㈠ 自行车行驶中,主要传动装置有哪些
引言:自行车在我们的日常生活中是很常见的代步工具,在汽车,摩托车,电动车没有出来之前,电动车基本是每家每户必备一辆。自行车不限时间,不限速度非常的方便。自行车行驶中主要传动装置有哪些?小编给大家科普一下。
三、骑自行车的坏处
每日骑自行车的时间最多不能超过2个小时,骑车时间长了容易得前列腺炎,对身体有不好影响,对腰容易产生刺激,所以专业自行车运动员都有自己保健医生。
㈡ 液压传动技术有哪些优缺点
一、液压传动的优点
1、液压传动可以输出大的推力或大转矩,可实现低速大吨位运动,这是其它传动方式所不能比的突出优点。
2、 液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。
3、 在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4、液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
5、操作简单,调整控制方便,易于实现自动化。特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。
6、液压系统便于实现过载保护,使用安全、可靠。由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。
7、液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。
二、液压传动的缺点
1、油的泄漏和液体的可压缩性会影响执行元件运动的准确性,故无法保证严格的传动比。
2、对油温的变化比较敏感,不宜在很高或很低的温度条件下工作。
3、能量损失(泄漏损失、溢流损失、节流损失、摩擦损失等)较大,传动效率较低,也不适宜作远距离传动。
4、系统出现故障时,不易查找原因。 综上所述,液压传动的优点是主要的、突出的,它的缺点随着科学技术的发展会逐步克服的,液压传动技术的发展前景是非常广阔的。
液压传动是指以液体为工作介质进行能量传递和控制的一种传动方式。在液体传动中,根据其能量传递形式不同,又分为液力传动和液压传动。液力传动主要是利用液体动能进行能量转换的传动方式,如液力耦合器和液力变矩器。液压传动是利用液体压力能进行能量转换的传动方式。在机械上采用液压传动技术,可以简化机器的结构,减轻机器质量,减少材料消耗,降低制造成本,减轻劳动强度,提高工作效率和工作的可靠性。
我国的液压工业开始于20世纪50年代,其产品最初只用于机床和锻压设备,后来才用到拖拉机和工程机械上。自从1964年从国外引进一些液压元件生产技术,并自行设计液压产品以来,我国的液压件已在各种机械设备上得到了广泛的使用。20世纪80年代起更加速了对先进液压产品和技术的有计划引进、消化、吸收和国产化工作,以确保我国的液压技术能在产品质量、经济效益、研究开发等各个方面全方位地赶上世界水平。
当前,液压技术在实现高压、高速、大功率、高效率、低噪声、经久耐用、高度集成化等各项要求方面都取得了重大的进展,在完善比例控制、伺服控制、数字控制等技术上也有许多新成就。此外,在液压元件和液压系统的计算机辅助设计、计算机仿真和优化以及微机控制等开发性工作方面,日益显示出显著的优势。
液压传动主要应用如下:
(1)一般工业用液压系统塑料加工机械(注塑机)、压力机械(锻压机)、重型机械(废钢压块机)、机床(全自动六角车床、平面磨床)等;
(2)行走机械用液压系统工程机械(挖掘机)、起重机械(汽车吊)、建筑机械(打桩机)、农业机械(联合收割机)、汽车(转向器、减振器)等;
(3)钢铁工业用液压系统 冶金机械(轧钢机)、提升装置(升降机)、轧辊调整装置等;
(4)土木工程用液压系统 防洪闸门及堤坝装置(浪潮防护挡板)、河床升降装置、桥梁操纵机构和矿山机械(凿岩机)等;
(5)发电厂用液压系统涡轮机(调速装置)等;
(6)特殊技术用液压系统 巨型天线控制装置、测量浮标、飞机起落架的收放装置及方向舵控制装置、升降旋转舞台等;
(7)船舶用液压系统 甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;
(8)军事工业用液压系统火炮操纵装置、舰船减摇装置、飞行器仿真等。
㈢ 飞机轮子是怎么驱动的
民航客机的轮子是没有动力的,所有动力都来自于发动机,即使飞机在地面的情况下,只要发动机不停车,还在运转中,就能够提供滑行的动力,不过飞机在地面上滑行时发动机处于低功率运行中。
平时常见的民航干线客机在地面滑行,转向时都是由机长操纵手轮,实现前轮控制方向。客机一般也装备有方向舵,在脚下的位置,不过一般转向幅度小,大型客机不常使用。
通俗的说,所谓喷气式飞机就是依靠向后喷气从而产生向前的推力,这样说起来好像很简单,实际上飞机发动机是一个很精细的系统,从进气道进入的空气要最终实现能够推动飞机的力量,需要经历一个复杂的过程。
(3)循环传动装置起落架扩展阅读
起飞前的滑行过程:
1、推出,飞机由停机位推出,一般使用拖车推出。尽管发动机能够提供反向动力,将飞机向后推动,但是开反推对于发动机的损耗比较大,因此通常情况都是由拖车推动,而不使用飞机自身动力。
2、滑行,飞机在滑行道上由发动机提供动力进行滑行,进入起飞跑道,并逐渐加速,达到起飞速度。
3、起飞,飞机上还装备有辅助动力系统,当飞机在地面时,辅助动力系统提供空调和照明,节省发动机的动力,当飞机爬升时,照明和空调依然由辅助动力系统提供,以便于飞机发动机将所有功率都集中在飞机的爬升上。
㈣ 名人故事:天才少年达·芬奇
名人故事:天才少年达·芬奇
