理措施:为减少设备高温部位的硫化物和环烷酸的腐蚀,要采用耐腐蚀合金材料。
(3)常压柴油馏分侧线和减压塔润滑油馏分侧线以及侧线弯头处。常压炉出口附近的炉管、转油线,常压塔的进料线。
①腐蚀原因及结果:220℃以上时,原油中的环烷酸的腐蚀性随着温度的升高而加强,到270℃~280℃时腐蚀性最强。温度升高,环烷酸汽化,液相中环烷酸浓度降低,腐蚀性下降。温度升至350℃时环烷酸汽化增加,汽相速度增加,腐蚀加剧。温度升至425℃时,环烷酸完全汽化,不产生高温腐蚀。
②防腐预防管理措施:为减少设备高温部位的硫化物和环烷酸的腐蚀,要采用耐蚀合金材料。
机泵易发生的事故及处理
机泵是整个装置中的动设备,相对装置的其他静设备如塔等更容易发生事故。机泵的故障现象有泵抽空或不上量;泵体振动大、有杂音和密封泄漏。
泵抽空或不上量
(1)产生原因:
①启动泵时未灌满液体。
②叶轮装反或介质温度低黏度大。
③泵反向旋转。
④泵漏进冷却水。
⑤入口管路堵塞。
⑥吸入容器的液位太低。
(2)处理措施:
①重新灌满液体。
②停泵联系钳工处理或加强预热。
③重新接电机导线改变转向。
④停泵检查或重新灌泵。
⑤停泵检查排除故障。
⑥提高吸入容器内液面。
泵体振动大、有杂音
(1)产生原因:
①泵与电机轴不同心。
②地脚螺栓松动。
③发生气蚀。
④轴承损坏或间隙大。
⑤电机或泵叶轮动静不平衡。
⑥叶轮松动或有异物。
(2)处理措施:
①停泵或重新找正。
②将地脚螺栓拧紧。
③憋压灌泵处理。
④停泵更换轴承。
⑤停泵检修。
⑥停泵检修,排除异物。
密封泄漏
(1)产生原因:
①使用时间长,动环磨损。
②输送介质有杂质,磨损动环产生沟流。
③密封面或轴套结垢。
④长时间抽空。
⑤密封冷却水少。
(2)处理措施:
①换泵检查。
②停泵换泵处理。
③调节冷却水太少。</p>
Ⅵ 什么是压力容器
压力容器,英文:pressure vessel,是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热容器和分离容器均属压力容器。
目录
概述定义
使用简介
分类概述
我国分类第三类压力容器
第二类压力容器
第一类压力容器
分类具体规定介质分组
介质危害性
分类方法压力等级划分
压力容器品种划分
相关规定标准
其他介绍
压力容器的检验压力容器外部检查
压力容器内外部检验
压力容器全面检验
压力容器的操作条件压力
温度
介质
压力容器事故率高的原因技术条件
使用管理
压力容器应用举例-反应釜不锈钢反应釜
搪玻璃反应釜
磁力搅拌反应釜
压力容器制造变形的成因及预防
《压力容器》杂志概述 定义
使用简介
分类概述
我国分类 第三类压力容器
第二类压力容器
第一类压力容器
分类具体规定 介质分组
介质危害性
分类方法 压力等级划分
压力容器品种划分
相关规定标准
其他介绍
压力容器的检验 压力容器外部检查
压力容器内外部检验
压力容器全面检验
压力容器的操作条件 压力
温度
介质
压力容器事故率高的原因
技术条件 使用管理压力容器应用举例-反应釜
不锈钢反应釜 搪玻璃反应釜 磁力搅拌反应釜压力容器制造变形的成因及预防《压力容器》杂志展开 编辑本段概述
定义
为了与一般容器(常压容器)相区别,只有同时满足下列三个条件的容器,才称之为压力容器: (1)工作压力(注1)大于或者等于0.1Mpa(工作压力是指压力容器在正常工作情况下,其顶部可能达到的最高压力(表压力)); (不含液体静压力) (2)工作压力与容积的乘积大于或者等于2.5MPa-L(容积,是指压力容器的几何容积); (3)盛装介质为气体、液化气体以及介质最高工作温度高于或者等于其标准沸点的液体.
