导航:首页 > 装置知识 > 液体硝胺装置设计

液体硝胺装置设计

发布时间:2023-07-15 15:20:10

Ⅰ 高塔硝基系列复合肥的特点

(一)产品特点
贵州开磷集团在挪威工艺上突破创新,到达世界高端水平的自主创新工艺制造,目前,“开磷”牌系列高塔硝硫基复合肥料有:“开磷”牌35%(15-5-15)、45%(15-15-15)、45%(20-5-20)、45%(16-8-21)、46%(16-8-22)、48%(16-16-16)、51%(17-17-17)等硝硫基复合肥料,质量上乘,包装靓丽,产品颗粒光滑通透、强度高,易溶解,不结块。具有以下特性:
1、由于双塔高达到117米,产品颗粒在熔融状态下结晶,使得每一肥粒养分全面均衡,且肥粒表面有小孔,水分吸收快,养分释放更均匀。
2、氮是以铵根(NH+4)和硝酸根(NO-3)的形式存在,硝态氮含量高,以上对应配方的硝态氮含量分别为:≥7%、7%、9%、7%、7%、6%、6%,合理调配铵态氮,易溶于水,溶解度大,具有速溶性和速效性,保证作物前期长得快、后期不脱肥,肥料利用率高,农产品品质优良。
3、磷素完全采用开磷集团开磷矿区的优质磷矿,磷矿石具有品位高,有害杂质低,重金属元素含量低的特点,是我国不经选矿就可直接用于生产高浓度磷复肥的优质原料。磷素能促进作物的生长发育与代谢过程,能增强作物的抗旱能力和抗寒性。
4、钾素来源于优质的硫酸钾,能增强作物的抗逆性(抗旱、抗寒、抗倒伏),可提高作物的品质,在作物稳产中发挥重要作用。特别适用于忌氯作物及高档经济作物(如烟草、甘蔗、西瓜、葡萄、柑橘、苹果、茶叶、蔬菜、果树等作物)。
5、经过有机螯合的钙、镁、硫、硅等有益中微量元素,可提高作物抗病虫害、抗寒、抗旱能力,改善农产品品质,肥效胜过不含中微量元素的其它肥料。
(二)施肥建议:
1、“开磷”牌xx%(xx-xx-xx)高塔硝硫基复合肥料,硝态氮含量分别为:≥7%、7%、9%、7%、7%、6%、6%;由于本品经济价值高,主要宜于旱地和旱作物经济作物,并以追肥为佳,对烟草、棉花、果树、蔬菜、柑橘、西瓜、草莓、葡萄、甘蔗、茶叶、生姜、大蒜、蔬菜、龙眼、荔枝等经济作物尤其适用。
2、施肥用量为大田作物45~65公斤/亩,经济作物为45~80公斤/亩,花卉类为25~40公斤/亩;
3、施用时提倡沟施或穴施后覆土;果树施肥方法常用放射状或环状沟施,挂果后沟施,一般用量为0.5~1.0千克/株。
(三)注意事项:
1、硝态氮肥不宜作基肥和种肥,作追肥时应避免在水田施用,施肥点一般应距种子或作物下侧方7~10厘米,避免与种子或根系接触,以免烧种或灼伤作物;
2、本推荐施肥方法和用量仅供参考,各地土壤及施肥习惯不同,用户应根据实际施用情况调节用量和施用方法;
3、未使用完的产品应扎紧口袋以防受潮。
一、 我国硝基复合肥发展的历史与现状
(一)我国硝基复合肥发展的历史
