① 传动装置的效率如何考虑
要考虑联轴器效率,轴承效率,蜗轮蜗杆效率和卷档茄洞筒缠带效率和搅油效率。
传动装置总效率=运输机传送带效率×运输机轴承效率×运输机与减速器间联轴器效率×减速器内对滚动轴承效率×对圆柱齿轮啮合传动效率×电动机与减速称三器间联轴器效率。
传动装置是将动力装置的动力传递给工作机构的中间行枯装置。传动装置纳歼的作用是用动、静态扭矩和大的加速扭矩来控制转子。
② 蜗杆蜗轮传动设计需要哪些基本参数(可测绘)
蜗轮蜗杆传动用于传递空间交错的两轴间的运动和动力,应用广泛;但在使用过程中难免会损坏,因此,对蜗轮蜗杆的测绘就显得尤为重要。根据蜗轮蜗杆成对使用的特点,首先对蜗杆进行测绘并确定出其主要参数,然后从蜗杆的参数推断出蜗轮的各部分尺寸,该方法是生产实际中较为实用的测绘方法。
回转驱动副其他称谓:回转驱动装置、回转齿轮装置、回转减速机、回转转盘装置、蜗轮蜗杆传动、涡轮蜗杆副、蜗轮蜗杆副、涡轮蜗杆装置,主要应用在航天航空、塔吊机、挖掘机、工程机械、卫星接收系统、太阳能跟踪系统等诸多行业。特别是近几年发展迅猛的太阳能光伏发电行业的应用十分广泛
回转驱动副的规格型号大小不一,其规格型号按照回转支承的近似滚道直径分为:WD-080、WD-0130、WD-0170、WD-0223、WD-0343、WD-0419、WD-0478、WD-0625等规格,国内型号的命名标准按照回转支承的近似滚道直径分,以英寸为单位(1英寸=25.4mm),分为:SE3、SE5、SE7、SE9、SE12、SE14、SE17、SE21、SE25等规格。国外型号标注中的“WD”代表意思是: Worm和Drive的英文缩写;国内型号标注中的“SE”代表:Slewing 和Enclose 的英文缩写。无论用哪种方式命名,其各型号的对应的安装尺寸及性能参数都是一样的。
由于核心部件采用回转支承,因此可以同时承受轴向力、径向力、倾翻力矩。回转驱动副具有安装简便、易于维护、更大程度上节省安装空间。该产品可以广泛使用于重型平板运输车、集装箱起重机、随车吊、高空作业车、巡日太阳能发电机系统等工程机械及新能源领域。
回转驱动装置可基本分为单蜗杆传动回转驱动装置和双蜗杆传动回转驱动装置。
蜗轮蜗杆机构的特点:
1.可以得到很大的传动比,比交错轴斜齿轮机构紧凑
2.两轮啮合齿面间为线接触,其承载能力大大高于交错轴斜齿轮机构
3.蜗杆传动相当于螺旋传动,为多齿啮合传动,故传动平稳、噪音很小
4.具有自锁性。当蜗杆的导程角小于啮合轮齿间的当量摩擦角时,机构具有自锁性,可实现反向自锁,即只能由蜗杆带动蜗轮,而不能由蜗轮带动蜗杆。如在其重机械中使用的自锁蜗杆机构,其反向自锁性可起安全保护作用。
5.传动效率较低,磨损较严重。蜗轮蜗杆啮合传动时,啮合轮齿间的相对滑动速度大,故摩擦损耗大、效率低。另一方面,相对滑动速度大使齿面磨损严重、发热严重,为了散热和减小磨损,常采用价格较为昂贵的减摩性与抗磨性较好的材料及良好的润滑装置,因而成本较高
6.蜗杆轴向力较大
回转驱动的三大优势:
模块化:由于回转驱动副的高集成度,使得用户不必对组成旋转装置的每一款配件进行逐一采购和加工,在一定程度上也减少了产品生产之初的准备工序,从而大幅度提高劳动生产率。