1452年4月15日22时30分,在意大利佛罗伦萨附近的海滨小镇——芬奇镇的一个名为安奇亚诺的小村庄里,一个叫列昂纳多·达·芬奇的小私生子诞生了。他的父亲是佛罗伦萨有名的公证人,家庭富有。达·芬奇的童年是在祖父的田庄里度过的。孩提时代的达·芬奇聪明伶俐,勤奋好学,兴趣广泛。他歌唱得很好,很早就学会弹七弦琴和吹奏长笛。他的即兴演唱,不论歌词还是曲调,都让人惊叹。他尤其喜爱绘画,常为邻里们作画,有“绘画神童”的美称。
皮耶罗确信儿子有绘画天赋,便将小芬奇送往佛罗伦萨,师从着名的艺术家韦罗基奥,开始系统地学习造型艺术。此时的达·芬奇只有14岁。 当时,皮耶罗受一位农民的委托,要画一幅盾面画。他听说儿子会画画,想试试儿子的画艺,便将这任务交给了小芬奇。小芬奇凭借自己丰富的想象力,用了一个月的时间,画成了一个骇人的妖怪美杜莎。这幅作品完成后,小芬奇请父亲来到他的房间。他把窗遮去一半,将画架竖在光线恰好落在妖怪身上的地方。皮耶罗刚走进房间时,一眼就看到了这个面目狰狞的妖怪,吓得大叫起来。小芬奇则笑着对父亲说:“你把画拿去吧,这就是它该产生的效果。”
韦罗基奥的作坊是当时佛罗伦萨着名的艺术中心,经常有意大利人文主义者在这里聚会,讨论学术问题。达·芬奇在这里结识了一大批知名的艺术家、科学家和人文主义者,开始接受人文主义的熏陶。 达·芬奇在20岁时已有很高的艺术造诣,他用画笔和雕刻刀去表现大自然和现实生活的真、善、美,热情歌颂人生的幸福和大自然的美妙。
达·芬奇并不满足他的这些才干,他要掌握人类思想的各个领域。他眼光独到,做事干练,具有艺术的灵魂。有一次,他在山里迷了路,走到了一个漆黑的山洞前。他在后来回忆这段经历时说:“我突然产生了两种情绪——害怕和渴望:对漆黑的洞穴感到害怕,又想看看其中是否会有什么怪异的东西。”他一生都被这两种情绪所羁绊——对生活的不可知性或无力探知的神秘感到害怕,而又想把这个神秘的不可知性加以揭露,加以研究,解释其含义,描绘其壮观。
科学巨匠
在文艺复兴早期,人们盲目地接受传统观念,崇拜古代权威和古典着作。人们学习科学知识也只是学习像《圣经》一样的亚里士多德理论,只相信文字记载。达·芬奇反对经院哲学家们把过去的教义和言论作为知识基础,他鼓励人们向大自然学习,到自然界中寻求知识和真理。他认为知识起源于实践,只有从实践出发,通过实践去探索科学的奥秘。他说“理论脱离实践是最大的不幸”,“实践应以好的理论为基础”。达·芬奇提出并掌握了这种先进的科学方法,采用这种科学方法去进行科学研究,在自然科学方面作出了巨大的贡献。他提出的这一方法,后来得到了伽利略的发展,并由英国哲学家培根从理论上加以总结,成为近代自然科学的最基本方法。 达·芬奇坚信科学,他对宗教感到厌恶,抨击天主教为“一个贩卖欺骗的店铺”。他说:“真理只有一个,他不是在宗教之中,而是在科学之中。”达·芬奇的实验工作方法为后来哥白尼、伽利略、开普勒、爱因斯坦、牛顿等人的发明创造开辟了道路。
1、天文
达·芬奇对传统的“地球中心说”持否定的观点。他认为地球不是太阳系的中心,更不是宇宙的中心,而只是一颗绕太阳运转的行星,太阳本身是不运动的。达·芬奇还认为月亮自身并不发光,它只是反射太阳的光辉。他的这些观点的提出早于哥白尼的“日心说”,甚至在当时,达·芬奇就幻想利用太阳能了。
2、物理
达·芬奇重新发现了液体压力的概念,提出了连通器原理。他指出:在连通器内,同一液体的液面高度是相同的,不同液体的液面高度不同,液体的高度与密度成反比。他发现了惯性原理,后来为伽利略的实验所证明。他认为一个抛射体最初是沿倾斜的直线上升,在引力和冲力的混合作用下作曲线位移,最后冲力耗尽,在引力的作用下作垂直下落运动。他的这一发现使亚里士多德的落体学说产生了动摇。他发展了杠杆原理,除推导出作用力与臂长关系外,还算出了速度与臂长的关系。他指出了“永动机”作为能源的不可能性。达·芬奇还预示了物质的原子原理,形象生动的描述了原子能的威力:“那东西将从地底下爆起,……使人在无声的气息中突然死去,城堡也遭到彻底毁坏,看起来在空中似乎有强大的破坏力。”
3、医学
达·芬奇在生理解剖学上也取得了巨大的成就,被认为是近代生理解剖学的始祖。他掌握了人体解剖知识,从解剖学入手,研究了人体各部分的构造。他最先采用蜡来表现人脑的内部结构,也是设想用玻璃和陶瓷制作心脏和眼睛的第一人。 子宫内的胎儿(达芬奇)他发现了血液的功能,认为血液对人体起着新陈代谢的作用,并认为了血液是不断循环的。他说血液不断的改造全身,把养料带到身体需要的各个部分,再把体内废物带走。达·芬奇研究过心脏,他发现心脏有四个腔,并画出了心脏瓣膜。他认为老年人的死因之一是动脉硬化,而产生动脉硬化的原因是缺乏运动。后来,英国科学家哈维证实和发展了达·芬奇这些生理解剖学的成果。
4、建筑
理想中的米兰(达芬奇)在建筑方面,达·芬奇也表现出了卓越的才华。他设计过桥梁、教堂、城市街道和城市建筑。在城市街道设计中,他将车马道和人行道分开。设计城市建筑时,具体规定了房屋的高度和街道的宽度。米兰的护城河就是他设计和建造的。
5、军事
达·芬奇的研究和发明还涉及到了军事领域。他发明了簧轮枪、子母弹、三管大炮、坦 坦克车(达芬奇)克车、浮动雪鞋、潜水服及潜水艇、双层船壳战舰、滑翔机、扑翼飞机和直升机、旋转浮桥等等。2008年4月26日,在瑞士西部城市帕耶讷,36岁的瑞士人奥利维耶·维耶提-特帕使用由达·芬奇设计的'金字塔型降落伞从距地面600米高的直升机上成功跳下。
6、水利
达·芬奇对水利学的研究比意大利的学者克斯铁列早一个世纪。为了排除泥沙,他作了疏通亚诺河的施工计划。他设计并亲自主持修建了米兰至帕维亚的运河灌溉工程。由他经手建造的一些水库、水闸、拦水坝便利了农田灌溉,推动了农业生产的发展。有些水利设施至今仍在发挥作用。
7、地质
达·芬奇根据高山上有海中动物化石的事实推断出地壳有过变动,指出地球上洪水的痕迹是海陆变迁的证明,这个思想与300年后赫顿在地质学方面的发现颇为近似。并且在麦哲伦环球航行之前,他就计算出地球的直径为7000余英里。