我国硝基复合肥的起步较晚,2000年以前,全球硝基复合肥产量的90%集中于西欧、美国、前苏联及东欧等较发达的国家,其他国家和地区只能生产很小一部分硝基复合肥。从上世纪60年代开始,亚洲(主要是远东和中东)尿素生产有了很大的提高,尿素一直占据着亚洲氮肥的主要市场。回顾我国从1960年至2012年近半个世纪的氮肥、硝基复合肥的发展历史,大致经历了如下几个阶段:
第一阶段:1960年至1987年8月——以碳铵为主的发展时期
在我国,直到上世纪90年代以前,主要的氮肥为碳铵(碳酸氢铵),尿素和硝铵作为氮肥所占的比例并不高。硝酸硝铵生产方面,由于我国的金属材料硝酸机组制造技术等不过关,加上我国的硝酸生产中的铂催化剂产量很小,以及西方国家和前苏联、东欧国家对我国的经济封锁,造成我国在改革开放以前硝酸的生产能力较小,主要用于军工和民爆行业,只有少量硝酸铵作为化肥使用。
第二阶段:1987年9月至2002年9月——尿素硝铵快速发展时期
进入上世纪90年代,我国的硝酸硝铵和尿素行业均获得了极大的发展,但尿素的增长更快。天脊集团(原山西化肥厂)引进我国第一套以煤为原料的90万吨硝酸磷肥装置,填补了国内硝基复合肥的空白。1997年天脊集团引进法国KT技术,自筹资金上马一套20万吨多孔硝铵装置。当时硝酸铵主要以单质氮肥形式出现,这种单质氮肥有易结块、吸湿等问题,与尿素相比,使用起来极为不便。因此,硝酸铵只是在水果、蔬菜、烟草等经济作物上使用。
第三阶段:2002年10月至2005年8月——硝基复合肥发展的萌芽期
2001年美国9.11事件发生之后,世界各国都加强了对民用爆炸物品的管制。由于硝酸铵的可爆性和2002年石家庄发生的一起恶性爆炸事件,当年9月国务院即下发了〔2002〕52号文件,禁止把硝酸铵当作农用化肥单独销售。硝酸铵退出农用市场后,由于市场需求的驱动,国内生产硝酸铵的企业在硝酸铵的改性方面做了大量的工作,安全性逐步提高。如在硝酸铵中添加防爆剂,作为农用硝基复合肥销售。硝铵磷、硝铵钾、硝酸铵钙等硝基复合肥品种也应运而生。由于从2003年5月至2005年8月,作为炸药生产原材料的硝酸铵需求增幅较大,硝基复合肥的发展再次受到硝酸铵产量的限制。
第四阶段:2005年9月至2008年10月——硝基复合肥发展的起步期
2005年8月以后,随着一批新建和扩建硝酸铵装置的投产,工业硝酸铵产能出现过剩,部分富余产能又开始转向生产硝基复合肥。但随着我国硝酸工业的快速发展,硝酸铵的产量也有了快速的增长,一批新建装置或者改扩能装置在2005年下半年纷纷投产,如晋开的30万吨装置、四川金象的20万吨装置、兴化的20万吨装置、天脊新增产能5万吨等等。截止到2006年底,我国硝酸铵的产能已达到450万吨/年,同比增加近40%。
第五阶段:2008年11月至今——硝基复合肥发展的成长期