安全性:蜗轮蜗杆传动(回转驱动副)具有反向自锁的特点,可实现反向自锁,即只能由蜗杆带动蜗轮,而不能由蜗轮带动蜗杆运动。这一特性使得回转驱动可被广泛应用于起重、高空作业等设备当中,在提高主机的科技含量的同时,也大大提升了主机的作业稳定性和作业的安全系数。
简化主机设计:与传统的齿轮传动相比,蜗轮蜗杆传动可以得到相对较大的减速比,在某些情况下,可以为主机省却减速机部件,从而为客户降低采购成本,同时也大大降低了主机故障产生率。
回转驱动的应用领域
蜗轮及蜗杆机构常被用于两轴交错、传动比大、传动功率不大或间歇工作的场合。回转驱动可应用于做圆周运动的主机,如起重机回转台、旋转机械、等一些进行圆周工作的机械。该产品一经投产可广泛应用于高空作业车、汽车起重机为代表的工程机械领域及以太阳能光伏发电、风力发电为代表的新能源领域,以及其它自动化、机床制造、航天通讯等领域,可以说,该产品的市场潜力是巨大的。
回转驱动副应用列表:工程机械用双蜗杆回转驱动、随车吊回转驱动、重型平板运输车回转驱动、高空作业车回转驱动、轨道车回转驱动、吸污车回转驱动、旋转爪具回转驱动、桥梁检测车回转驱动装置、中铁提梁机回转驱动装置、风电偏航回转驱动装置、太阳能回转驱动。
1、运梁车领域传统的运梁车回转总成核心部件大多使用传统的回转支承产品,与回转驱动相比,由于回转支承不具备外包壳体,抗腐蚀能力也不是很理想,而靠液压油缸来推动轮胎的转向系统来说,轮胎的旋转角度范围也受到了很大的限制。而选用回转驱动装置作为回转部件来说,不但可以使部件的抗腐蚀能力有所提升,还可以加大每组轮胎的转向角度。
2、高空作业车领域高空作业车是回转驱动的一个重要使用领域,通常高空作业车都需要主机具备较高的安全系数,回转驱动的高安全性(蜗轮蜗杆的自锁性)是广大用户选择其作为高空作业平台配件的一个重要因素;另外一方面,蜗轮蜗杆传动具有较大的传动速比,这样一来再提高主机安全系数的同时,也可为主机省略一组蜗轮蜗杆减速器,从而降低主机的制造成本。
3、光伏发电领域光伏发电是回转驱动的一个重要应用领域,采用回转驱动为旋转部件的太阳能光伏组件,可根据一天中太阳不同的位置来对主机的转角及仰角进行精确的调整,时刻是太阳能电池板出于最佳的接收角度。
4、风力发电领域与光伏发电相同,回转驱动可应用于风力发电机的偏航部位,实现机构的水平360°旋转,从而更好的调整接收角度。
5、工程机械爪具领域工程机械辅助器具是回转驱动的一个全新的应用领域,采用回转驱动作为旋转机构爪具,使得设计结构更加简洁,更利于使用和维护,同时蜗轮蜗杆传动具有较大的减速比,使得爪具等工程机械辅具的定位精度也大大提高了。
蜗轮蜗杆减速机常见原因
1.减速机发热和漏油。为了提高效率,蜗轮减速机一般均采用有色金属做蜗轮,蜗杆则采用较硬的钢材。由于是滑动摩擦传动,运行中会产生较多的热量,使减速机各零件和密封之间热膨胀产生差异,从而在各配合面形成间隙,润滑油液由于温度的升高变稀,易造成泄漏。造成这种情况的原因主要有四点,一是材质的搭配不合理;二是啮合摩擦面表面的质量差;三是润滑油添加量的选择不正确;四是装配质量和使用环境差。