8、达·芬奇密码筒
看过《达·芬奇密码》的人大概都知道达·芬奇密码筒。而事实上在当时的社会,人们也越来越重视文件的保密工作。达·芬奇设计的这种密码筒造型古典,内涵着文艺复兴特质,设计优雅,符合达·芬奇的睿智风格。按照故事情节,密码筒里藏匿着关于郇山隐修会乃至整个基督教最大秘密的莎草纸。达·芬奇设计的密码筒内有一个装着醋液的容器,如果强行砸烂密码筒,醋液就会流出溶解莎草纸。要打开密码筒,必须解开一个5位数的密码,密码筒上有5个转盘,每个转盘上都有26个字母,可能作为密码的排列组合多达11881376种。
9、设计出初级机器人
最为奇妙的是,达·芬奇还设计了一套方法以做心脏修复手术。
达·芬奇曾称自己没有受过书本教育,大自然才是他真正的老师。为了认识自然,认识自己,这位文艺复兴时期的天才不遗余力地探索着。为了认识人类自身,达·芬奇亲自解剖了几十具尸体,对人体骨骼、肌肉、关节以及内脏器官进行了精确了解和绘制。
令人惊讶的是,当年达·芬奇连人体循环系统工作机理的概念都没有。更为神奇的是,2005年一名英国外科医生还利用达·芬奇设计的方法做心脏修复手术。不过,解剖学的研究在当时并没有给达·芬奇带来声誉,而是遭到了无数的诽谤。
不过,就是有了对人体的这种深入了解,达·芬奇才在手稿中绘制了西方文明世界的第一款人形机器人。
人形机器人(达芬奇)达·芬奇赋予了这个机器人木头、皮革和金属的外壳。而如何让机器人动起来,才是让达·芬奇大伤脑筋的。他想到了用下部的齿轮作为驱动装置,由此通过两个机械杆的齿轮再与胸部的一个圆盘齿轮咬合,机器人的胳膊就可以挥舞,可以坐或者站立。更绝的是,再通过一个传动杆与头部相连,头部就可以转动甚至开合下颌。而一旦配备了自动鼓装置后,这个机器人甚至还可以发出声音。
原来,500多年前,就已经有了机器人的雏形。
10、点燃现代汽车发明灵感之火
达·芬奇长达1万多页的手稿(现存约6000多页)至今仍在影响科学研究,他就是一位现代世界的预言家,而他的手稿也被称为一部15世纪科学技术真正的网络全书。
很早,达·芬奇就对当时的四轮马车不满。在他的科学世界中,早就有了汽车的影子。事实上,点燃现代汽车发明灵感之火的正是这辆“达·芬奇汽车”。
既然是汽车就要考虑动力问题,达·芬奇在汽车中部安装了两根弹簧以解决这个问题。人力转动车的后轮使得各个齿轮相互咬合,弹簧绷紧就产生了力,再通过杠杆作用将力传递到轮子上。
那么怎么控制车速呢?达·芬奇也想到了。他在车身上安装了一个圆盘装置,圆盘表面设置了很多方形的木块,和每个轮子连接的铁杆的另一端与圆盘相接,这就是用于控制车速的装置。圆盘上放置的木块数量越多,与铁杆之间的摩擦就会越大,阻力也越大,轮子的运转速度越慢,行驶的距离越长。
当然,达·芬奇也想到了刹车装置。位于齿轮之间有一个木块,拉动绳索将木块卡在齿轮之间,车就可以停止。不过,这辆汽车不能载人,因为仅靠弹簧的动力根本无法行驶很长的距离。
同时,达·芬奇还将弹簧巧妙地运用在了钟表设计上。后来大型钟表采用的原理,就是出自达·芬奇的设想。只是在这个设想中,弹簧的弹力被物体的重力所代替,物体向下的重力通过众多齿轮咬合作用被均匀传递,钟表便得以保持匀速运动。
此外,乐器、闹钟、自行车、照相机、温度计、烤肉机、纺织机、起重机、挖掘机……达·芬奇曾有过无数的发明设计,而这些发明设计在当时如果发表足足可以让我们的世界科学文明进程提前100年。
11、对机械世界痴迷不已
水下呼吸装置、拉动装置、发条传动装置、滚珠装置、反向螺旋、差动螺旋、风速计和陀螺仪……达·芬奇将他无数的奇思妙想呈现在世人面前。故事的开头不得不说起达·芬奇初到佛罗伦萨学画的经历。事实上,这段经历开启了艺术家达·芬奇的大门,也开启了科学家达·芬奇的大门。
机械设计(达芬奇)1460年达·芬奇随父亲来到佛罗伦萨,开始了他的学徒生涯,同时开始学画。学画的达·芬奇参与安装佛罗伦萨圣母玛丽亚大教堂穹顶灯塔上的巨型铜球,由此接触并感受到了各式各样机械系统的神奇。
佛罗伦萨圣母玛丽亚大教堂是文艺复兴建筑的开端。达·芬奇在安装穹顶灯塔上的巨型铜球时,亲眼目睹了三速提升机等机械装置的效率,深感其中的神奇。
由此,布鲁内莱斯基的机械系统设计理念对达·芬奇产生了很大影响。当时一批锡耶纳工程师对达·芬奇的科学世界也产生了重要影响。锡耶纳的工程师们设计了一种外形像船的河道淤泥挖掘机,用来清除浅水口的沙砾和淤泥,还有一种能够提高装载量又加快行驶速度的桨叶船。这些锡耶纳工程师的发明,让达·芬奇对机械的魔力产生了巨大的兴趣。
从此,达·芬奇对机械世界痴迷不已。
艺术巨匠
说到艺术创作,在文艺复兴时期当数达·芬奇、米开朗基罗和拉斐尔的成就最高。他们的艺术成就达到了西方造型艺术继古希腊之后的第二次高峰,仅绘画而言,则达到了欧洲的第一次高峰。其中尤以达·芬奇最为突出,恩格斯称他是巨人中的巨人。在艺术创作方面,达·芬奇解决了造型艺术三个领域——建筑、雕刻、绘画中的重大问题:
1、解决了纪念性中央圆屋顶建筑物设计和理想城市的规划问题;
2、解决了15世纪以来雕刻家深感棘手的骑马纪念碑雕像的问题;
3、解决了当时绘画中两个重要领域——纪念性壁画和祭坛画的问题。
达·芬奇的艺术作品不仅能像镜子似的反映事物,而且还以思考指导创作,从自然界中观察和选择美的部分加以表现。壁画《最后的晚餐》《安吉里之战》和肖像画《蒙娜丽莎》是他一生的三大杰作。这三幅作品是达·芬奇为世界艺术宝库留下的珍品中的珍品,是欧洲艺术的拱顶之石。
《蒙娜丽莎》的绘制前后历时四年。据说模特是一个佛罗伦萨女人,刚刚丧婴,为解除她的痛苦并露出自然的微笑,列昂纳多便请人来为她奏乐。她的微笑是人们津津乐道的话题,有时似乎严肃有时又很温柔,有时略含忧伤有时又显讥讽。蒙娜丽莎的右手更被称为“美术史上最美的一只手”。
