导航:首页 > 装置知识 > 封隔器性能测试实验装置

封隔器性能测试实验装置

发布时间:2023-06-19 02:23:20

A.  海上油管输送射孔与钻井中途测试技术

一、海上油管输送射孔技术

最早的采油方式是裸眼采油或筛管采油,随着固井工艺的产生,发展了射孔采油方式。1932年美国LENEWELLS公司开始子弹式射孔,1946年WELEX公司开始使用聚能射孔弹射孔,1949年麦克洛夫公司开始搞油管输送射孔(TCP),但由于技术上的欠缺而没有发展起来,1953年EXXON和斯伦贝谢尔公司开始搞过油管射孔,1970年VANN公司正式将TCP用于生产。

目前世界一流的射孔公司有Compac、Halliburton、Owen、Goex、Baker、Schlumberger等公司。这些公司的射孔器材共同的特点是:产品系列化程度高、加工精度高、检测手段完备、检测数据准确齐全、技术更新快、向高密度多方位高技术发展、低岩屑污染小。

国内在1958年以前使用苏联的枪身射孔器,20世纪60年代初开始用磁性定位器测套管接箍进行定位射孔,70年代广泛开展使用了过油管射孔,80年代中期开始引进油管输送射孔TCP技术,1988年以后逐渐在各油田推广使用。

随着海上勘探成果不断扩大,海洋石油勘探开发工作的重点将进一步由勘探向开发转移,油田开发井将逐年增加。然而,海上准备开发的油田大多属于边际油田,若在开发中采用进口器材进行作业,则有很多边际油田因成本高而无法进行开发。为满足海上油气田勘探开发井作业中所需的新型系列射孔器材,用国产射孔器材全面替代进口产品,降低开发成本,填补套管高密度射孔在国内的空白,推进我国海洋石油勘探开发进程,研制新型射孔器材成为当务之急。我国射孔器材产品尽管在小口径、低密度上取得了较大的成就,但与国际相比总体水平仍然较低,加工精度也较差,加之产品系列不配套、检测手段不完善,无法完全满足海上作业的需要。

为使海洋石油勘探开发进一步降低成本,加快射孔器材的国产化进程,中国海油开发研制了油管传送射孔(TCP)——HY114、HY159射孔抢,并将这一具有自主知识产权的实用新型专利设计产品尽快地应用于生产。

(一)海上射孔

1.射孔

利用火攻器材或其他能源的能量射开套管、水泥环和地层,沟通油气流通道的井下作业叫做射孔。

在勘探开发过程中射孔是一项不可缺少的重要手段。经钻井、录井和测井发现了油气层之后,就要下套管、固井,然后必须射孔,进行试油,以确定该油层有无开采价值。对于开发生产井,进行完井作业、射孔,而后才能进行下生产管柱、下泵、防砂等其他采油、注水等作业。油气田在开发过程中,若进行开发方案的调整,往往需进行补孔,以保持油气田的产量。

随着射孔技术采油技术的发展和我国各大油田二三十年来在勘探开发工作中的经验积累,逐步提高了对射孔技术重要性的认识,对射孔作业越来越予以重视,因而近年来我国射孔技术有了飞速的发展,取得了很大的成绩。

2.射孔方式

目前国内外广泛被采用的射孔方式主要有3类:①电缆输送射孔;②过油管射孔;③油管输送射孔(TCP)。

这3类射孔都属于炸药聚能射孔,即利用制成倒锥形的高能炸药在爆炸时产生的聚焦高能射流来射开套管和地层的工艺。

最近水力射孔在穿透深度上有新的突破,但还没有广泛地推广使用。

3.射孔工艺

射孔工艺有正压射孔和负压射孔两种,根据现场不同的井筒条件、地层条件以及完井工艺要求选择不同的射孔工艺。

a.正压射孔:为了顺利地采出地层里的油气,钻井之后必须下套管并固水泥于套管与地层之间,然后射开油气层井段的套管和水泥环,沟通油气流通道。因而在射孔之前,地层和套管里边是两个不同的压力系统。如果套管中的液柱压力大于地层压力,射孔后井液会压向地层,加上射孔的压实作用和杵堵,就构成了对地层的“二次污染”,这叫正压射孔。

b.负压射孔:射孔时套管里液柱压力小于地层压力,射开以后地层中的油、气流向井筒,能将射孔产生的碎屑冲出来,井液也不会进入地层。这叫负压射孔。负压射孔能产生回流清洗孔眼,消除二次污染,因而能大大提高油气井的产能。负压射孔是最好的射孔方式,但要实现负压射孔,电缆输送方式是不行的。过油管射孔只是在第一枪才可以构成负压,第二枪及以后均为等压射孔。而由于井口防喷装置长度的限制,过油管射孔每次下井的枪长度有限,只射一枪的井很少,所以过油管射孔不能满足负压射孔的要求。只有油管输送射孔(TCP)才能满足负压射孔的各种要求。