2.蜗轮磨损。蜗轮一般采用锡青铜,配对的蜗杆材料用45钢淬硬至HRC4555,或40Cr淬硬HRC5055后经蜗杆磨床磨削至粗糙度Ra0.8μm。减速机正常运行时磨损很慢,某些减速机可以使用10年以上。如果磨损速度较快,就要考虑选型是否正确,是否超负荷运行,以及蜗轮蜗杆的材质、装配质量或使用环境等原因。
3.传动小斜齿轮磨损。一般发生在立式安装的减速机上,主要与润滑油的添加量和油品种有关。立式安装时,很容易造成润滑油量不足,减速机停止运转时,电机和减速机间传动齿轮油流失,齿轮得不到应有的润滑保护。减速机启动时,齿轮由于得不到有效润滑导致机械磨损甚至损坏。
4.蜗杆轴承损坏。发生故障时,即使减速箱密封良好,还是经常发现减速机内的齿轮油被乳化,轴承生锈、腐蚀、损坏。这是因为减速机在运行一段时间后,齿轮油温度升高又冷却后产生的凝结水与水混合。当然,也与轴承质量及装配工艺密切相关。
回转减速机常见问题的解决方法
1.保证装配质量。可购买或自制一些专用工具,拆卸和安装减速机部件时,尽量避免用锤子等其他工具敲击;更换齿轮、蜗轮蜗杆时,尽量选用原厂配件和成对更换;装配输出轴时,要注意公差配合;要使用防粘剂或红丹油保护空心轴,防止磨损生锈或配合面积垢,维修时难拆卸。
2.润滑油和添加剂的选用。蜗齿减速机一般选用220#齿轮油,对重负荷、启动频繁、使用环境较差的减速机,可选用一些润滑油添加剂,使减速机在停止运转时齿轮油依然附着在齿轮表面,形成保护膜,防止重负荷、低速、高转矩和启动时金属间的直接接触。添加剂中含有密封圈调节剂和抗漏剂,使密封圈保持柔软和弹性,有效减少润滑油漏。
3.减速机安装位置的选择。位置允许的情况下,尽量不采用立式安装。立式安装时,润滑油的添加量要比水平安装多很多,易造成减速机发热和漏油。
4.建立润滑维护制度。可根据润滑工作“五定”原则对减速机进行维护,做到每一台减速机都有责任人定期检查,发现温升明显,超过40℃或油温超过80℃,油的质量下降或油中发现较多的铜粉以及产生不正常的噪声等现象时,要立即停止使用,及时检修,排除故障,更换润滑油。加油时,要注意油量,保证减速机得到正确的润滑。
世必爱采用二次包络技术生产的回转驱动副装置,以环面包络蜗杆技术作为实现最大化负载和提高传动效率、精度的最重要的手段。环面包络蜗杆在与回转支承啮合时,能够实现多齿啮合,而普通蜗杆啮合时,只能实现单齿啮合。由此增加的5到11个齿的齿面啮合极大的增强了变速器的强度和动力。
洛阳世必爱特种轴承有限公司生产的回转驱动装置有多个系列,覆盖多种型号。性能范围以及安装尺寸能满足不同使用场合的需要。目前我们的产品可划分为9种基本型号,滚道直径范围从75mm到800mm。负荷范围从6kNm到220kNm,转矩输出从200Nm到63kNm,翻转力矩力从500Nm到271kNm, 变速器减速比从30:1到156600:1。 安装方式可以为水平,垂直或者多轴结合的方式。
③ 蜗轮蜗杆工作原理
http://ke..com/view/1424713.html?wtp=tt
蜗轮蜗杆蜗轮蜗杆 蜗轮蜗杆(Worm)
[编辑本段]蜗轮及蜗杆机构
一、用途:
蜗轮蜗杆机构常用来传递两交错轴之间的运动和动力。蜗轮与蜗杆在其中间平面内相当于齿轮与齿条,蜗杆又与螺杆形状相似。