由于国际金融危机爆发,工业硝酸铵的市场受到极大的冲击,而硝基复合肥由于有成本低、肥效高、效益好、市场空间较大等优势,再次被硝酸硝铵生产企业所青睐,硝基复合肥迎来了历史上最好的发展时期。市场上出现了各种改性硝铵,其中主要是以硝酸铵添加各种其他元素如磷酸一铵、钾肥形成的硝铵磷、硝铵钾肥和硝酸铵钙。而且,硝酸铵生产能力得以快速增长。预计到2012年底,我国硝酸铵的总产能将达到866万吨/年,仅2012年新增产能就有214万吨/年。除340万吨/年用于国内民爆炸药原材料,35万吨/年用于出口外,近500万吨/年产能需转化为硝基复合肥。
(二)我国硝基复合肥发展的现状
现在,我国的氮肥市场仍然以尿素为主,硝基复合肥所占的比例不足3.2%。根据其他发达国家氮肥使用的情况,硝基复合肥应占氮肥使用总量的近1/3。若按照硝基复合肥占氮肥施用量的1/6计算,还需要643万吨(折纯产量),以含量为36%的实物量计算,还需要1780万吨/年的硝基复合肥生产能力。目前国内硝基复合肥生产企业较少,年总产量在300万吨左右。为满足国内市场需求,我国每年还从国外进口硝基复合肥100多万吨,因此,硝基复合肥的市场潜力巨大。据了解,河北、河南、山西、贵州、四川、新疆等地区的一些复合肥企业正在抓紧布局硝基复合肥的生产项目,且多家年产量均超过30万吨。比如山西天脊集团的25万吨硝酸铵钙项目,山西阳煤集团丰喜肥业的100万吨硝基复合肥项目(一期32万吨),四川新都化工60万吨硝基复合肥项目,贵州开磷集团年产40万吨硝基复合肥项目(双高塔),河北冀衡集团年产50万吨硝基复合肥项目,河南晋开控股集团60万吨硝基复合肥项目,四川金象化工在新疆沙雅的60万吨硝基复合肥项目等等。预计总规划产能在800万吨/年以上。上述几家企业都十分重视硝基复合肥的项目建设和市场推广应用工作。其中河北冀衡集团年产50万吨硝基复合肥项目,一期已于2010年3月投产;四川金象化工在新疆沙雅的60万吨硝基复合肥项目,一期于2011年3月投产;河南晋开控股集团60万吨硝基复合肥项目,预计于2012年12月投产,
二、硝基复合肥的特点及优势
(一)速溶性和速效性
顾名思义,硝基复合肥就是含有硝态氮的复合肥料,这类复合肥料主要是指硝酸磷、硝酸钾系列复合肥以及采用硝酸磷或硝酸铵作为硝基氮源制造的复合肥料。这些硝基复合肥中既含有较多的硝态氮又含有一定量的铵态氮,而且还含有植物生长所需要的磷钾等其他营养元素,与传统复合肥相比,具有速溶速效的特点。而且由于传统肥料在氮元素的转化环节中,会以氨气形式挥发和流失,氮养分浪费至少50%以上,而硝态氮可以被作物直接吸收。因此硝基复合肥还能提高肥料的利用率。
(二)不同植物对硝态氮和铵态氮的“喜好”不同
在pH值较高的石灰性土壤上生长的喜钙植物应优先利用硝态氮,如玉米和多数蔬菜,棉花、烟草、果树等也是偏好硝态氮的经济作物。而在酸性土壤生长的嫌钙植物和在低氧化还原性土壤条件下生长的植物嗜好铵态氮。