使用简介
压力容器
压力容器的用途十分广泛。它是在石油化学工业、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完成不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。目前,世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。
编辑本段分类概述
压力容器的分类方法很多,从使用、制造和监检的角度分类,有以下几种。 压力容器
(1)按承受压力的等级分为:低压容器、中压容器、高压容器和超高压容器。 (2)按盛装介质分为:非易燃、无毒;易燃或有毒;剧毒。 (3)按工艺过程中的作用不同分为: ①反应容器:用于完成介质的物理、化学反应的容器。 ②换热容器:用于完成介质的热量交换的容器。 ③分离容器:用于完成介质的质量交换、气体净化、固、液、气分离的容器。 ④贮运容器:用于盛装液体或气体物料、贮运介质或对压力起平衡缓冲作用的容器。
编辑本段我国分类
为了更有效地实施科学管理和安全监检,我国《压力容器安全监察规程》中根据工作压力、介质危害性及其在生产中的作用将压力容器分为三类。并对每个类别的压力容器在设计、制造过程,以及检验项目、内容和方式做出了不同的规定。压力容器已实施进口商品安全质量许可制度,未取得进口安全质量许可证书的商品不准进口。
第三类压力容器
具有下列情况之一的,为第三类压力容器: 高压容器; 压力容器
中压容器(仅限毒性程度为极度和高度危害介质); 中压储存容器(仅限易燃或毒性程度为中度危害介质,且pV乘积大于等于10MPa·m3 ); 中压反应容器(仅限易燃或毒性程度为中度危害介质,且pV乘积大于等于0.5MPa·m3); 低压容器(仅限毒性程度为极度和高度危害介质,且乘积大于等于0.2MPa·m3 ); 高压、中压管壳式余热锅炉; 中压搪玻璃压力容器; 使用强度级别较高(指相应标准中抗拉强度规定值下限大于等于540MPa)的材料制造的压力容器; 移动式压力容器,包括铁路罐车(介质为液化气体、低温液体)、罐式汽车[液化气体运输(半挂)车、低温液体运输(半挂)车、永久气体运输(半挂)车]和罐式集装箱(介质为液化气体、低温液体)等; 球形储罐(容积大于等于50m3);低温液体储存容器(容积大于5m3)。 低温液体储存容器(容积大于5m3)
第二类压力容器
具有下列情况之一的,为第二类压力容器: 中压容器; 低压容器(仅限毒性程度为极度和高度危害介质); 低压反应容器和低压储存容器(仅限易燃介质或毒性程度为中度危害介质); 低压管壳式余热锅炉; 低压搪玻璃压力容器。
第一类压力容器
除上述规定以外的低压容器为第一类压力容器。
编辑本段分类具体规定
介质分组
压力容器的介质分为以下两组,包括气体、液化气体或者最高工作温度高于或者等于标准沸点的液体。 (1)第一组介质:毒性程度为极度危害、高度危害的化学介质,易爆介质,液化气体。 (2)第二组介质:除第一组以外的介质。
介质危害性
介质危害性指压力容器在生产过程中因事故致使介质与人体大量接触,发生爆炸或者因经常泄漏引起职业性慢性危害的严重程度,用介质毒性程度和爆炸危害程度表示。 A1.2.1 毒性程度: 综合考虑急性毒性、最高容许浓度和职业性慢性危害等因素。极度危害最高容许浓度小于0.1mg/m3;高度危害最高容许浓度0.1~1.0 mg/m3;中度危害最高容许浓度1.0~10.0 mg/m3; 轻度危害最高容许浓度大于或者等于10.0 mg/m3。 A1.2.2 易爆介质: 指气体或者液体的蒸汽、薄雾与空气混合形成的爆炸混合物,并且其爆炸下限小于10%,或者爆炸上限和爆炸下限的差值大于或者等于20%的介质。 A1.2.3 具体介质毒性危害程度和爆炸危险程度按GB 5044—1985 《职业性接触毒物危害程度分级》、HG 20660—2000 《压力容器中化学介质毒性危害和爆炸危险程度分类》两个标准确定。两者不一致时,以危害(危险)程度高的为准。