二、基本参数:
模数m、压力角、蜗杆直径系数q、导程角、蜗杆头数 、蜗轮齿数、齿顶高系数(取1)及顶隙系数(取0.2)。其中,模数m和压力角是指蜗杆轴面的模数和压力角,亦即蜗轮端面的模数和压力角,且均为标准值;蜗杆直径系数q为蜗杆分度圆直径与其模数m的比值。
三、蜗轮蜗杆正确啮合的条件
1.中间平面内蜗杆与蜗轮的模数和压力角分别相等,即蜗轮的端面模数等于蜗杆的轴面模数且为标准值;蜗轮的端面压力角应等于蜗杆的轴面压力角且为标准值,即 ==m ,==
2.当蜗轮蜗杆的交错角为时,还需保证,而且蜗轮与蜗杆螺旋线旋向必须相同。
四、几何尺寸计算与圆柱齿轮基本相同,需注意的几个问题是:
1.蜗杆导程角()是蜗杆分度圆柱上螺旋线的切线与蜗杆端面之间的夹角,与螺杆螺旋角的关系为,蜗轮的螺旋角,大则传动效率高,当小于啮合齿间当量摩擦角时,机构自锁。
2.引入蜗杆直径系数q是为了限制蜗轮滚刀的数目,使蜗杆分度圆直径进行了标准化m一定时,q大则大,蜗杆轴的刚度及强度相应增大;一定时,q小则导程角增大,传动效率相应提高。
3.蜗杆头数推荐值为1、2、4、6,当取小值时,其传动比大,且具有自锁性;当取大值时,传动效率高。
与圆柱齿轮传动不同,蜗杆蜗轮机构传动比不等于,而是,蜗杆蜗轮机构的中心距不等于,而是。
4.蜗杆蜗轮传动中蜗轮转向的判定方法,可根据啮合点K处方向、方向(平行于螺旋线的切线)及应垂直于蜗轮轴线画速度矢量三角形来判定;也可用“右旋蜗杆左手握,左旋蜗杆右手握,四指拇指”来判定。
五、蜗轮及蜗杆机构的特点
1.可以得到很大的传动比,比交错轴斜齿轮机构紧凑
2.两轮啮合齿面间为线接触,其承载能力大大高于交错轴斜齿轮机构
3.蜗杆传动相当于螺旋传动,为多齿啮合传动,故传动平稳、噪音很小
4.具有自锁性。当蜗杆的导程角小于啮合轮齿间的当量摩擦角时,机构具有自锁性,可实现反向自锁,即只能由蜗杆带动蜗轮,而不能由蜗轮带动蜗杆。如在其重机械中使用的自锁蜗杆机构,其反向自锁性可起安全保护作用。
5.传动效率较低,磨损较严重。蜗轮蜗杆啮合传动时,啮合轮齿间的相对滑动速度大,故摩擦损耗大、效率低。另一方面,相对滑动速度大使齿面磨损严重、发热严重,为了散热和减小磨损,常采用价格较为昂贵的减摩性与抗磨性较好的材料及良好的润滑装置,因而成本较高
6.蜗杆轴向力较大
六、应用
蜗轮及蜗杆机构常被用于两轴交错、传动比大、传动功率不大或间歇工作的场合。
④ 2018-08-23 蜗杆传动
12.1 蜗杆概述
12.1.1 蜗杆蜗轮的形成
蜗杆传动是用来传递空间交错轴之间的回转运动和动力的,它由蜗杆和蜗轮组成,两轴线交错角可为任意值,一般采用90°。
蜗杆蜗轮传动是由交错斜齿圆柱齿轮传动演变而来的。
12.1.2 蜗杆蜗轮传动的类型
根据蜗杆形状不同可分为圆柱蜗杆传动、环面蜗杆传动和锥蜗杆传动。
根据蜗杆齿廓形状及形成原理不同,蜗杆传动的分类如下。圆柱蜗杆传动:阿基米德圆柱蜗杆传动;法向直廓圆柱蜗杆传动;渐开线圆柱蜗杆传动;锥面包络圆柱蜗杆传动;圆弧圆柱蜗杆传动;双圆弧圆柱蜗杆传动。环面蜗杆传动:直廓环面蜗杆传动;平面包络环面蜗杆传动;渐开面包络环面蜗杆传动;锥面包络环面蜗杆传动。