(三)恰当的铵、硝比为植物生长、高产奠定基础
铵、硝态氮都是植物和微生物的良好氮源,但植物在吸收和代谢两种形态的氮素上存在不同。
同时施用铵态氮和硝态氮肥,往往能使作物获得较高的生长速率和产量。同时施用两种形态氮,植物更易调节细胞内的pH值和通过消耗少量能量来贮存一部分氮。两者合适的比例取决于施用的总浓度,浓度低时,不同比例对植物生长的影响不大;浓度高时,硝态氮作为主要氮源显示出其优越性
( 四 )硝基复合肥的施用可促进植物吸收中微量元素
施用铵态氮或者硝态氮,植物组织中矿质离子含量有很大差别。施用硝态氮,植物K+、Ca2+、Mg2+等阳离子含量明显较高,且对Cl-、SO42-的吸收有明显的抑制作用。施用铵态氮,植物含有更多的Cl-、SO42-和H2PO4-等阴离子,往往会抑制K+、Ca2+的吸收,并带来氨害。所以硝态氮有利于植物生长的重要原因就是硝态氮条件下植物吸收了大量的阳离子,这些阳离子增加了细胞的渗透性,从而有利于细胞的伸长和植株的生长。
另外,不同氮素供应形态还显著影响植物组织中微量元素的含量。例如,随着营养液中硝态氮比例的增加,莴苣根、茎、叶的锌浓度增高,根中铁含量也增高。
事物都有其两面性,有利必有弊,硝硫基复合肥料也如此,一是易溶于水,溶解度大,吸湿性强,吸湿后能化为液体。二是硝酸根为阴离子,难以被带负电的土壤胶体所吸附,在土壤剖面中的移动性较大。因此,在灌溉的情况下易引起硝态氮肥向下层土壤淋失,不利于发挥其肥效。三是在通气不良或强还条件下,硝酸根(NO3-)可经反硝化作用形成,N2O和N2g气体,引起氮的损失。四是大多数硝态氮肥在受热(高温)下能分解释放出氧气,易燃易爆。故在贮运过程中应注意安全。
三、硝基复合肥的发展前景
我国是人口大国,也是粮食消费大国,我国粮食总产量自2007年突破1万亿斤后,2011年达到11424亿斤,自2004年以来,已连续8年实现大丰收。近年来,随着种植结构的多元化,蔬菜、瓜果、茶叶等经济作物种植面积所占比重提高。适当提高硝基复合肥的施用量符合科学施肥的发展方向。但是,历史的教训告诉我们,任何一个产业的健康发展,都需要进行科学论证,有序发展,一定切忌盲目上马、重复建设、一哄而上。要在认真调研论证的基础上,充分考虑市场容量,原料来源,产品的运输物流条件,运输物流成本等,再考虑项目建设。
硝基复合肥的发展一定要与硝酸、硝铵的生产装置能力相匹配、相适应。要与民爆市场所需要的硝铵量相补充、相平衡、相衔接。2011年4月以后,由于民爆生产企业所需硝酸铵量价齐升,造成去年硝基复合肥的缺口较大,这主要是作为原料的硝酸铵短缺造成的。近3年硝基复合肥平均产量为220万吨,而去年仅为150万吨,比前年同期下降31.82%。预计到“十二五”末,硝酸装置能力将达到1500万吨/年,硝酸铵的总产能将突破1100万吨/年,硝基复合肥的产能将达到800万吨/年以上。