编辑本段分类方法
基本分类 第一介质+第二介质
压力容器分类应当先按照介质特性,按照以下要求选择分类图,再根据设计压力p(单位MPa)和容积V(单位L),标出坐标点,确定容器类别: (1)对于第一组介质,压力容器的分类见图A-1。 (2)对于第二组介质,压力容器的分类见图A-2。 图A-1 压力容器分类图—第一组介质 图A-2 压力容器分类图—第二组介质 多腔压力容器分类 多腔压力容器(如换热器的管程和壳程、夹套容器等)按照类别高的压力腔作为该容器的类别并且按该类别进行使用管理。但应当按照每个压力腔各自的类别分别提出设计、制造技术要求。对各压力腔进行类别划定时,设计压力取本压力腔的设计压力,容积取本压力腔的几何容积。 1. 同腔多种介质容器分类 一个压力腔内有多种介质时,按组别高的介质分类。 2. 介质含量极小容器分类 当某一危害性物质在介质中含量极小时,应当按其危害程度及其含量综合考虑,由压力容器设计单位决定介质组别。 特殊情况分类 (1)坐标点位于图A-1或者图A-2的分类线上时,按较高的类别划分其类别。 (2)对于GB 5044和HG 20660两个标准中没有明确规定的介质,应当按化学性质、危害程度及其含量综合考虑,由压力容器设计单位决定介质组别。(3)本规程1.4条范围内的压力容器统一划分为第Ⅰ类压力容器。
压力等级划分
压力容器的设计压力(p)划分为低压、中压、高压和超高压四个压力等级: (1)低压(代号L) 0.1MPa≤p<1.6MPa; (2)中压(代号M) 1.6MPa≤p<10.0MPa; (3)高压(代号H) 10.0MPa≤p<100.0MPa; (4)超高压(代号U) p≥100.0MPa。 压力容器
压力容器品种划分
压力容器按在生产工艺过程中的作用原理,分为反应压力容器、换热压力容器、分离压力容器、储存压力容器。具体划分如下: (1)反应压力容器(代号R):主要是用于完成介质的物理、化学反应的压力容器,如反应器、反应釜、分解锅、硫化罐、分解塔、聚合釜、高压釜、超高压釜、合成塔、变换炉、蒸煮锅、蒸球、蒸压釜、煤气发生炉等。 (2)换热压力容器(代号E):主要是用于完成介质的热量交换的压力容器,如管壳式余热锅炉、热交换器、冷却器、冷凝器、蒸发器、加热器、消毒锅、染色器、烘缸、蒸炒锅、预热锅、溶剂预热器、蒸锅、蒸脱机、电热蒸汽发生器、煤气发生炉水夹套等。 (3)分离压力容器(代号S):主要是用于完成介质的流体压力平衡缓冲和气体净化分离的压力容器,如分离器、过滤器、集油器、缓冲器、洗涤器、吸收塔、铜洗塔、干燥塔、汽提塔、分汽缸、除氧器等。 (4)储存压力容器(代号C,其中球罐代号B):主要是用于储存、盛装气体、液体、液化气体等介质的压力容器,如各种型式的储罐。 在一种压力容器中,如同时具备两个以上的工艺作用原理时,应当按工艺过程中的主要作用来划分品种。
相关规定标准
与其他技术标准,与其他管理规定的关系: 本规程是固定式压力容器的基本安全性能保证,也是必须满足和达到的安全要求,其他标准不得低于本规程的各项规定; 不符合本规定时,如何处理: 指“三新”试验、研究数据报告报国家质检总局委托技术机构评审、处理,并将结果经总局批准后进行试制; 引用现行有效标准:十项 覆盖了各类形式、材质的压力容器设计、制造,具有适用性。 压力容器
(1)GB 150 -1998 钢制压力容器 (2)JB 4732 –1995 钢制压力容器—分析设计标准 (3)GB 151 -1999 管壳式换热器 (4)GB 12337- 1998 钢制球形储罐 (5)JB/T 4710 -2005 钢制塔式容器 (6)JB/T 4731 -2005 钢制卧式容器 (7)JB/T 4734 -2002 铝制焊接容器 (8)JB/T 4745 - 2002 钛制焊接容器 (9)JB/T 4755 -2006 铜制压力容器 (10)JB/T 4756 -2006 镍及镍合金制压力容器
编辑本段其他介绍