圆柱蜗杆传动。可分为普通圆柱蜗杆传动和圆弧圆柱蜗杆传动。普通圆柱蜗杆传动一般是在车床上用直线刀刃的态世顷车刀车制的。根据不同的齿廓曲线,普通圆柱蜗杆可分为阿基米德圆柱蜗杆(ZA蜗杆);法向直廓圆柱蜗杆(ZN蜗杆);渐开线圆柱蜗杆(ZI蜗杆);锥面包络圆柱蜗杆(ZK蜗杆)等四种。阿基米德圆柱蜗杆(ZA蜗杆),车削阿基米德圆柱蜗杆与加工梯形螺纹类似,其车刀车削刃夹角2α=40°,齿廓为阿基米德螺旋线,在包含轴线的平面上的齿廓(即轴向齿廓)为直线。法向直廓圆柱蜗杆(ZN蜗杆),端面齿廓为延伸渐开线,法面齿廓为直线,也是用直线刀刃的单刀或双刀在车床上车削加工。渐开线圆柱蜗杆(ZI蜗杆),端面齿廓为渐开线,相当于一个少齿数、大螺旋角的渐开线圆柱斜齿轮,可用两把直线刀刃的车刀在车床上车削加工,刀具的齿形角应等于蜗杆的基圆柱螺旋角。锥面包络蜗杆(ZK蜗杆),非线性螺旋齿面蜗杆,只能在铣床上铣制并在磨床上磨削,加工时,工件做螺旋运动,刀具同时绕自身的轴线做回转运动,这种蜗杆便于磨削,精度较高,应用日渐广泛。圆弧圆柱蜗杆传动(ZC蜗杆返旁),螺旋面是用刃边为凸圆弧形的刀具切制的,蜗轮是用范成法制造的,在中间平面上,蜗杆的齿廓为凹弧形,而与之相配的蜗轮的齿廓则为凸弧形,所以是一种凹凸弧齿廓相啮合的传动,也是一种线接触的啮合传动。
环面蜗杆传动。特征是蜗杆体在轴向的外形是以凹圆弧为母线所形成的的旋转曲面。在这种传动的啮合带内,蜗轮的节圆位于蜗杆的节弧面帆陆上,即蜗杆的节弧沿蜗轮的节圆包着蜗轮。在中间平面内,蜗杆和蜗轮都是直线齿廓。还有包络环面蜗杆传动,分为一次包络和二次包络环面蜗杆传动两种。
锥蜗杆传动。一种空间交错轴之间的传动,两轴交错角通常为90°,蜗杆是由在节锥上分布的等导程的螺旋所形成的。蜗轮在外观上就像是一个曲线齿锥齿轮,是用与锥蜗杆相似的锥滚刀在普通滚齿机上加工而成的。
12.1.3 蜗杆传动的特点和应用
蜗杆传动的特点:
当使用单头蜗杆时,蜗杆旋转一周,蜗轮只转过一个齿距,因而能实现大的传动比。在动力传动中,一般传动比i = 5~80;在分度机构或手动机构的传动中,传动比可达300;若只传递运动,传动比可达1000。由于传动比大,零件数目少,所以结构很紧凑;
蜗杆传动中,由于蜗杆齿是连续不断的螺旋齿,它和蜗轮齿是逐渐进入啮合及逐渐退出啮合的,同时啮合的齿对较多,故冲击载荷小,传动平稳,噪声低;
当蜗杆的螺旋升角小于啮合面的当量摩擦角时,蜗杆传动具有自锁性;
蜗杆传动与螺旋齿传动相似,在啮合处相对滑动。滑动速度大时,会产生较严重的摩擦与磨损,引起发热,恶化润滑,摩擦损失较大,效率低;当传动具有自锁性时,效率仅为0.4左右。同时由于摩擦与磨损严重,常需耗用有色金属制造蜗轮(或轮圈),以便与钢制蜗杆配对组成减摩性良好的滑动摩擦副。
蜗杆传动的应用。由于蜗杆传动具有以上特点,故广泛用于两轴交错、传动比较大、传递功率不太大或间歇工作的场合。当要求传递大功率时,为提高传动效率,常取蜗杆头数z₁=2~4。此外,由于具有自锁性,故常用在卷扬机等起重机械中,起安全保护作用。
12.2 普通圆柱蜗杆传动的主要参数及几何尺寸计算
12.2.1 普通圆柱蜗杆传动的主要参数及其选择