《最后的晚餐》绘制在米兰格雷契修道院饭厅的墙壁上。达·芬奇一改前人绘制“最后晚餐”围桌而座的布局,让所有人物坐成一排面向观众,而耶稣基督坐在最中间。
溘然长逝
达·芬奇晚年被法兰西国王弗朗索瓦一世邀入法国,弗朗索瓦一世给予了他至高的接待,将其安置于昂布瓦斯城堡中的克鲁克斯庄园,并时不时地去请教。1519年5月2日,年事已高的达·芬奇因病逝世了,据说他是在赶来的弗朗索瓦一世怀中咽下了最后一口气。
;㈤ 设计题目 设计一带式运输机上的二级减速器(设计第一级.第二级减速均采用斜齿圆柱齿轮传动)
计算过程及计算说明
一、传动方案拟定
第三组:设计单级圆柱齿轮减速器和一级带传动
(1) 工作条件:使用年限8年,工作为二班工作制,载荷平稳,环境清洁。
(2) 原始数据:滚筒圆周力F=1000N;带速V=2.0m/s;
滚筒直径D=500mm;滚筒长度L=500mm。
二、电动机选择
1、电动机类型的选择: Y系列三相异步电动机
2、电动机功率选择:
(1)传动装置的总功率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.982×0.97×0.99×0.96
=0.85
(2)电机所需的工作功率:
P工作=FV/1000η总
=1000×2/1000×0.8412
=2.4KW
3、确定电动机转速:
计算滚筒工作转速:
n筒=60×1000V/πD
=60×1000×2.0/π×50
=76.43r/min
按手册P7表1推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’a=3~6。取V带传动比I’1=2~4,则总传动比理时范围为I’a=6~24。故电动机转速的可选范围为n’d=I’a×
n筒=(6~24)×76.43=459~1834r/min
符合这一范围的同步转速有750、1000、和1500r/min。
根据容量和转速,由有关手册查出有三种适用的电动机型号:因此有三种传支比方案:如指导书P15页第一表。综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min 。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132S-6。
其主要性能:额定功率:3KW,满载转速960r/min,额定转矩2.0。质量63kg。
三、计算总传动比及分配各级的伟动比
1、总传动比:i总=n电动/n筒=960/76.4=12.57
2、分配各级伟动比
(1) 据指导书P7表1,取齿轮i齿轮=6(单级减速器i=3~6合理)
(2) ∵i总=i齿轮×I带
∴i带=i总/i齿轮=12.57/6=2.095
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=n电机=960r/min
nII=nI/i带=960/2.095=458.2(r/min)
nIII=nII/i齿轮=458.2/6=76.4(r/min)
2、 计算各轴的功率(KW)
PI=P工作=2.4KW
PII=PI×η带=2.4×0.96=2.304KW
PIII=PII×η轴承×η齿轮=2.304×0.98×0.96
=2.168KW
3、 计算各轴扭矩(N•mm)
TI=9.55×106PI/nI=9.55×106×2.4/960
=23875N•mm
TII=9.55×106PII/nII
=9.55×106×2.304/458.2
=48020.9N•mm
TIII=9.55×106PIII/nIII=9.55×106×2.168/76.4
=271000N•mm
五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本P83表5-9得:kA=1.2
PC=KAP=1.2×3=3.9KW
由课本P82图5-10得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由课本图5-10得,推荐的小带轮基准直径为
75~100mm
则取dd1=100mm>dmin=75
dd2=n1/n2•dd1=960/458.2×100=209.5mm
由课本P74表5-4,取dd2=200mm
实际从动轮转速n2’=n1dd1/dd2=960×100/200
=480r/min
转速误差为:n2-n2’/n2=458.2-480/458.2
=-0.048<0.05(允许)
带速V:V=πdd1n1/60×1000
=π×100×960/60×1000
=5.03m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心矩
根据课本P84式(5-14)得
0. 7(dd1+dd2)≤a0≤2(dd1+dd2)
0. 7(100+200)≤a0≤2×(100+200)
所以有:210mm≤a0≤600mm
由课本P84式(5-15)得:
L0=2a0+1.57(dd1+dd2)+(dd2-dd1)/4a0
=2×500+1.57(100+200)+(200-100)2/4×500
=1476mm
根据课本P71表(5-2)取Ld=1400mm
根据课本P84式(5-16)得:
a≈a0+Ld-L0/2=500+1400-1476/2
=500-38
=462mm
(4)验算小带轮包角
α1=1800-dd2-dd1/a×57.30
=1800-200-100/462×57.30
=1800-12.40
=167.60>1200(适用)
(5)确定带的根数
根据课本P78表(5-5)P1=0.95KW
根据课本P79表(5-6)△P1=0.11KW