内部或外部承受气体或液体压力,并对安全性有较高要求的密封容器。早期主要用于化学工业,压力 压力容器
多在10兆帕以下。合成氨和高压聚乙烯等高压生产工艺出现后,要求压力容器的压力达100兆帕以上 。随着化工和石油化工等工业的发展,压力容器的工作温度范围越来越宽,容量不断增大,有些还要求耐介质腐蚀。20世纪60年代开始,核电站的发展对反应堆压力容器提出了更高的安全和技术要求,从而促进了压力容器的进一步发展,广泛应用于各工业部门。压力容器主要为圆柱形,也有球形或其他形状。根据结构形式,可分为多层式压力容器,绕板式压力容器、型槽绕带式压力容器、热套式压力容器、锻焊式压力容器和厚板卷焊式压力容器等。大多数压力容器由钢制成,也有的用铝、钛等有色金属和玻璃钢、预应力混凝土等非金属材料制成。压力容器在使用中如发生爆炸,会造成灾难性事故。为了使压力容器在确保安全的前提下达到设计先进、结构合理、易于制造、使用可靠和造价经济等目的,各国都根据本国具体情况制定了有关压力容器的标准、规范和技术条件,对压力容器的设计、制造、检验和使用等提出具体和必须遵守的规定。
编辑本段压力容器的检验
压力容器外部检查
亦称运行中检查,检查的主要内容有:压力容器外表面有无裂纹、变形、泄漏、局部过热等不正常现象;安全附件是否齐全、灵敏、可靠;紧固螺栓是否完好、全部旋紧;基础有无下沉、倾斜以及防腐层有无损坏等异常现象。 外部检查既是检验人员的工作,也是操作人员日常巡回检查项目。发现危及安全现象(如受压元件产生裂纹、变形、严重泄渗等)应予停车并及时报告有关人员。
压力容器内外部检验
压力容器内外部检验这种检验必须在停车和容器内部清洗干净后才能进行。检验的主要内容除包括外部检查的全部内容外,还要检验内外表面的腐蚀磨损现象;用肉眼和放大镜对所有焊缝、封头过渡区及其他应力集中部位检查有无裂纹,必要时采用超声波或射线探伤检查焊缝内部质量;测量壁厚。若测得壁厚小于容器最小壁厚时,应重新进行强度校核,提出降压使用或修理措施;对可能引起金属材料的金相组织变化的容器,必要时应进行金相检验;高压、超高压容器的主要螺栓应利用磁粉或着色进 压力容器
行有无裂纹的检查等。通过内外部检验,对检验出的缺陷要分析原因并提出处理意见。修理后要进行复验。 压力容器内外部检验周期为每三年一次,但对强烈腐蚀性介质、剧毒介质的容器检验周期应予缩短。运行中发现有严重缺陷的容器和焊接质量差、材质对介质抗腐蚀能力不明的容器也均应缩短检验周期。
压力容器全面检验
压力容器全面检验除了上述检验项目外,还要进行耐压试验(一般进行水压试验)。对主要焊缝进行无损探伤抽查或全部焊缝检查。但对压力很低、非易燃或无毒、无腐蚀性介质的容器,若没有发现缺陷,取得一定使用经验后,可不作无损探伤检查。 容器的全面检验周期,一般为每六年至少进行一次。对盛装空气和惰性气体的制造合格容器,在取得使用经验和一两次内外检验确认无腐蚀后,全面检验周期可适当延长。
编辑本段压力容器的操作条件
压力
压力容器的压力可以来自两个方面,一是压力是容器外产生(增大)的,二是压力是容器内产生(增大)的。 最高工作压力,多指在正常操作情况下,容器顶部可能出现的最高压力。 设计压力,系是指在相应设计温度下用以确定容器壳体厚度的压力,亦即标注在铭牌上的容器设计压力,压力容器的设计压力值不得低于最高工作压力;当容器各部位或受压元件所承受的液柱静压力达到5%设计压力时,则应取设计压力和液柱静压力之和进行该部位或元件的设计计算;装有安全阀的压力容器,其设计压力不得低于安全阀的开启压力或爆破压力。容器的设计压力确定应按GB 150的相应规定。
温度
压力容器
金属温度,系指容器受压元件沿截面厚度的平均温度。任何情况下,元件金属的表面温度不得超过钢材的允许使用温度。 设计温度,系指容器在正常操作情况下,在相应设计压力下,壳壁或元件金属可能达到的最高或最低温度。当壳壁或元件金属的温度低于—20℃,按最低温度确定设计温度;除此之外,设计温度一律按最高温度选取。设计温度值不得低于元件金属可能达到的最高金属温度;对于0℃以下的金属温度,则设计温度不得高于元件金属可能达到的最低金属温度。容器设计温度(即标注在容器铭牌上的设计介质温度)是指壳体的设计温度。