Ⅱ 锅炉烟气脱硫设计(浮阀塔)

硫技术
通过对国内外脱硫技术以及国内电力行业引进脱硫工艺试点厂情况的分析研究,目前脱硫方法一般可划分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。
其中燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD),在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3(石灰石)为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干(半湿)法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于烟囱排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生(如水洗活性炭再生流程),或者在湿状态下脱硫、在干状态下处理脱硫产物(如喷雾干燥法)的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有湿法脱硫反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。
1.1脱硫的几种工艺
(1)石灰石——石膏法烟气脱硫工艺
石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。
它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。
(2)旋转喷雾干燥烟气脱硫工艺
喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形式随烟气带出吸收塔,进入除尘器被收集下来。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。
喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑。
(3) 磷铵肥法烟气脱硫工艺
磷铵肥法烟气脱硫技术属于回收法,以其副产品为磷铵而命名。该工艺过程主要由吸附(活性炭脱硫制酸)、萃取(稀硫酸分解磷矿萃取磷酸)、中和(磷铵中和液制备)、吸收( 磷铵液脱硫制肥)、氧化(亚硫酸铵氧化)、浓缩干燥(固体肥料制备)等单元组成。它分为两个系统:
烟气脱硫系统——烟气经高效除尘器后使含尘量小于200mg/Nm3,用风机将烟压升高到7000Pa,先经文氏管喷水降温调湿,然后进入四塔并列的活性炭脱硫塔组(其中一只塔周期性切换再生),控制一级脱硫率大于或等于70%,并制得30%左右浓度的硫酸,一级脱硫后的烟气进入二级脱硫塔用磷铵浆液洗涤脱硫,净化后的烟气经分离雾沫后排放。
肥料制备系统——在常规单槽多浆萃取槽中,同一级脱硫制得的稀硫酸分解磷矿粉(P2O5 含量大于26%),过滤后获得稀磷酸(其浓度大于10%),加氨中和后制得磷氨,作为二级脱硫剂,二级脱硫后的料浆经浓缩干燥制成磷铵复合肥料。
(4)炉内喷钙尾部增湿烟气脱硫工艺
炉内喷钙加尾部烟气增湿活化脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化钙与烟气中的二氧化硫反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙进而与烟气中的二氧化硫反应。当钙硫比控制在2.0~2.5时,系统脱硫率可达到65~80%。由于增湿水的加入使烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂、反应产物呈干燥态随烟气排出,被除尘器收集下来。
该脱硫工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达30万千瓦。
(5)烟气循环流化床脱硫工艺
烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。
由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3 和CaSO4。脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。
此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。
典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10~20万千瓦等级机组。由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。
(6)海水脱硫工艺
海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。