根据课本P81表(5-7)Kα=0.96
根据课本P81表(5-8)KL=0.96
由课本P83式(5-12)得
Z=PC/P’=PC/(P1+△P1)KαKL
=3.9/(0.95+0.11) ×0.96×0.96
=3.99
(6)计算轴上压力
由课本P70表5-1查得q=0.1kg/m,由式(5-18)单根V带的初拉力:
F0=500PC/ZV(2.5/Kα-1)+qV2
=[500×3.9/4×5.03×(2.5/0.96-1)+0.1×5.032]N
=158.01N
则作用在轴承的压力FQ,由课本P87式(5-19)
FQ=2ZF0sinα1/2=2×4×158.01sin167.6/2
=1256.7N
2、齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不在,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45钢,调质,齿面硬度220HBS;根据课本P139表6-12选7级精度。齿面精糙度Ra≤1.6~3.2μm
(2)按齿面接触疲劳强度设计
由d1≥76.43(kT1(u+1)/φ[σH]2)1/3
由式(6-15)
确定有关参数如下:传动比i齿=6
取小齿轮齿数Z1=20。则大齿轮齿数:
Z2=iZ1=6×20=120
实际传动比I0=120/2=60
传动比误差:i-i0/I=6-6/6=0%<2.5% 可用
齿数比:u=i0=6
由课本P138表6-10取φd=0.9
(3)转矩T1
T1=9.55×106×P/n1=9.55×106×2.4/458.2
=50021.8N•mm
(4)载荷系数k
由课本P128表6-7取k=1
(5)许用接触应力[σH]
[σH]= σHlimZNT/SH由课本P134图6-33查得:
σHlimZ1=570Mpa σHlimZ2=350Mpa
由课本P133式6-52计算应力循环次数NL
NL1=60n1rth=60×458.2×1×(16×365×8)
=1.28×109
NL2=NL1/i=1.28×109/6=2.14×108
由课本P135图6-34查得接触疲劳的寿命系数:
ZNT1=0.92 ZNT2=0.98
通用齿轮和一般工业齿轮,按一般可靠度要求选取安全系数SH=1.0
[σH]1=σHlim1ZNT1/SH=570×0.92/1.0Mpa
=524.4Mpa
[σH]2=σHlim2ZNT2/SH=350×0.98/1.0Mpa
=343Mpa
故得:
d1≥76.43(kT1(u+1)/φ[σH]2)1/3
=76.43[1×50021.8×(6+1)/0.9×6×3432]1/3mm
=48.97mm
模数:m=d1/Z1=48.97/20=2.45mm
根据课本P107表6-1取标准模数:m=2.5mm
(6)校核齿根弯曲疲劳强度
根据课本P132(6-48)式
σF=(2kT1/bm2Z1)YFaYSa≤[σH]
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×120mm=300mm
齿宽:b=φdd1=0.9×50mm=45mm
取b=45mm b1=50mm
(7)齿形系数YFa和应力修正系数YSa
根据齿数Z1=20,Z2=120由表6-9相得
YFa1=2.80 YSa1=1.55
YFa2=2.14 YSa2=1.83
(8)许用弯曲应力[σF]
根据课本P136(6-53)式:
[σF]= σFlim YSTYNT/SF
由课本图6-35C查得:
σFlim1=290Mpa σFlim2 =210Mpa
由图6-36查得:YNT1=0.88 YNT2=0.9
试验齿轮的应力修正系数YST=2
按一般可靠度选取安全系数SF=1.25
计算两轮的许用弯曲应力
[σF]1=σFlim1 YSTYNT1/SF=290×2×0.88/1.25Mpa
=408.32Mpa
[σF]2=σFlim2 YSTYNT2/SF =210×2×0.9/1.25Mpa
=302.4Mpa
将求得的各参数代入式(6-49)
σF1=(2kT1/bm2Z1)YFa1YSa1
=(2×1×50021.8/45×2.52×20) ×2.80×1.55Mpa
=77.2Mpa< [σF]1
σF2=(2kT1/bm2Z2)YFa1YSa1
=(2×1×50021.8/45×2.52×120) ×2.14×1.83Mpa
=11.6Mpa< [σF]2
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=m/2(Z1+Z2)=2.5/2(20+120)=175mm
(10)计算齿轮的圆周速度V
V=πd1n1/60×1000=3.14×50×458.2/60×1000
=1.2m/s
六、轴的设计计算
输入轴的设计计算
1、按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据课本P235(10-2)式,并查表10-2,取c=115
d≥115 (2.304/458.2)1/3mm=19.7mm
考虑有键槽,将直径增大5%,则
d=19.7×(1+5%)mm=20.69
∴选d=22mm
2、轴的结构设计
(1)轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定
(2)确定轴各段直径和长度
工段:d1=22mm 长度取L1=50mm
∵h=2c c=1.5mm
II段:d2=d1+2h=22+2×2×1.5=28mm
∴d2=28mm
初选用7206c型角接触球轴承,其内径为30mm,
宽度为16mm.