主要参数有模数m,压力角α、蜗杆的分度圆直径d₁、蜗杆头数z₁及蜗轮齿数z₂等。进行蜗杆传动的设计时,首先要正确的选择参数。
模数m和压力角α。与齿轮传动一样,蜗杆传动的几何尺寸也以模数为主要计算参数。在中间平面内蜗杆蜗轮传动的正确啮合条件为:蜗杆的轴面模数、压力角应与蜗轮的端面模数、压力角相等,即ma₁ = mt₂ = m,αa₁ = αt₂。ZA蜗杆的压力角αa为标准值(20°),其余三种(ZN,ZI,ZK)蜗杆的法向压力角αn为标准值,轴向压力角与法向压力角的关系为tan αa = tan αn/cos γ。其中,γ为导程角。
蜗杆的分度圆直径d₁和直径系数q。为了限制蜗轮滚刀的数目,及便于滚刀的标准化,就对每一标准模数规定了一定数量的蜗杆分度圆直径d₁,而把比值q = d₁/m,称为蜗杆的直径系数。d₁与q已有标准值。如果采用非标准滚刀或飞到切制蜗轮,d₁与q值可不受标准的限制。
蜗杆头数z₁。蜗杆头数z₁可根据要求的传动比和效率来确定。单头蜗杆传动的传动比可以较大,但效率较低。如果提高效率,应增加蜗杆的头数。但蜗杆头数过多又会给加工带来困难。所以,通常蜗杆头数取为1,2,4,6。
导程角γ。蜗杆的直径系数q和蜗杆头数z₁选定之后,蜗杆分度圆上的导程角γ也就确定了。 tan γ = z₁Pa/Πd₁ = z₁m/d₁ = z₁/q 。
传动比i和齿数比u。传动比i = n₁/n₂,n₁,n₂是蜗杆和蜗轮的转速。齿数比u = z₂/z₁,z₂是蜗轮的齿数,当蜗杆为主动时, i = n₁/n₂ = z₂/z₁ = u 。
蜗轮齿数z₂。主要根据传动比来确定。为了避免干涉与根切,理论上应使z₂ ≥ 17。当z₂ < 26时,啮合区显著减小,影响传动平稳性,而z₂ ≥ 30时,则可始终保持有两对以上的齿啮合,所以通常规定z₂ > 28。对于动力传动,z₂一般不大于80.
蜗杆传动的标准中心距a。当蜗杆节圆与分度圆重合时称为标准传动,其标准中心距为 a=(d₁+d₂)/2=(q+z₂)·m/2 。
12.2.2 普通圆柱蜗杆传动的几何尺寸计算
设计蜗杆传动时,一般先根据传动的功用和传动比的要求,选择蜗杆头数z₁和蜗轮齿数z₂,然后按强度计算确定中心距a和模数m,最后计算出蜗杆、蜗轮的几何尺寸。
12.3 蜗杆传动的失效形式、设计准则及常用材料
12.3.1 失效形式和设计准则
和齿轮传动一样,蜗杆传动的失效形式也有点蚀(齿面接触疲劳破坏)、齿根折断、齿面胶合及过度磨损等。失效经常发生在蜗轮轮齿上,所以,一般只对蜗轮轮齿进行承载能力计算。
蜗杆与蜗轮齿面间有较大的相对滑动,增加了产生胶合和磨损失效的可能性。因此,蜗杆传动的承载能力往往受到抗胶合能力的限制。
在开式传动中多发生齿面磨损及过度磨损引起的轮齿折断,因此应以保证齿根弯曲疲劳强度作为主要设计准则。
在闭式传动中,蜗杆副多因齿面胶合或点蚀而失效。因此,通常是按齿面接触疲劳强度进行设计,而按齿根弯曲疲劳强度进行校核。此外,闭式蜗杆传动中,由于散热较为困难,还应做热平衡核算。
12.3.2 常用材料
常用青铜作蜗轮的齿圈,与淬硬的钢制蜗杆相配。