(二)海上油管输送射孔仪

油管输送射孔(简称TCP)是用油管或钻杆将射孔器材输送到井下进行射孔的。它与电缆输送射孔相同的地方是同样用雷管、导爆索、传爆管和射孔弹4种火工器材,同样适应于各种套管的射孔枪。

1.油管输送射孔特点

与电缆输送射孔不同的地方只是输送和引爆方式不同,其特点是:

输送能力强,能一次射开几百米油气层,作业效率高;

使用大直径、高孔密射孔枪和大药量射孔弹,能满足高穿深、大孔径的射孔要求;

按设计要求构成大的负压差,射孔时能充分清洗孔眼,消除二次污染;

达到高的产率比,提高单井产量;

在射孔后立即投产,快速受益;

在引爆前安装好井口和井下安全接头等控制设施,确保安全;

与DST测试联合作业求准地层的产能;

使用范围广:适合于大斜度井、水平井、高压油气井、腐蚀性井液井、砾石充填井、双油管采油井、泵抽井等。

2.油管输送射孔管柱结构

图7-78打开取样筒

(二)地层测试器研究

研究一套井下泵抽式流体取样测试器及其解释系统,通过其泵抽系统能够取得地层流体真样,通过压力测试曲线计算油气层的渗透性、压力分布、产能等参数,部分替代中途试油技术。主要研究内容包括以下5个方面。

1.仿真实验模型及数值模拟

仿真模型采用三维圆柱体或球体结构,模拟复杂的井眼及地层条件。通过模拟仿真实验来研究在不同地层压力、不同流体饱和度、不同渗透率、不同泥饼厚度以及不同排液速度等条件下,仪器的响应特性,从而建立地层特性与仪器数值响应关系。针对渤海大油田不同的储层条件,建立具有对不同地层压力和流体进行采样的模型,取得一系列的实验数据。重点考虑:①地层浅和弱胶结疏松砂岩对仪器及解释模型的特殊要求;②稠油开采条件下的趋肤效应和存储效应;③油井出砂情况下对模型的影响。

兼顾陆上各类油气田的储层特性,进行针对性模拟。研究带有管线存储和表皮效应的各向异性非稳态渗流模型;研究双探针各向异性解析解;研究谐波压力和脉冲的相位延迟渗流模型;研究双探针有限元模拟方法。

2.液压动力系统结构设计与制造

钻井中途油气层测试技术的井下仪器包括电子线路、液压动力系统、PACKER(座封液压探头)系统、泵抽系统、流体特性实时识别系统、反向注入模块、PVT(Pressure,Volume,Tem-perature)取样筒、大取样控制模块等。这些模块的设计除了满足工程上的要求外,受特定工作环境所限,需要考虑高温、高压等恶劣井况条件的要求。由于这些系统都是非常精密的机械装置,故在本仪器的机械设计与制造工艺方面有着相当大的难度。具体是液压源的体积、功率、温度设计;液路及液压阀门系统设计;双探测器对三维动态流体模型影响下的间距设计;研究复杂地层条件下高压流体排出泵的设计制作;不同流体、不同地层压力条件下的流体反向注入技术;流体自动识别技术;取样控制及其样品保存技术研究。

3.电子控制与数据传输模块的设计与制造

井下电子线路部分主要具有两个功能,一是接收地面发来的指令并进行译码,以控制井下仪器各种机械动作和监测仪器各种状态;二是进行数据采集与数据转换,并将数据传输到地面进行处理。具体是MPU(Micro Processor Unit)微处理器控制电路;继电器控制电路;各种传感器信号处理电路;数据采集处理与传输。

4.地面支持系统

包括地面面板和系统软件,油气层特性测井仪的所有井下功能都由地面系统控制。包括测试数据的记录、不同测试参数的地面调整(如测压采样点的确定,预测体积、泵排速度、压力降的选择等)、井下工况及采样流体性质的判断。它的泵抽系统能对流过仪器或被抽进采样筒的液体进行同步监测和计算其特性参数。这些功能的实现都需要地面软件的支持。

5.测试制度设计、资料解释模型研究与解释软件开发

a.不同油气藏测试工作制度设计方法。对稠油、低渗透、油气水多相等复杂条件,研究测试时间短、流速低、排出量小的合理测试工作制度,泵排的时间控制,多探针垂向干扰测试设计。

b.低速、短时压力资料的定量解释和解释新模型开发。球形和圆柱形压力降和压力恢复叠加分析,考虑管线井储和表皮效应的典型曲线分析,流动期识别和流动模型,多层模型、复合模型、多相流模型,垂向干扰模型、反向注入模型,油藏边界分析模型。

c.与三维地震、钻井、录井、油藏工程等多学科综合评价研究油气藏方法。确定合适钻井液,完井设计,油藏开发建议,研究部分代替DST(Drill Stem Test)的短时间测试产能预测技术。

d.资料解释软件系统。

上述研究的关键技术包括三维仿真模型研究与数值模拟计算;高温高压微型液压动力系统;双PACKER系统;光谱流体识别技术;流体采样与样品保存技术;井下实时自控系统;地面测量与控制系统;复杂油藏的资料解释方法;反向流体注入技术。