考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+16+55)=93mm
III段直径d3=35mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=45mm
由手册得:c=1.5 h=2c=2×1.5=3mm
d4=d3+2h=35+2×3=41mm
长度与右面的套筒相同,即L4=20mm
但此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:(30+3×2)=36mm
因此将Ⅳ段设计成阶梯形,左段直径为36mm
Ⅴ段直径d5=30mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=100mm
(3)按弯矩复合强度计算
①求分度圆直径:已知d1=50mm
②求转矩:已知T2=50021.8N•mm
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=50021.8/50=1000.436N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft•tanα=1000.436×tan200=364.1N
⑤因为该轴两轴承对称,所以:LA=LB=50mm
(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=182.05N
FAZ=FBZ=Ft/2=500.2N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=182.05×50=9.1N•m
(3)绘制水平面弯矩图(如图c)
截面C在水平面上弯矩为:
MC2=FAZL/2=500.2×50=25N•m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(9.12+252)1/2=26.6N•m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=48N•m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=1,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[26.62+(1×48)2]1/2=54.88N•m
(7)校核危险截面C的强度
由式(6-3)
σe=Mec/0.1d33=99.6/0.1×413
=14.5MPa< [σ-1]b=60MPa
∴该轴强度足够。
输出轴的设计计算
1、按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)
根据课本P235页式(10-2),表(10-2)取c=115
d≥c(P3/n3)1/3=115(2.168/76.4)1/3=35.08mm
取d=35mm
2、轴的结构设计
(1)轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。
(2)确定轴的各段直径和长度
初选7207c型角接球轴承,其内径为35mm,宽度为17mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长41mm,安装齿轮段长度为轮毂宽度为2mm。
(3)按弯扭复合强度计算
①求分度圆直径:已知d2=300mm
②求转矩:已知T3=271N•m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×271×103/300=1806.7N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft•tanα=1806.7×0.36379=657.2N
⑤∵两轴承对称
∴LA=LB=49mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=657.2/2=328.6N
FAZ=FBZ=Ft/2=1806.7/2=903.35N
(2)由两边对称,书籍截C的弯矩也对称
截面C在垂直面弯矩为
MC1=FAYL/2=328.6×49=16.1N•m
(3)截面C在水平面弯矩为
MC2=FAZL/2=903.35×49=44.26N•m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(16.12+44.262)1/2
=47.1N•m
(5)计算当量弯矩:根据课本P235得α=1
Mec=[MC2+(αT)2]1/2=[47.12+(1×271)2]1/2
=275.06N•m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d)=275.06/(0.1×453)
=1.36Mpa<[σ-1]b=60Mpa
∴此轴强度足够
七、滚动轴承的选择及校核计算
根据根据条件,轴承预计寿命
16×365×8=48720小时
1、计算输入轴承
(1)已知nⅡ=458.2r/min
两轴承径向反力:FR1=FR2=500.2N
初先两轴承为角接触球轴承7206AC型
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=315.1N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=315.1N FA2=FS2=315.1N
(3)求系数x、y
FA1/FR1=315.1N/500.2N=0.63
FA2/FR2=315.1N/500.2N=0.63
根据课本P263表(11-8)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P263表(11-9)取f P=1.5
根据课本P262(11-6)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×500.2+0)=750.3N