介质
生产过程所涉及的介质品种繁多,分类方法也有多种。按物质状态分类,有气体、液体、液化气体、单质和混合物等;按化学特性分类,则有可燃、易燃、惰性和助燃四种;按它们对人类毒害程度,又可分为极度危害(I)、高度危害(Ⅱ)、中度危害(Ⅲ)、轻度危害(Ⅳ)四级。 易燃介质:是指与空气混合的爆炸下限小于10%,或爆炸上限和下限之差值大于等于20%的气体,如一甲胺、乙烷、乙烯等。 毒性介质:《压力容器安全技术监察规程》(以下简称《容规》)对介质毒性程度的划分参照GB 5044《职业性接触毒物危害程度分级》分为四级。其最高容许浓度分别为:极度危害(I级)<0.1 mg/m3;高度危害(Ⅱ级)0. 1 ~<1.0 mg/m3;中度危害(Ⅲ级)1.0 ~<10 mg/m3;轻度危害(1V级)≥10 mg/m3。 压力容器中的介质为混合物质时,应以介质的组成并按毒性程度或易燃介质的划分原则,由设计单位的工艺设计部门或使用单位的生产技术部门决定介质毒性程度或是否属于易燃介质。 腐蚀性介质,石油化工介质对压力容器用材具有耐腐蚀性要求。有时是因介质中有杂质,使腐蚀性加剧。腐蚀介质的种类和性质各不相同,加上工艺条件不同,介质的腐蚀性也不相同。这就要求压力容器在选用材料时,除了应满足使用条件下的力学性能要求外,还要具备足够的耐腐蚀性,必要时还要采取一定的防腐措施。
编辑本段压力容器事故率高的原因
设备事故率的大小,影响因素较多,也十分复杂。它不但与整个工业领域的各项技术水平有关,而且 压力容器
还与社会文化和人的素质有关。 在相同的条件下,压力容器的事故率要比其他机械设备高得多。本来压力容器大多数是承受静止而比较稳定的载荷,并不像一般转动机械那样容易因过度磨损而失效,也不像高速发动机那样因承受高周期反复载荷而容易发生疲劳失效。究其原因,主要有以下几方面。
技术条件
1)使用条件比较苛刻。压力容器不但承受着大小不同的压力载荷(在一般情况下还是脉动载荷)和其他载荷,而且有的还是在高温或深冷的条件下运行,工作介质又往往具有腐蚀性,工况环境比较恶劣。 2)容易超负荷。容器内的压力常常会因操作失误或发生异常反应而迅速升高,而且往往在尚未发现的情况下,容器即已破裂。 3)局部应力比较复杂。例如,在容器开孔周围及其他结构不连续处,常会因过高的局部应力和反复的加载卸载而造成疲劳破裂。 4)常隐藏有严重缺陷。焊接或锻制的容器,常会在制造时留下微小裂纹等严重缺陷,这些缺陷若在运行中不断扩大,或在适当的条件(如使用温度、工作介质性质等)下都会使容器突然破裂。
使用管理
1)使用不合法。购买一些没有压力容器制造资质的工厂生产的设备作为承压设备,并非法当压力容器使用,以避开报装、使用注册登记和检验等安全监察管理,留下无穷后患。 2)容器虽合法而管理操作不符合要求。企业不配备或缺乏懂得压力容器专业知识和了解国家对压力容器的有关法规、标准的技术管理人员。压力容器操作人员未经必要的专业培训和考核,无证上岗,极易造成操作事故。 3)压力容器管理处于“四无”状态。即一无安全操作规程,二无建立压力容器技术档案,三无压力容器持证上岗人员和相关管理人员,四无定期检验管理。使压力容器和安全附件处于盲目使用、盲目管理的失控状态。 4)擅自改变使用条件,擅自修理改造。经营者无视压力容器安全,为了适应某种工艺的需要而随意改 压力容器
变压力容器的用途和使用条件,甚至带“病”操作,违规超负荷超压生产等造成严重后果。 5)地方政府的安全监察管理部门和相关行政执法部门管理不到位。安全监察管理部门和相关行政执法部门的工作未能使用社会主义市场经济的发展,特别是规模小、分布广的民营和私营企业的激增,使压力容器的安全监察管理存在盲区和管理不到位的现象,助长了压力容器的违规使用和违规管理。
编辑本段压力容器应用举例-反应釜
反应釜广泛应用于石油、化工、橡胶、农药、染料、医药、食品,用来完成硫化、硝化、氢化