(7) 电子束法脱硫工艺
该工艺流程有排烟预除尘、烟气冷却、氨的充入、电子束照射和副产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理之后进入冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将一定的氨水、压缩空气和软水混合喷入,加入氨的量取决于SOx浓度和NOx浓度,经过电子束照射后,SOx和NOx在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨(NH4)2SO4与硝酸氨NH4NO3的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理后被送到副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。
(8)氨水洗涤法脱硫工艺
该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。
1。2燃烧前脱硫
燃烧前脱硫就是在煤燃烧前把煤中的硫分脱除掉,燃烧前脱硫技术主要有物理洗选煤法、化学洗选煤法、煤的气化和液化、水煤浆技术等。洗选煤是采用物理、化学或生物方式对锅炉使用的原煤进行清洗,将煤中的硫部分除掉,使煤得以净化并生产出不同质量、规格的产品。微生物脱硫技术从本质上讲也是一种化学法,它是把煤粉悬浮在含细菌的气泡液中,细菌产生的酶能促进硫氧化成硫酸盐,从而达到脱硫的目的;微生物脱硫技术目前常用的脱硫细菌有:属硫杆菌的氧化亚铁硫杆菌、氧化硫杆菌、古细菌、热硫化叶菌等。煤的气化,是指用水蒸汽、氧气或空气作氧化剂,在高温下与煤发生化学反应,生成H2、CO、CH4等可燃混合气体(称作煤气)的过程。煤炭液化是将煤转化为清洁的液体燃料(汽油、柴油、航空煤油等)或化工原料的一种先进的洁净煤技术。水煤浆(Coal Water Mixture,简称CWM)是将灰份小于10%,硫份小于0.5%、挥发份高的原料煤,研磨成250~300μm的细煤粉,按65%~70%的煤、30%~35%的水和约1%的添加剂的比例配制而成,水煤浆可以像燃料油一样运输、储存和燃烧,燃烧时水煤浆从喷嘴高速喷出,雾化成50~70μm的雾滴,在预热到600~700℃的炉膛内迅速蒸发,并拌有微爆,煤中挥发分析出而着火,其着火温度比干煤粉还低。
燃烧前脱硫技术中物理洗选煤技术已成熟,应用最广泛、最经济,但只能脱无机硫;生物、化学法脱硫不仅能脱无机硫,也能脱除有机硫,但生产成本昂贵,距工业应用尚有较大距离;煤的气化和液化还有待于进一步研究完善;微生物脱硫技术正在开发;水煤浆是一种新型低污染代油燃料,它既保持了煤炭原有的物理特性,又具有石油一样的流动性和稳定性,被称为液态煤炭产品,市场潜力巨大,目前已具备商业化条件。
煤的燃烧前的脱硫技术尽管还存在着种种问题,但其优点是能同时除去灰分,减轻运输量,减轻锅炉的沾污和磨损,减少电厂灰渣处理量,还可回收部分硫资源。
1.3 燃烧中脱硫,又称炉内脱硫
炉内脱硫是在燃烧过程中,向炉内加入固硫剂如CaCO3等,使煤中硫分转化成硫酸盐,随炉渣排除。其基本原理是:
CaCO3→CaO+CO2↑
CaO+SO2→CaSO3
CaSO3+1/2×O2→CaSO4
(1) LIMB炉内喷钙技术
早在本世纪60年代末70年代初,炉内喷固硫剂脱硫技术的研究工作已开展,但由于脱硫效率低于10%~30%,既不能与湿法FGD相比,也难以满足高达90%的脱除率要求。一度被冷落。但在1981年美国国家环保局EPA研究了炉内喷钙多段燃烧降低氮氧化物的脱硫技术,简称LIMB,并取得了一些经验。Ca/S在2以上时,用石灰石或消石灰作吸收剂,脱硫率分别可达40%和60%。对燃用中、低含硫量的煤的脱硫来说,只要能满足环保要求,不一定非要求用投资费用很高的烟气脱硫技术。炉内喷钙脱硫工艺简单,投资费用低,特别适用于老厂的改造。
(2) LIFAC烟气脱硫工艺
LIFAC工艺即在燃煤锅炉内适当温度区喷射石灰石粉,并在锅炉空气预热器后增设活化反应器,用以脱除烟气中的SO2。芬兰Tampella和IVO公司开发的这种脱硫工艺,于1986年首先投入商业运行。LIFAC工艺的脱硫效率一般为60%~85%。
加拿大最先进的燃煤电厂Shand电站采用LIFAC烟气脱硫工艺,8个月的运行结果表明,其脱硫工艺性能良好,脱硫率和设备可用率都达到了一些成熟的SO2控制技术相当的水平。我国下关电厂引进LIFAC脱硫工艺,其工艺投资少、占地面积小、没有废水排放,有利于老电厂改造。
1.4 燃烧后脱硫,又称烟气脱硫(Flue gas desulfurization,简称FGD)
燃煤的烟气脱硫技术是当前应用最广、效率最高的脱硫技术。对燃煤电厂而言,在今后一个相当长的时期内,FGD将是控制SO2排放的主要方法。目前国内外火电厂烟气脱硫技术的主要发展趋势为:脱硫效率高、装机容量大、技术水平先进、投资省、占地少、运行费用低、自动化程度高、可靠性好等。