地层测试技术研制成功将在油气勘探中解决重大疑难地质问题:重复抽样和重复测试,使压力测量更为准确;利用泵抽技术将泥浆滤液排出,获取原状地层流体样品;双封隔器技术,保证在任何岩层中取得地层流体样品,解决单封隔器在稠油粉砂岩中取样堵塞等问题;将逐步替代试油技术,成为地层评价的重要工具,并为降低成本提供有利工具。另外,鉴于目前国内尚无较好的油气裸眼井分层测试技术可以利用,可以作为开展海洋或陆上石油勘探井和开发井分层动态测试及取样测试,不失为一项极好的分层动态直接测量技术。海洋与陆上每口油气井都需要进行这项地层动态取样测试。凭借其测取的前所未有的、十分完备的油藏分层动态资料,就可以确切地、完美地认识油层及各个分层,并将其测试结果用于油气勘探、油田开发、采油工程的各个方面,有利于高质量高速度高效率地进行油气勘探及油气田开发。再就是,储层特性测井仪器将具有自主知识产权,拥有国内外市场竞争的法律地位,可以冲破种种限制,对国外提供这种测井技术服务,从而获得较好的经济效益。

B. 深圳市百勤石油技术有限公司的产品与服务

技术能力
高速涡轮钻井
百勤率先将能达到800-1500rpm高转速的涡轮钻井技术引进中国,配合个性化设计的孕镶金刚石钻头,形成了火成岩、砾石层、高研磨石英砂岩地层钻井提速唯一有效技术。
高级别/深井多分支井
百勤具备1-6级不同完井水平分支井的能力,实现了分支井眼的重进入和选择性开采。
旋转尾管固井及多级固井
百勤率先将旋转尾管悬挂器用于中国陆地固井作业,有效提高固井质量,并将此技术广泛推广。
油基钻井液
在中国非常规能源开发水平井中推广无粘土相油基钻井液体系,有效保护储层,提供良好的井壁稳定性及润滑能力,大幅度提高钻井效率。
主要产品和服务 服务项目 主要产品 1 涡轮钻井服务 2 7/8″- 9 1/2″涡轮钻具、4″- 16″孕镶金刚石钻头 2 多分支井服务 分支井钻井和完井配套系统工具 3 旋转尾管固井服务 旋转式顶驱水泥头/旋转水泥头、旋转尾管悬挂器和扶正器 4 旋转套管固井服务 简易顶驱、套管驱动系统、固井胶塞、抗扭矩环等 5 分级固井服务 多种机械式和液压式分级箍 6 油基钻井液服务 无粘土相油基钻井液 7 钻头服务 各种高效和常规钻头 8 套管防磨减阻服务 3-1/2″、4″、4-1/2″、5″、5-1/2″钻杆非旋转套管防磨套 9 螺杆钻井服务 等壁厚长寿高效螺杆等配套工具 10 开窗侧钻服务 套管开窗钻井配套系统工具 11 定向及水平钻井服务 井下动力钻具:常规螺杆、长寿高效螺杆、空气螺杆、高速涡轮钻具等
旋转导向钻井系统
测量工具:MWD/LWD、Slim MWD以及EMWD等 12 打捞服务 打捞筒、打捞矛、震击器和强磁打捞器等 技术能力
高温高压、高腐蚀完井
具备高温高压、高腐蚀完井的完井设计、工具选型和安装调试的综合服务能力。
常规完井技术方案设计、技术咨询及服务
可以根据客户需求提供最优的完井方案,选择合理的完井工具,提供优质的服务,为客户获取最大的利益。
大位移完井
完成业界内难度较高的大位移井完井作业,最高水垂比高达3.7,平均井深7600米。
高产油井完井
提供针对不同类型的高产油井的井下完井工具,包括封隔器、安全阀及地面控制系统。
双管完井
提供双管封隔器、环空安全阀在内的双管完井系统的设计和产品。
Monobore完井
提供单通道完井工具和服务,如:尾管悬挂器、顶部封隔器、固井附件、大通径安全阀等,满足高产井的要求,为将来的修井提供便利。
主要产品和服务 服务项目 主要产品 1 高温高压完井服务 2-3/8至9-5/8油管可回收式安全阀及钢丝安全阀、适合4-1/2至10-3/4套管的各类封隔器、气举阀、滑套、化学注入阀、伸缩节、工作筒和球座等 2 钢丝作业服务 作业设备:试井绞车、井口防喷系统
标准工具:基本工具串、锁定芯轴送入与取出工具、移位工具等
打捞工具:钢丝探测器、钢丝捞矛、钢丝剪切工具、打捞筒、磁力打捞器等
测试工具:选择性测试工具、非选择性测试工具、探测工具