蜗杆。一般是用碳钢或合金钢制成,要求齿面光洁并具有较高硬度。高速重载蜗杆常用20Cr,20CrMnTi(渗碳淬火到56~62HRC)或40Cr,40SiMn,45钢(表面淬火到45~55HRC)等,并应磨削。一般蜗杆可采用40钢、45钢,经调质处理(硬度为220~250HBS)。在低速或人力传动中,蜗杆可不经热处理,甚至可采用铸铁。
蜗轮。常用的蜗轮材料为10-1锡青铜、5-5-5锡青铜、10-3铝青铜及灰铸铁等。10-1锡青铜抗胶合和耐磨性能好,但价格较高,允许的滑动速度可达25m/s。在滑动速度Vs≤12m/s的蜗杆传动中,可采用含锡量低的5-5-5锡青铜。10-3铝青铜的抗胶合性较锡青铜差一些,切削性能差,但强度高、铸造性能好、耐冲击、价格便宜,一般用于滑动速度Vs≤6m/s的传动;如果滑动速度不高(Vs<2m/s),对效率要求也不高,可采用球墨铸铁或灰铸铁。蜗轮也可用尼龙或增强尼龙材料制成。
12.4 蜗杆传动的受力分析
不计摩擦力的影响时,各力的大小可按下列各式计算: Ft₁ = Fa₂ = 2T₁/d₁,Fa₁ = Ft₂ = 2T₂/d₂,Fr₁ = Fr₂ = Ft₂tan α 。Fn = Fa₁/cos αn·cos γ = Ft₂/cos αn·cos γ = 2T₂/d₂·cos αn·cos γ 。其中,T₁,T₂分别是蜗杆及蜗轮上的转矩,T₂ = T₁·i₁₂·η,η为蜗杆传动的效率;d₁,d₂,分别是蜗杆及蜗轮的分度圆直径。
12.5 圆柱蜗杆传动的计算
12.5.1 蜗轮齿面接触疲劳强度计算
计算应力。强度校核公式为 σH = ZeZp(KaT₂/a³)½ ≤ [σH] ,设计式为 a ≥ [KaT₂(ZeZp/[σH])²]⅓ 。其中,a是中心距;Ze是材料综合弹性系数,钢与铸锡青铜配对时,取Ze = 150,与铝青铜或灰铸铁配对时,取Ze = 160;Zp是接触系数,用以考虑当量曲率半径的影响,由蜗杆分度圆直径与中心距之比表示,一般取0.3~0.5,取小值时,导程角大,因而效率高,但蜗杆刚性较小;Ka,使用系数,Ka = 1.1~1.4,当冲击载荷、环境温度高、速度较高时,取最大值。
许用接触应力[σH]。对于铸锡青铜,可以查表;对于铸铝青铜及灰铸铁,其主要失效形式是胶合2而不是接触强度,而胶合与相对速度有关。由设计公式算出中心距a后,可由下列公式粗算出蜗杆分度圆直径d₁和模数m:d₁≈0.68aⁿ,n=0.875,m=(2a-d₁)/z₂。然后选定标准模数m及q,d₁的数值。
12.5.2 蜗轮齿根弯曲强度计算
通常把蜗轮近似的当做斜齿圆柱齿轮来考虑,验算公式为 σF = (1.53KaT₂/d₁d₂mcos γ)·Yf₂ ≤ [σF] ,设计式为 m²d₁≥(1.53KaT₂/z₂cos γ[σF])·Yf₂ 。其中,γ为螺杆导程角, γ=arctan (z₁/q) ;[σF]为蜗轮许用弯曲应力;Yf₂是蜗轮齿形系数,由当量齿数Zv = Z₂/cos³γ,查渐开线轮齿形系数。
12.5.3蜗杆传动的刚度计算
蜗杆较细长,支承跨距较大,受力后如产生过大的变形,就会造成轮齿上的载荷集中,影响蜗杆与蜗轮的正确啮合,所以蜗杆还需进行刚度校核。刚度条件为 y = [(Ft₁²+Fr₁²)½/48EI]·l³ ≤ [y] 。其中,Ft₁是蜗杆所受的圆周力;Fr₁是蜗杆所受的径向力;E是蜗杆材料的弹性模量;I是蜗杆危险截面的惯性矩;l是蜗杆两端支承间的跨距;[y]是许用最大挠度,[y]=d₁/1000,此处d₁为蜗杆分度圆直径。