1.3.1干式烟气脱硫工艺
该工艺用于电厂烟气脱硫始于80年代初,与常规的湿式洗涤工艺相比有以下优点:投资费用较低;脱硫产物呈干态,并和飞灰相混;无需装设除雾器及再热器;设备不易腐蚀,不易发生结垢及堵塞。其缺点是:吸收剂的利用率低于湿式烟气脱硫工艺;用于高硫煤时经济性差;飞灰与脱硫产物相混可能影响综合利用;对干燥过程控制要求很高。
(1) 喷雾干式烟气脱硫工艺:喷雾干式烟气脱硫(简称干法FGD),最先由美国JOY公司和丹麦Niro Atomier公司共同开发的脱硫工艺,70年代中期得到发展,并在电力工业迅速推广应用。该工艺用雾化的石灰浆液在喷雾干燥塔中与烟气接触,石灰浆液与SO2反应后生成一种干燥的固体反应物,最后连同飞灰一起被除尘器收集。我国曾在四川省白马电厂进行了旋转喷雾干法烟气脱硫的中间试验,取得了一些经验,为在200~300MW机组上采用旋转喷雾干法烟气脱硫优化参数的设计提供了依据。
(2) 粉煤灰干式烟气脱硫技术:日本从1985年起,研究利用粉煤灰作为脱硫剂的干式烟气脱硫技术,到1988年底完成工业实用化试验,1991年初投运了首台粉煤灰干式脱硫设备,处理烟气量644000Nm3/h。其特点:脱硫率高达60%以上,性能稳定,达到了一般湿式法脱硫性能水平;脱硫剂成本低;用水量少,无需排水处理和排烟再加热,设备总费用比湿式法脱硫低1/4;煤灰脱硫剂可以复用;没有浆料,维护容易,设备系统简单可靠。
1.3.2 湿法FGD工艺
世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸钠(Na2CO3)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。这种工艺已有50年的历史,经过不断地改进和完善后,技术比较成熟,而且具有脱硫效率高(90%~98%),机组容量大,煤种适应性强,运行费用较低和副产品易回收等优点。据美国环保局(EPA)的统计资料,全美火电厂采用湿式脱硫装置中,湿式石灰法占39.6%,石灰石法占47.4%,两法共占87%;双碱法占4.1%,碳酸钠法占3.1%。世界各国(如德国、日本等),在大型火电厂中,90%以上采用湿式石灰/石灰石-石膏法烟气脱硫工艺流程。
石灰或石灰石法主要的化学反应机理为:
石灰法:SO2+CaO+1/2H2O→CaSO3•1/2H2O
石灰石法:SO2+CaCO3+1/2H2O→CaSO3•1/2H2O+CO2
其主要优点是能广泛地进行商品化开发,且其吸收剂的资源丰富,成本低廉,废渣既可抛弃,也可作为商品石膏回收。目前,石灰/石灰石法是世界上应用最多的一种FGD工艺,对高硫煤,脱硫率可在90%以上,对低硫煤,脱硫率可在95%以上。
传统的石灰/石灰石工艺有其潜在的缺陷,主要表现为设备的积垢、堵塞、腐蚀与磨损。为了解决这些问题,各设备制造厂商采用了各种不同的方法,开发出第二代、第三代石灰/石灰石脱硫工艺系统。
湿法FGD工艺较为成熟的还有:氢氧化镁法;氢氧化钠法;美国Davy Mckee公司Wellman-Lord FGD工艺;氨法等。
在湿法工艺中,烟气的再热问题直接影响整个FGD工艺的投资。因为经过湿法工艺脱硫后的烟气一般温度较低(45℃),大都在露点以下,若不经过再加热而直接排入烟囱,则容易形成酸雾,腐蚀烟囱,也不利于烟气的扩散。所以湿法FGD装置一般都配有烟气再热系统。目前,应用较多的是技术上成熟的再生(回转)式烟气热交换器(GGH)。GGH价格较贵,占整个FGD工艺投资的比例较高。近年来,日本三菱公司开发出一种可省去无泄漏型的GGH,较好地解决了烟气泄漏问题,但价格仍然较高。前德国SHU公司开发出一种可省去GGH和烟囱的新工艺,它将整个FGD装置安装在电厂的冷却塔内,利用电厂循环水余热来加热烟气,运行情况良好,是一种十分有前途的方法。
1.5等离子体烟气脱硫技术
等离子体烟气脱硫技术研究始于70年代,目前世界上已较大规模开展研究的方法有2类:
(1) 电子束辐照法(EB)
电子束辐照含有水蒸气的烟气时,会使烟气中的分子如O2、H2O等处于激发态、离子或裂解,产生强氧化性的自由基O、OH、HO2和O3等。这些自由基对烟气中的SO2和NO进行氧化,分别变成SO3和NO2或相应的酸。在有氨存在的情况下,生成较稳定的硫铵和硫硝铵固体,它们被除尘器捕集下来而达到脱硫脱硝的目的。
(2) 脉冲电晕法(PPCP)
脉冲电晕放电脱硫脱硝的基本原理和电子束辐照脱硫脱硝的基本原理基本一致,世界上许多国家进行了大量的实验研究,并且进行了较大规模的中间试验,但仍然有许多问题有待研究解决。
1.6 海水脱硫
海水通常呈碱性,自然碱度大约为1.2~2.5mmol/L,这使得海水具有天然的酸碱缓冲能力及吸收SO2的能力。国外一些脱硫公司利用海水的这种特性,开发并成功地应用海水洗涤烟气中的SO2,达到烟气净化的目的。
海水脱硫工艺主要由烟气系统、供排海水系统、海水恢复系统等组成。