其他工具:胀管器、捞砂筒等 3 井口及采油树服务 套管头、套管四通、油管头、油管挂、采油树等 4 地面控制服务 单井控制盘、多井控制盘、紧急截断阀 5 试油服务 地面测试设备、套管井钻杆测试技术、裸眼井钻杆测试系统工具等 6 防砂服务 高温高压防砂技术、水平井砾石充填防砂技术、单、多层防砂技术配套产品 技术能力
水平井多级分段改造(压裂、酸压、酸化)技术
 - 水平井裸眼液压座封封隔器分段改造技术;
 - 遇油遇水自膨胀封隔器分段改造技术;
 - 水平井水力喷射分段改造技术;
 - 水平井快钻桥塞分段改造技术;
 - 水平井套管阀固井分段改造技术。
 非常规油气藏压裂技术
 - 页岩油气藏压裂技术;
 - 煤层气压裂技术;
 - 致密砂岩油气藏压裂技术。
 高温高压深井压裂技术
 强水敏低渗储层压裂技术
 井下多次座封跨隔式封隔器找水和堵水技术
主要产品及服务 服务项目 主要产品 1 分段压裂、酸压、酸化服务 水平井多级分段改造工具:裸眼液压座封封隔器、遇油遇水自膨胀封隔器、可钻桥塞、多级分段压裂滑套、球座及配套产品 压裂液、酸液及化学品:常规水基压裂液体系(适应温度段30-180℃)及化学品、清洁压裂液体系及化学品、滑溜水压裂液体系及化学品、缓速酸液体系及化学品、自生酸液体系及化学品、胶凝酸体系及化学品、清洁自转向酸液体系及化学品 2 找水/堵水服务 井下多次座封跨隔式封隔器找水工具及配套产品 跨隔式封隔器堵水工具及配套产品 技术能力
化学注入
可以提供综合防腐方案设计,以及成套化学注入系统工具,帮助客户以较低的成本达到所需的防腐效果。
动态检测
动态监测系统最大能达到25,000psi的工作压力,能应用于最高200℃的严酷井下条件,并能保证系统的高度可靠性。
气 举
根据产层特点设计合理的气举方案,选用合适的气举工具和合理的数量,提高采油效率、降低气举采油成本。
电潜泵
可提供全系列、多规格的潜油电泵以及配套工具,可以满足不同井况下使用,具有高可靠性、耐高温高压、自动化程度高、兼容性好等优点。
主要产品和服务 服务项目 主要产品 1 气举 偏心工作筒、气举阀、投捞头、造斜工具、气举阀送入和取出工具等 2 电潜泵 电潜泵、高温电潜泵、双电潜泵系统 3 化学注入 化学注入阀、化学注入管线、管线保护器、地面泵送机组、管线绞车等 4 动态监测 传感器、传感器托筒、信号电缆、控制和显示面板、太阳能供电系统等 技术能力
API相关标准;按照客户技术规格书要求设计;应用该行业最先进的设计理念;应用公司相关专利技术;采用国际业内公认品质的最先进的流体控制元件。主要产品和服务. 服务项目 主要产品 1 井口控制设备 单井控制盘、多井控制盘、欠平衡井控系统、旋转防喷器控制柜、节流管汇控制系统 2 化学试剂注入设备 化学试剂注入系统 3 紧急截断阀控制设备 紧急截断阀控制盘 4 自动化监控系统 闭路电视监控系统(CCTV)and 数据监控系统(SCADA) 技术能力
油田试压装置是依据API 16A、API 16C、API6A、SY5156等井口及井控设备试压标准及API Spec11D1-2002(ISO 14310-2001)、API14A等井下工具及安全阀的试压标准,并综合了国内外先进技术及工艺研发和制造的国际先进水平的试压产品,并拥有国家专利证书和企业标准证书。
油田试验检测装置是集试压装置、试验工艺流程、自动化控制、视频监控及配套设施于一体的大型成套设备,符合HSE职业健康、安全环保要求,功能齐全、器件优良、安全可靠、检测试验结果准确无误。
主要产品和服务 服务项目 主要产品 1 水压测试设备 便携式水压实验台,橇装式水压实验台,集中控制水压实验装置 2 气密封测试设备 便携式气密封实验台,橇装式气密封实验台,大型气密实验装置 3 实验室设计建造项目 井口及采气树试验系统,防喷器试验系统,封隔器性能实验系统,采油工艺模拟实验系统,气举工艺模拟试验系统,防沙工艺模拟试验系统

