⑴ 什么是电能计量装置
电能计量装置包括各种类型电能表,互感器变比测试仪 电流互感器变比测试仪。计量用电压、电流互感器及其二次回路,电能计量柜(箱)等。
电力的生产和其他产品的生产不一样,其特点是发、供、用这三个部门连成一个系统,不能间断的同时完成,而且是互相紧密联系缺一不可,他们互相如何销售,如何经济计算,就需要一个计量器具在三个部门之间进行测量计算出电能的数量,这个装置就是电能计量装置,没有它,在发、供、用电三个方面就无法进行销售、买卖,所以电能计量装置在发、供、用电的地位是十分重要的。
在电力系统发、供、用电的各个环节中,装设了大量的电能计量装置。用来测量发电量、厂用电量、供电量、售电量等。为制定生产计划,搞好经济核算合理,计收电量提供依据。
在工、农业生产、商贸经营等等各项工作用电中,为加强经营管理,大力节约能源,考核单位产品耗电量,制定电力消耗定额,提高经济效果,电能计量装置是必备的 计量器具。随着人民生活的不断提高,用电量与日俱增,电度表已逐渐成为千家万户不可缺少的电器仪表,总而言之凡是有电之处,就少不了电度表。
⑵ 变压器安装计量器干什么的
变压器容量≥630Kva按规定需安装高压计量装置,以统一计量用电量(包括实用电量和变损电量)。
⑶ 为什么高低测压都要有计量柜他们的作用分别是什么
在电力网的供电用户对象不一样,采用电压等级不同。电压变化是方便用户的必然版措施。任权何原件组成的变压系统本身就要消耗一定的电能。所以计量必须分开;这样也何以具体了解变电系统本身的电能消耗。另外高电压用户一般的功率也比较大,电能消耗也偏大,在同样功率环境下,高压的电流偏小,而低压则偏大。对于表计的电流大小精度也不相同。分开计算和测度,既可以保证精度,也可以分别了解变电系统本身的功率消耗。为了保证运行经济性,分开计算后变电单位自己也要安排合理的运行计划。例如,变压器的选择和备用容量台数等。设计变电站设计是都要统筹安排。还有管理,往往高低压分属不同单位,分开计算更是明显地必要措施。
⑷ 电力计量装置与负控装置的区别
电力计量装置(即来电能计量自装置)与负控装置(即电力负荷控制装置)有3点不同:
一、两者的概述不同:
1、电力计量装置的概述:电能计量装置是用于测量、记录发电量、供(互供)电量、厂用电量、线损电量和用户用电量的计量器具。
2、负控装置的概述:电力负荷控制装置是指落实用电负荷管理的技术手段。以装置应用为目的应称为电力负荷管理装置。
二、两者的作用不同:
1、电力计量装置的作用:测量、记录发电量。
2、负控装置的作用:该装置可对分散在供电区内众多的用户的用电进行管理,适时拉合用户中部分用电设备的供电开关或为用户提供供电信息。中国执行计划用电并进行用电指标管理,要求电力负荷控制装置有给定和调整用户用电定值、越限报警和限电的功能。
三、两者的分类不同:
1、电力计量装置的分类:中国将电能计量装置按其计量的重要性分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四类。
2、负控装置的分类:根据控制方式的不同,电力负荷控制装置分为分散型电力负荷控制装置和集中型电力负荷控制装置两类。
⑸ 变电站有哪几部分组成都发挥什么作用
变电站有这几部分组成和发挥作用
1、一次设备。主要包括变压器、高压断路器、隔离开关、母线、避雷器、电容器、电抗器等。一次设备的作用是直接生产、输送、分配和使用电能。
2、二次设备。它主要由包括继电保护装置、自动装置、测控装置(电流互感器、电压互感器)、计量装置、自动化系统以及为二次设备提供电源的直流设备。变电站的二次设备的作用是指对一次设备和系统的运行工况进行测量、监视、控制和保护的设备。
变电站的工作原理