Ⅲ 复合肥造粒方法

复合肥常见的造粒工艺有:转鼓造粒、圆盘造粒、喷浆造粒、高塔造粒等。

高塔熔体旋转造粒法生产高浓度硝基复合肥。该技术系将硝尿磷钾熔体从造粒塔顶喷出,在塔内降落过程中边冷却边团聚成粒,这也叫熔融造粒法,在硝铵生产企业采用高塔熔融造粒法生产复合肥有如下好处:

一是可直接利用硝铵浓溶液,省去了硝铵浓溶液的喷浆造粒过程,以及固体硝铵制复混肥料时的破碎操作,简化了生产流程,确保了生产安全。

二是熔体旋转造粒工艺充分利用了硝铵浓溶液的热能,物料水分含量很低,无需干燥过程,大大节省能耗。

三是可以生产出高氮、高浓度的复合肥,产品颗粒表面光滑圆润,合格率百分比很高,不易结块,易溶解,这就从生产技术方面确保产品在质量上和成本上具有很强的竞争优势。

转鼓造粒又叫滚筒造粒,转鼓造粒机是复合肥生产设备类型中应用最广泛的一种设备。配方限制相对较小。也可以通管使用部分喷浆,部分氨化。最多的设备类型,2-3百万可做一条生产线,日产量可达到280-400多吨,好的配方能达到500吨以上。

转鼓造粒生产工艺因其配方限制相对较小、产量高、投资少、建设周期短等优势,受到众多复合肥厂家的青睐,被越来越多的复合肥厂家所采用。

(3)液体硝胺装置设计扩展阅读:

复合肥生产多使用测土配方测出土壤的养分情况,测土配方施肥是以土壤测试和肥料田间试验为基础,根据作物需肥规律、土壤供肥性能和肥料效应,在合理施用有机肥料的基础上,提出氮、磷、钾及中、微量元素等肥料的施用数量、施肥时期和施用方法。

通俗地讲,就是在农业科技人员指导下科学施用配方肥。测土配方施肥技术的核心是调节和解决作物需肥与土壤供肥之间的矛盾。同时有针对性地补充作物所需的营养元素,作物缺什么元素就补充什么元素,需要多少补多少,实现各种养分平衡供应,满足作物的需要;

达到提高肥料利用率和减少用量,提高作物产量,改善农产品品质,节省劳力,节支增收的目的。

阅读全文

与液体硝胺装置设计相关的资料

热点内容
大众速腾仪表出现英文是什么意思 浏览:228
华夏五金机电城商铺房价 浏览:334
郑州香江机电五金 浏览:246
自动化设备东西有哪些 浏览:604
轴承止退圈是什么意思 浏览:746
vs2017mfc工具箱 浏览:330
安徽辉墨教学仪器怎么样 浏览:682
暖气阀门开不到位怎么办 浏览:371
至上塑料五金制品有限公司资料 浏览:290
石方施工机械主要有什么 浏览:500
哪里做展示器材便宜 浏览:523
一个232串口能接多少设备 浏览:415
拖拉机前工具箱改装 浏览:812
机械师冈布奥怎么试炼6 浏览:889
二系悬挂装置其组成及作用 浏览:384
天车限位装置的作用 浏览:157
如何注销苹果设备 浏览:217
三菱欧蓝德仪表盘off是什么意思 浏览:579
高中驻波实验装置 浏览:785
宝来空调不制冷多少钱 浏览:100