C. 石油钻探

【石油钻探揭秘】

原文地址http://science.bowenwang.com.cn/oil-drilling.htm

图文并茂推荐在原链接观看。

石油的形成
石油是由1,000万至6亿年前古代海洋里死亡的微小动植物(浮游生物)残体形成的。这些生物死后,便会沉入海底的沙里或泥里。

随着岁月流逝,生物有机体在沉积层内腐烂了。这些地层内的氧气很少或根本就没有氧气,因此残体被微生物分解为富碳化合物,最终形成有机层。这些有机物质与沉积物混和,形成了细密的页岩或源岩。随着新的沉积层不断沉积,源岩被施加了巨大的压力和热量,这些热量和压力使得有机物质成为了原油和天然气。石油从源岩内流出,积聚在厚度更高、孔隙更多的石灰岩或沙岩(称为贮油岩)中。地壳运动使得石油和天然气被截留在不渗透岩层或盖岩(例如花岗石或大理石)之间的贮油岩内。
这些地壳运动包括:

褶皱——向内挤压的水平运动,使得岩层向上移动形成褶皱或背斜。
断层——岩层断裂,并发生上下相对位移。
尖灭——不渗透岩层被向上压入贮油岩中。
寻找石油
寻找石油是地质学家的任务,地质学家或被石油公司直接雇佣,或被私人公司通过合同雇佣。他们的任务是找到正确的石油开采区——正确的源岩、贮油岩和圈闭。多年以前,地质学家的主要工作是解释地貌、地表岩石和土壤类型,或许还会通过浅层钻井采集一些少量的岩芯样品。现代的石油地质学家还借助卫星图像来研究地表岩石和地形。然而,他们还利用各种其他的方法来寻找石油。比如,可以利用高灵敏度的重力仪来测量地球引力场中的微小变化,这些变化可以寻找到地下流动的石油;还可以利用高灵敏度的磁力计来测量由于石油流动造成的地球磁场内的细微变化;利用被称为嗅探器的高灵敏度电子鼻,他们可以探测到烃类物质的气味。最后(也是最常见的),他们利用地震学的知识,制造出冲击波穿过隐藏岩层,然后对反射回地面的地震波进行分析。

在地震勘测中,制造冲击波的方法包括:

压缩气枪——向水中发射空气脉冲(用于水面勘探)
重击卡车——向地下击入厚金属板(用于陆地勘探)
炸药——在地上钻孔放入炸药(用于陆地勘探)或从船上向外扔炸药(用于水面勘探),然后引爆。
冲击波在地下传播,并被不同的岩层反射回来。反射波的传播速度取决于它们所穿过岩层的类型或密度。人们利用高灵敏度的扩音器或振动探测器来探测冲击波的反射波——水上勘探利用水听器,陆上勘探利用地震检波器。地震学家将对探测结果进行分析,来寻找油汽圈闭区的信号。
虽然现代石油勘探技术要比过去先进很多,但是在寻找新油田时仍然只有10%的成功率。一旦发现一个富油区,其位置在陆地上将用全球定位系统坐标进行标记,水中则用标志浮标进行定位。

确定好地点之后,必须对选定地区进行勘测以确定其边界,此外可能还需要进行环境影响研究。石油钻探必须获取租赁协议、土地使用资格和权利,还要进行法律评估。对于近海地区,还需要确定法律管辖权。
法律问题解决之后,工作队开始着手陆地准备工作:

将陆地打扫干净并铺平,修建交通道路。
因为钻探过程需要水,所以附近必须有水源。如果不存在天然水源,工作队会打一口水井。
工作队会挖掘一个储备池,用来处理钻探过程中产生的岩屑和钻探泥浆。储备池底部会铺设塑料衬层,以保护环境。如果该地区是一个生态易受破坏地区(如湿地或荒野),那么岩屑和泥浆必须在其他地方进行处理——用卡车运走,而不是填入坑内。
陆地准备工作完成之后,还需要挖掘几个钻探孔,为搭建钻塔和钻探主孔做准备。在真正的钻井孔周围挖一个被称为圆井的矩形深坑,圆井在钻孔周围为工作人员和钻井设备提供了一个工作平台。之后,工作人员开始挖掘主孔,通常是利用一个小型钻车,而不是大型钻塔。钻孔的第一部分要比主体部分大一些,也更浅一些,并会铺设大直径的导管。在一旁挖掘一些额外的钻探孔,用来暂时储存设备——这些钻探孔完成之后,就可以运入并架起钻探设备了。

搭建钻塔
根据钻探区与其交通道路之间的距离远近,来决定是利用卡车、直升机还是驳船将设备运到现场。一些在内陆水域工作的钻塔被建在海船或驳船上,因为那里没有可以支撑钻塔的地基(例如湿地或湖泊)。设备到位之后,便开始搭建钻塔。下面是陆地石油钻塔的主要组成系统:
动力系统
大型柴油发动机——燃烧柴油以提供主要的动力来源
发电机——以柴油发动机为动力来提供电力