P2=fp(x2FR1+y2FA2)=1.5×(1×500.2+0)=750.3N
(5)轴承寿命计算
∵P1=P2 故取P=750.3N
∵角接触球轴承ε=3
根据手册得7206AC型的Cr=23000N
由课本P264(11-10c)式得
LH=16670/n(ftCr/P)ε
=16670/458.2×(1×23000/750.3)3
=1047500h>48720h
∴预期寿命足够
2、计算输出轴承
(1)已知nⅢ=76.4r/min
Fa=0 FR=FAZ=903.35N
试选7207AC型角接触球轴承
根据课本P265表(11-12)得FS=0.063FR,则
FS1=FS2=0.63FR=0.63×903.35=569.1N
(2)计算轴向载荷FA1、FA2
∵FS1+Fa=FS2 Fa=0
∴任意用一端为压紧端,1为压紧端,2为放松端
两轴承轴向载荷:FA1=FA2=FS1=569.1N
(3)求系数x、y
FA1/FR1=569.1/903.35=0.63
FA2/FR2=569.1/930.35=0.63
根据课本P263表(11-8)得:e=0.68
∵FA1/FR1<e ∴x1=1
y1=0
∵FA2/FR2<e ∴x2=1
y2=0
(4)计算当量动载荷P1、P2
根据表(11-9)取fP=1.5
根据式(11-6)得
P1=fP(x1FR1+y1FA1)=1.5×(1×903.35)=1355N
P2=fP(x2FR2+y2FA2)=1.5×(1×903.35)=1355N
(5)计算轴承寿命LH
∵P1=P2 故P=1355 ε=3
根据手册P71 7207AC型轴承Cr=30500N
根据课本P264 表(11-10)得:ft=1
根据课本P264 (11-10c)式得
Lh=16670/n(ftCr/P) ε
=16670/76.4×(1×30500/1355)3
=2488378.6h>48720h
∴此轴承合格
八、键联接的选择及校核计算
轴径d1=22mm,L1=50mm
查手册得,选用C型平键,得:
键A 8×7 GB1096-79 l=L1-b=50-8=42mm
T2=48N•m h=7mm
根据课本P243(10-5)式得
σp=4T2/dhl=4×48000/22×7×42
=29.68Mpa<[σR](110Mpa)
2、输入轴与齿轮联接采用平键联接
轴径d3=35mm L3=48mm T=271N•m
查手册P51 选A型平键
键10×8 GB1096-79
l=L3-b=48-10=38mm h=8mm
σp=4T/dhl=4×271000/35×8×38
=101.87Mpa<[σp](110Mpa)
3、输出轴与齿轮2联接用平键联接
轴径d2=51mm L2=50mm T=61.5Nm
查手册P51 选用A型平键
键16×10 GB1096-79
l=L2-b=50-16=34mm h=10mm
据课本P243式(10-5)得
σp=4T/dhl=4×6100/51×10×34=60.3Mpa<[σp]
㈥ 液压传动的基本原理
液压传动的基本原理是依据帕斯卡原理。
帕斯卡原理包括以下三个方面:作用在密闭容器内的静止液体的一部分上的压力,以相等的强度(压力)传递到液体的所有部分。压力总是垂直作用于液体内的任意表面。液体中各点的压力在所有的方向上都相等。
为了实现某种特定功能,由液压元件构成的组合我们称为液压回路,将各种元件组成不同功能的液压回路,若干液压回路再经过有机整合就构成液压传动系统。
按照油液循环方式分为开式和闭式两种。建立在帕斯卡原理基础上的液压传动系统能够实现传递压力、速度和能量的传动与控制要求。
㈦ 液压传动具体有哪些用途
与其它传动方式相比,液压传动具有以下优缺点。
一、液压传动的优点
1)
液压传动可以输出大的推力或大转矩,可实现低速大吨位运动,这是其它传动方式所不能比的突出优点。
2)
液压传动能很方便地实现无级调速,调速范围大,且可在系统运行过程中调速。
3)
在相同功率条件下,液压传动装置体积小、重量轻、结构紧凑。液压元件之间可采用管道连接、或采用集成式连接,其布局、安装有很大的灵活性,可以构成用其它传动方式难以组成的复杂系统。
4)
液压传动能使执行元件的运动十分均匀稳定,可使运动部件换向时无换向冲击。而且由于其反应速度快,故可实现频繁换向。
5)
操作简单,调整控制方便,易于实现自动化。特别是和机、电联合使用时,能方便地实现复杂的自动工作循环。
6)
液压系统便于实现过载保护,使用安全、可靠。由于各液压元件中的运动件均在油液中工作,能自行润滑,故元件的使用寿命长。
7)
液压元件易于实现系列化、标准化和通用化,便于设计、制造、维修和推广使用。
二、液压传动的缺点
1)
油的泄漏和液体的可压缩性会影响执行元件运动的准确性,故无法保证严格的传动比。
2)
对油温的变化比较敏感,不宜在很高或很低的温度条件下工作。
3)
能量损失(泄漏损失、溢流损失、节流损失、摩擦损失等)较大,传动效率较低,也不适宜作远距离传动。
4)
系统出现故障时,不易查找原因。
综上所述,液压传动的优点是主要的、突出的,它的缺点随着科学技术的发展会逐步克服的,液压传动技术的发展前景是非常广阔的。
㈧ 机车传动装置的分类
利用原动机驱动离心泵,使获得能量的工作液体(机车用油)冲击涡轮从而驱动车轮来实现传递动力的装置。1902年德国的费廷格提出了液力循环元件(液力耦合器和液力变扭器)的方案,即将泵轮和涡轮组合在同一壳体内,工作液体在壳体内循环流动。采用这种元件大大提高了液力传动装置的效率。液力传动首先用于船舶。1932年制成第一台约60千瓦的液力传动柴油动车。