12.6 普通圆柱蜗杆传动的效率、润滑及热平衡计算
12.6.1 蜗杆传动的效率
传动效率。闭式蜗杆传动的功率损耗一般包括三部分,即啮合摩擦损耗、轴承摩擦损耗及浸入油浴中的零件搅油时的油阻损耗。其中最主要的是齿面相对滑动而引起的啮合损耗。蜗杆主动时,蜗杆传动的总效率为 η=(0.95~0.96)tan γ/tan (γ+ρ') 。其中,γ是普通圆柱蜗杆分度圆柱上的导程角;ρ'是当量摩擦角,ρ' = arctan f',f'为当量摩擦系数,主要与蜗杆副材料、表面状况以及滑动速度有关。
增大导程角可提高效率,故在动力传动中多采用多头蜗杆,但导程角过大,会引起蜗杆加工困难,且导程角达到28°之后,效率提高很少。
滑动速度。 Vs = v₁/cos γ = Πd₁n₁/60x1000cos γ 。其中,v₁是蜗杆分度圆的圆周速度;d₁是蜗杆分度圆直径;n₁是蜗杆的转速,r/min。
12.6.2 蜗杆传动的润滑
润滑对蜗杆传动来说具有特别重要的意义。因为润滑不良时,传动效率会显著下降,并且会带来剧烈的磨损和产生胶合破坏的危险,所以往往采用粘度大的矿物油进行良好的润滑,在润滑油中还常加入添加剂,使其提高抗胶合能力。
用油浴润滑时,常采用蜗杆下置式,由蜗杆带油2润滑。但当蜗杆线速度v₁>4m/s时,为了减小搅油损失,常常将蜗杆置于蜗轮之上,形成上置式传动,由蜗轮带油润滑。
12.6.3 蜗杆传动的热平衡计算
在闭式传动中,热量通过箱壳散逸,要求箱体内的油温t℃和周围空气温度t0℃之差不超过允许值,即 ∆t = 1000P(1-η)/αdS ≤ [∆t] 。其中,[∆t]为温差允许值,一般为60~70℃;αd是箱体的表面传热系数,一般取值为10~17,空气流通良好时,取偏大值;P是蜗杆传递的功率,单位默认为kw;S是散热面积,指箱体外壁与空气接触的内壁被油飞溅到的箱壳面积,对于箱体上的散热片,其散热面积按50%计算。
如果温差超过允许值,可采用下述冷却措施:增加散热面积;提高表面传热系数,在蜗杆轴上装置风扇,或在传动箱内装循环冷却管路。
12.7 圆柱蜗杆和蜗轮的结构设计
12.7.1 蜗杆结构
蜗杆螺旋部分的直径不大,所以常和轴做成一个整体。当蜗杆螺旋部分的直径较大时,可以将蜗杆与轴分开制作。
12.7.2 蜗轮结构
常用的蜗轮结构由以下几种:
整体式。主要用于铸铁蜗轮或尺寸很小的青铜蜗轮。
组合式。为了节约贵重的有色金属,对大尺寸的蜗轮通常采用组合式结构,即齿圈由青铜等有色金属制造,而轮芯用钢或铸铁制成。,齿圈与轮芯多用过盈配合,并加装4~8个紧定螺钉,以增强连接的可靠性。这种结构多用于尺寸不太大或工作温度变化较小的地方,以免热胀冷缩影响配合的质量。
螺栓连接式。轮圈与轮芯可用铰制孔用螺栓连接,螺栓的尺寸和数目可参考蜗轮的结构尺寸决定,然后做适当的校核。装拆比较方便,多用于尺寸较大或磨损后需要更换齿圈的场合。
拼铸式。这是在铸铁轮芯上加铸青铜齿圈,然后切齿,只用于成批制造的蜗轮。