机械系统——由电机驱动
提升系统—— 用来提升重物;由一个带有大型钢缆轴盘的机械绞盘(绞车)、一个滑轮组和一个电缆接收存储滚筒组成
转盘——钻探设备的一个组成部分

旋转设备——用于旋转钻探
转环——一个大手柄,用来支撑钻柱的重量,使钻柱可以旋转,并对孔口进行耐压密封
转管——四面或六面的导管,将旋转运动传输到转盘或转柱上
转盘或轮盘——利用电机提供的动力来推动旋转运动
钻柱——由钻杆(连接部分,大约10米长)和钻环(直径更大、更重的导管,安装在钻杆周围,由钻头承载其重力)组成
钻头——钻孔机的末端,用来实际切割岩石;会针对不同的钻探任务和岩石构成,在众多形状和材质(碳化钨钢或金刚石)的钻头中选用最适合的一种

套管——安放在钻孔内的大直径混凝土管道,用于防止钻孔塌陷并允许钻探泥浆进行循环

石油学会供图
泥浆在钻孔内循环

循环系统——在压力作用下用泵抽取钻探泥浆(水、粘土、加重材料和化学物质的混合物,用来把钻头上的岩屑带到地表),使之通过转管、轮盘、钻杆和钻环
泵——从泥浆坑中抽取泥浆,并把它抽吸到钻探设备中
导管和软管——连接泵和钻探设备
泥浆回流管道——使泥浆从钻孔中回流
泥浆振动筛——通过振动或者过滤将岩屑从泥浆中分离出来
滑道——将岩屑传送到储备池
储备池——收集从泥浆中分离出来的岩屑
泥浆坑——钻探泥浆进行混合和循环利用的场所
泥浆混合槽——新的泥浆在这里进行混合,随后送入泥浆坑
铁架塔——安放钻探设备的支撑框架;铁架塔必须足够高,以保证在钻探过程中可以向钻探设备上添加新的钻杆部件

防喷装置——高压阀(安装在陆地钻塔下或海床上)用来密封高压钻井管道,并在必要时降低压力以防止发生井喷(即气体或石油不受控制地喷出地表,经常会引起火灾)
工作队搭建起钻塔开始钻探工作。首先,他们在最初的钻孔位置上钻一个表孔,该孔的深度是预定的,要高于人们所认为的石油圈闭区的位置。钻探表孔有五个基本步骤:
把钻头、钻环和钻杆放入孔内。
安装转管和转盘,开始钻孔。
钻孔过程中,循环泥浆不断通过钻杆,并从钻头排出,使得岩屑可以浮出孔口。
随着孔越钻越深,要在钻杆上增加新部件(接头)。
到达预定深度(从几十米到几百米)后,移走(取出)钻杆、钻环和钻头。
到达预定深度之后,必须插入套管并进行固定 ——将套管部分置入钻孔内,以防止钻孔发生塌陷。套管外围设有定位装置,以保证它位于钻孔中央。
负责套管的工作人员将套管放入钻孔中。固井队工作人员利用底塞、水泥浆、顶塞和钻探泥浆通过套管向下灌注水泥。来自钻探泥浆的压力使得水泥浆流经套管,并充满套管外部与钻孔之间的空隙。最后,等待水泥凝固,然后对硬度、位置和完全密封等性能进行测试。

新的钻探技术
美国能源部和石油业都在努力寻找石油钻探的新方法,其中包括水平钻探技术、在生态易受破坏地区进行石油开采以及利用激光技术钻油井。
继续钻探阶段:工作人员进行钻探,然后放置新套管并用水泥进行加固,之后再进行钻探。当泥浆所含的岩屑中出现贮油岩内的油沙时,就达到了最终深度。此时,工作人员将钻探设备从钻孔中移出,然后进行以下几项测试以验证这一发现:

测井——在钻孔内放置电子和气体传感器来测定那里岩石的组成
钻杆测试——在钻孔内放置测压装置,该装置可以显示是否已经到达贮油岩
岩芯取样——采集岩石样品,寻找贮油岩的特征
井喷和火灾
在电影里,会看到钻孔机到达最终深度时发生的油喷(井喷),甚至是火灾。这些都是非常危险的情况,利用防喷装置和钻探泥浆产生的压力(有可能)可以避免这些状况的发生。在大多数油井中,都必须对油井进行酸化或碎裂处理,才能使油流出。
达到最终深度后,工作人员会将油井加以完善以保证石油能够以可控制的方式流入套管中。首先,将打孔器放入油井内的产油深度处。打孔器内装填有炸药,可以在套管上炸开洞孔,从而让石油经此处流出。套管开孔后,向钻孔内放入一根小直径的导管(油管),作为油气流出井外的管道。一种叫做封隔器的装置被安装在油管外部的底端,当封隔器设置为生产状态时,它会发生膨胀,从而在油管外部形成一个密封圈。最后,在油管顶部连接一个被称为采油树的多阀结构,并将其与套管顶部结合在一起。采油树使得工作人员可以控制井内流出石油的流速。
油井完成后,必须让石油流入油井内。如果是石灰石贮油岩,那么通过向油井内注入酸,可以使之通过孔洞流出。酸会使石灰石内溶解出一条可供石油流入油井的通道。如果是沙岩贮油岩,那么可以向油井中注入一种含有支撑剂(沙子、胡桃壳、铝粒)的特殊混合液体,然后使石油通过孔洞流出。来自此种液体的压力使得沙岩内部产生微小的裂缝,因此石油可以流入井内,而支撑剂可以维持这些缝隙的存在。石油流出时,石油钻塔就会从现场拆除,同时安装生产装置来从油井中抽取石油。
钻塔被移走后,将在井口放置一台油泵。