变压器是变电站的主要设备,分为双绕组变压器、三绕组变压器和自耦变压器(即高、低压每相共用一个绕组,从高压绕组中间抽出一个头作为低压绕组的出线的变压器。电压高低与绕组匝数成正比,电流则与绕组匝数成反比。
互感器。电压互感器和电流互感器的工作原理与变压器相似,它们把高电压设备和母线的运行电压、大电流即设备和母线的负荷或短路电流按规定比例变成测量仪表、继电保护及控制设备的低电压和小电流。
开关设备。它包括断路器、隔离开关、负荷开关、高压熔断器等,都是断开和合上电路的设备。断路器在电力系统正常运行情况下用来合上和断开电路;故障时在继电保护装置控制下自动把故障设备和线路断开,还可以有自动重合闸功能。
防雷设备。变电站还装有防雷设备,主要有避雷针和避雷器。避雷针是为了防止变电站遭受直接雷击将雷电对其自身放电把雷电流引入大地。在变电站附近的线路上落雷时雷电波会沿导线进入变电站,产生过电压。
⑹ 变电站两个同步相量测量装置分别什么作用
目前,同步相量测量技术的应用研究已涉及到状态估计与动态监视、稳定预测与控制、模型验证、继电保护及故障定位等领域。
(1) 状态估计与动态监视。状态估计是现代能量管理系统(ems)最重要的功能之一。传统的状态估计使用非同步的多种测量(如有功、无功功率,电压、电流幅值等),通过迭代的方法求出电力系统的状态,这个过程通常耗时几秒钟到几分钟,一般只适用于静态状态估计。
应用同步相量测量技术,系统各节点正序电压相量与线路的正序电流相量可以直接测得,系统状态则可由测量矢量左乘一个常数矩阵获得,使得动态状态估计成为可能(引入适当的相角 测量,至少可以提高静态状态估计的精度和算法的收敛性)。将厂站端测量到的相量数据连续地传送至控制中心,描述系统动态的状态就可以建立起来。一条4800或9600波特率的普通专用通信线路可以维持每2~5周波一个相量的数据传输,而一般的电力系统动态现象的频率范围是0~2 hz,因而可在控制中心实时监视动态现象。
(2) 稳定预测与控制。同步相量测量技术可在扰动后的一个观察窗内实时监视、记录动态数据,利用这些数据可以预测系统的稳定性,并产生相应的控制决策。基于同步相量测量技术,采用模糊神经元网络进行预测和控制决策,取pmu所提供的发电机转子角度以及由转子角度推算出的速度(变化率)等作为神经元网络的输入,输出对应稳定、不稳定。在弱节点处安装pmu,可以观测电压稳定性。pss利用pmu所提供的广域相量作为输入,构成全局控制环,可以消除区域间振荡。
(3) 模型验证。电力系统的许多运行极限是在数值仿真的基础上得到的,而仿真程序是否正确在很大程序上取决于所采用的模型。同步相量测量技术使直接观察扰动后的系统振荡成为可能,比较观察所得的数据与仿真的结果是否一致以验证模型,修正模型直到二者一致。
(4) 继电保护和故障定位。同步相量测量技术能提高设备保护、系统保护等各类保护的效率,最显着的例子就是自适应失步保护。对于安装在佛罗里达—乔治亚联络线上的一套自适应失步保护系统,从1993年10月到1995年1月的运行情况分析表明,pmu是可靠和有价值的传感器。另一个重要应用是输电线路电流差动保护,在相量差动动作判据中,参加差动判别的线路二端电流相量必须是同步得到的,pmu即可提供这种同步相量。
对故障点的准确定位将简化和加快输电线路的维护和修复工作,从而提高电力系统供电的连续性和可靠性。传统的单端型故障定位方法是基于电抗测量原理,这种方法的精度将受故障电阻、系统阻抗、线路对称情况和负荷情况等多种因素的影响。解决这一问题的根本出路是利用线路两端同步测量的电压和电流相量进行故障距离的求解,能获得高精度和高稳定性的定位结果。
广域测量系统
电力系统的稳定已是越来越突出问题。以pmu为基本单元的广域测量系统可以实时地反映全系统动态,是构筑电力系统安全防卫系统的基础