液力耦合器有相对布置的一个泵轮和一个涡轮。泵轮轴和涡轮轴的扭矩相等。涡轮转速略低于泵轮转速,二者转速之比即为液力耦合器的效率。液力耦合器用于机车主传动时,效率约为97%。液力变扭器除泵轮和涡轮外,还有固定的导向轮。涡轮与泵轮的扭矩之比称变扭比,转速比越小则变扭比越大。在同样的泵轮转速下,涡轮转速越低则涡轮扭矩越大。因此机车速度越低则牵引力越大,机车起动时的牵引力最大。液力变扭器的效率只在最佳工况下达到最大值。现代机车用的液力变扭器效率可达90%~91%。但当转速比低于或高于最佳工况时,效率曲线即呈抛物线形状下降。为使机车在常用速度范围内都有较高的传动效率,机车的液力传动装置一般采用不止一个简单的液力变扭器。机车液力传动装置如梅基特罗型、克虏伯型、苏里型、SRM型、ΓΤК型等,都是将一个液力变扭器与某种机械传动装置结合使用。福伊特型则是采用 2~3个液力变扭器(最佳工况点的转速比一般并不相同)或液力耦合器(图1),利用充油和排油换档,在各种机车速度下都使当时效率最佳的那一液力循环元件充油工作。换档时,前一元件排油和后一元件充油有一段重叠时间,所以换档过程中的机车牵引力只是稍有起伏而不中断。和其他类型相比,福伊特型液力传动装置的重量较大,但有结构简单、可靠性较高的优点。到60年代,经验证明:对于1500千瓦以上的液力传动装置,福伊特型较为适用。中国机车所用的液力传动装置都是这一类型的。
大功率增压柴油机车的液力传动装置都不用液力耦合器,但燃气轮机车的液力传动装置则用一个启动变扭器,并在高速时用一个液力耦合器。
液力循环元件传递功率P的能力也像其他液力机械一样,与工作液体重度r的一次方、泵轮转速n的三次方和元件尺寸D的五次方成正比,即P∝rnD。在柴油机车上,为了减小传动装置的尺寸,柴油机都不直接驱动液力循环元件的泵轮,而是通过一对增速齿轮,在轴承和其他旋转件容许线速度的限制范围内,尽可能提高泵轮转速。燃气轮机车由于转速很高,所以用一级甚至两级减速齿轮来驱动泵轮。同一种传动装置,只要改变这种齿轮的增速比或减速比,即可在经济合理的范围内应用于不同功率的机车。
液力传动装置通常包括一组使输出轴能改变转向的换向齿轮和离合器机构。输出轴通过适当的机械部件(万向轴和车轴齿轮箱,或曲拐和连杆等)驱动机车车轮。液力传动系统还可包括一组工况机构,使机车具有两种最高速度,在高速档有较高的行车速度,在低速档有较高的效率和较大的起动牵引力和加速能力。因此同一机车既可用于客运,也可用于货运,或者既可用于调车,也可用作小运转机车。而当调车工况的最高速度定得较低时,机车在起动和低速运行时的牵引力可以超过同功率的电力传动柴油调车机车。
1965年出现的液力换向柴油调车机车,传动装置有两组液力变扭器,每个行车方向各用一组,换向动作也用充油排油的方式来完成。当机车正在某一方向行驶时改用另一方向的液力变扭器充油工作,由于变扭器的涡轮转向与泵轮相反,对机车即起制动作用。机车换向不必先停车。只要司机改换行车方向手把的位置,机车即可自动地完成从牵引状态经过制动、停车,又立即改换行车方向的全部过程。
液力传动装置不用铜,重量轻,成本低,可靠性高,维修量少,并具有隔振、无级调速和恒功率特性好等优点,因而得到广泛采用。联邦德国和日本的柴油机车全部采用液力传动。 把机车原动机的动力变换成电能,再变换成机械能以驱动车轮而实现传递动力的装置。电力传动装置按发展的顺序有直-直流电力传动装置、交-直流电力传动装置、交-直-交流电力传动装置、交-交流电力传动装置四种。它们所用的牵引发电机、变换器(指整流器、逆变器、循环变频器等)和牵引电动机类型各不相同。
直-直流电力传动装置
1906年美国制造的150千瓦汽油动车最先采用了直-直流电力传动装置。1965年以前,世界各国单机功率75~2200千瓦的电传动机车都采用这种电力传动装置。这是因为同步牵引发电机无法高效变流,异步牵引电动机难于变频调速,只能采用直流电机。直-直流电力传动原理是基于直流电机是一种电能和机械能的可逆换能器,其原理见图 2。原动机G为柴油机,通过联轴器驱动直流牵引发电机ZF,后者把柴油机轴上的机械能变换成可控的直流电能,通过电线传送给1台或多台串并联或全并联接线的直流牵引电动机ZD,直流牵引电动机将电能变换成转速和转矩都可调节的机械能,经减速齿轮驱动机车动轮,实现牵引。此外设有自控装置。自控装置由既对柴油机调速又对牵引发电机调磁的联合调节器、牵引发电机磁场和牵引电动机磁场控制装置等组成,用来保证直-直流电力传动装置接近理想的工作特性。
交-直流电力传动装置
直流牵引发电机受整流子限制,不能制造出大功率电力传动装置。60年代前期,美国发明大功率硅二极管和可控硅,为制造大功率的电力传动装置准备了条件。1965年法国研制成 1765千瓦交-直流电力传动装置,它是世界各国单机功率 700~4400千瓦机车普遍采用的电力传动装置。
交-直流和直-直流电力传动原理相似。由图3可以看出两者差异在于柴油机 G驱动同步牵引发电机TF,经硅二极管整流桥ZL,把增频三相交流电变换成直流电,事实上TF和ZL组成等效无整流子直流电机。其余部分和自控装置主要工作原理与直-直流电力传动装置相同。
交-直-交流电力传动装置
异步牵引电动机结构简单,体积小,工作可靠,在变频调压电源控制下,能提供优良调速性能。联邦德国于 1971年研制成实用的交-直-交流电力传动装置,如图4所示。
交-直-交流电力传动原理如下:柴油机 G驱动同步牵引发电机TF,产生恒频可调压三相交流电(柴油机恒速时),经硅整流桥ZL变换成直流电,再经过可控硅逆变器 N(具有分谐波调制功能)再将直流电逆变成三相变频调压交流电,通过三根电线传输给多台全并联接线的异步牵引电动机AD。AD将交流电能变换成转速和转矩可调的机械能,驱动机车动轴,实现牵引。它的自控装置由联合调节器以及对同步牵引发电机磁场、变换器、异步牵引电动机作脉冲、数模或逻辑控制的装置组成,从而提供接近理想的工作特性。
交-交流电力传动装置
交-直-交变频调压电能经二次变换,降低了传动装置的效率,而且逆变器用可控硅需要强迫关断,对主电路技术有较高的要求。为提高效率,在交-交流电力传动装置中采用了自然关断可控硅相控循环变频器(图5)。60~70年代,美国在重型汽车上,苏联在电力机车上都采用了交-交流电力传动装置。不过美国用的是异步牵引电动机牵引,苏联用的是同步牵引电动机牵引。
交-交流电力传动原理如图5所示。柴油机G驱动同步牵引发电机TF,发出增频可调压交流电,经相控循环变频器FB变换成可变频调压的三相交流电(降频),输给多台全并联接线的异步牵引电动机AD。AD将交流电能变换成转速和转矩可调的机械能,驱动动轮实现牵引。它的自控装置也是由联合调节器、脉冲、数模、逻辑电路等装置构成(但对可控硅导通程序要求严格),同样能保证优良的工作特性。