加利福尼亚州资源保护部供图
用泵在钻井中抽油

在泵抽系统中,利用电机带动齿轮箱来移动控制杆。控制杆不断地推拉抛光杆,使之上下移动。抛光杆连在一个抽油杆上,抽油杆又连着泵。该系统推动泵上下移动,从而产生一个吸力将石油从井里抽上来。

在有些情况下,石油可能会因过于粘稠而无法流动。这时工人们会再钻一个孔到达贮油区内,然后在压力作用下注入蒸汽。蒸汽散发的热量会使贮油区内的石油变稀,进而利用压力作用将石油压出井外。该过程被称为原油强化回收。

加利福尼亚州资源保护部供图
石油强化回收

虽然目前正在应用的石油钻探技术众多,并且新的方法不断出现,但是问题仍然存在:我们会有足够的石油来满足需求么?根据目前和未来的石油发现量以及当今的需求量来估计,我们的石油储量只能满足未来63到95年的消耗量。

钻探

工作队搭建起钻塔开始钻探工作。首先,他们在最初的钻孔位置上钻一个表孔,该孔的深度是预定的,要高于人们所认为的石油圈闭区的位置。钻探表孔有五个基本步骤:
把钻头、钻环和钻杆放入孔内。
安装转管和转盘,开始钻孔。
钻孔过程中,循环泥浆不断通过钻杆,并从钻头排出,使得岩屑可以浮出孔口。
随着孔越钻越深,要在钻杆上增加新部件(接头)。
到达预定深度(从几十米到几百米)后,移走(取出)钻杆、钻环和钻头。
到达预定深度之后,必须插入套管并进行固定 ——将套管部分置入钻孔内,以防止钻孔发生塌陷。套管外围设有定位装置,以保证它位于钻孔中央。
负责套管的工作人员将套管放入钻孔中。固井队工作人员利用底塞、水泥浆、顶塞和钻探泥浆通过套管向下灌注水泥。来自钻探泥浆的压力使得水泥浆流经套管,并充满套管外部与钻孔之间的空隙。最后,等待水泥凝固,然后对硬度、位置和完全密封等性能进行测试。

新的钻探技术
美国能源部和石油业都在努力寻找石油钻探的新方法,其中包括水平钻探技术、在生态易受破坏地区进行石油开采以及利用激光技术钻油井。
继续钻探阶段:工作人员进行钻探,然后放置新套管并用水泥进行加固,之后再进行钻探。当泥浆所含的岩屑中出现贮油岩内的油沙时,就达到了最终深度。此时,工作人员将钻探设备从钻孔中移出,然后进行以下几项测试以验证这一发现:

测井——在钻孔内放置电子和气体传感器来测定那里岩石的组成
钻杆测试——在钻孔内放置测压装置,该装置可以显示是否已经到达贮油岩
岩芯取样——采集岩石样品,寻找贮油岩的特征
井喷和火灾
在电影里,会看到钻孔机到达最终深度时发生的油喷(井喷),甚至是火灾。这些都是非常危险的情况,利用防喷装置和钻探泥浆产生的压力(有可能)可以避免这些状况的发生。在大多数油井中,都必须对油井进行酸化或碎裂处理,才能使油流出。
达到最终深度后,工作人员会将油井加以完善以保证石油能够以可控制的方式流入套管中。首先,将打孔器放入油井内的产油深度处。打孔器内装填有炸药,可以在套管上炸开洞孔,从而让石油经此处流出。套管开孔后,向钻孔内放入一根小直径的导管(油管),作为油气流出井外的管道。一种叫做封隔器的装置被安装在油管外部的底端,当封隔器设置为生产状态时,它会发生膨胀,从而在油管外部形成一个密封圈。最后,在油管顶部连接一个被称为采油树的多阀结构,并将其与套管顶部结合在一起。采油树使得工作人员可以控制井内流出石油的流速。
油井完成后,必须让石油流入油井内。如果是石灰石贮油岩,那么通过向油井内注入酸,可以使之通过孔洞流出。酸会使石灰石内溶解出一条可供石油流入油井的通道。如果是沙岩贮油岩,那么可以向油井中注入一种含有支撑剂(沙子、胡桃壳、铝粒)的特殊混合液体,然后使石油通过孔洞流出。来自此种液体的压力使得沙岩内部产生微小的裂缝,因此石油可以流入井内,而支撑剂可以维持这些缝隙的存在。石油流出时,石油钻塔就会从现场拆除,同时安装生产装置来从油井中抽取石油。

-====================================================================

【石油工业论坛】专业的知识交流,不懂可以来这提问。

http://bbs.cqvip.com/notelist.asp?k=0,560

D. 方案设计与实施

以技术调研、室内可行性评价实验和油藏精细描述研究成果为基础,优化设计了CO2驱油试验方案,并于2003年3月进行了矿场试验。

1.注气方案

(1)数值模拟研究

根据地质研究成果,建立了试验区的三维地质模型。进行了数值模拟网格划分,纵向上划分为4个网格,并形成一套变深度的网格系统。平面上网格方向基本与构造长轴一致,网格总数为40×42=1680个。在三维地质建模的基础上,对注气驱油室内实验数据进行了拟合。

PVT相态实验拟合:应用相态模拟软件Winprop对芳48井区原油高压PVT实验数据进行了拟合,主要包括地层流体重馏分的特征化、组分归并、饱和压力计算、单次闪蒸实验拟合、等组成膨胀实验拟合、多级脱气实验拟合、注CO2气膨胀实验拟合及相图计算等。最后得到了能反映地层流体实际性质变化的流体PVT参数场。

拟组分划分:将芳48井区地层原油归并为6个拟组分:CO2,N2-C1,C2-C6,C7-C16,C17-C30,C31+。在参数优化过程中重点考虑对原油性质和流动性质影响较大的饱和压力、气油比、密度等组成膨胀和流体黏度的拟合效果。

细管实验拟合及注气混相驱研究:通过细管实验拟合,确定了芳48井区油藏流体注CO2气的最小混相压力,同时模拟计算了注气过程P-X相图和多级接触的拟三元相图。分析了芳48井区油藏流体在注CO2气时的混相能力及特征。

长岩心驱替实验拟合:长岩心驱替实验拟合的目的是通过对注气方式和实验结果的匹配,对相对渗透率曲线和毛管压力曲线等参数进行适当的修正,为三维油藏数值模拟研究提供符合实际的基本渗流特征数据。对3个不同压力下的注CO2气长岩心驱替实验进行了拟合(表6-28)。

表6-28 注CO2气长岩心驱替实验拟合结果

在地质建模和实验数据拟合的基础上,对不同注气速度的6套方案进行了数值模拟指标预测(表6-29)。从表中可见,随着注气速度的提高,采收率增加。主要由于注气速度提高后使地层压力保持水平升高,从而更有利于提高驱油效率。但随着注气速度的进一步提高,换油率下降。

表6-29 不同注气速度数值模拟主要指标预测结果

从注气速度与累积增油量的关系看(图6-20),随着注气速度的增加,累积增油量变化不大,表明提高注气速度对开发效果影响不明显。

图6-20 CO2注入速度与累积增油量的关系

(2)方案设计结果

根据室内实验和数值模拟研究成果,平均日注CO215t时方案预测指标较好,且随着注气速度增加,采收率提高。到模拟结束时累积产油6.14×104t,采出程度24.02%。考虑到室内实验和数值模拟与矿场实际有一定的误差,且为便于现场实际操作,尽量加快试验进程,力争早日得出CO2驱油试验结论,方案设计初期日注气20t,同时根据注气井和连通油井动态变化情况进行跟踪调整。

2.采油工艺

(1)注入工艺

油管:通过玻璃钢油管、渗镍磷油管、耐蚀合金钢油管对比分析,优选了J55钢级、 ″平式渗镍磷油管。

注入管柱:采用Y341-114封隔器整体式注入管柱,该管柱由井下循环阀、Y341-114封隔器、球座、喇叭口组成,井下工具采用抗CO2腐蚀合金钢加工,管柱可实现抗CO2腐蚀、承压高、密封性能好的要求,承压差为25MPa,耐温120℃,使用寿命可达2年以上。

注入井井口:注入井井口抗CO2腐蚀可分为DD、EE和FF3个级别。DD级井口材质为35CrMo;EE级井口材质在与腐蚀性介质接触的关键部位,如阀芯、隔环、压盖等采用抗CO2腐蚀合金钢材料制造,其他部位采用35CrMo;FF级井口材质全部采用抗CO2腐蚀合金钢;根据压力资料,选择承压高、密封性好的KQ65-35-FF注入井井口;井口安装单流阀。

辅助防腐工艺:在使用防腐油管和套管的同时,油管使用柴油作为隔离液,缓蚀剂预处理;油套环空加缓蚀剂进行压力平衡、防腐来保护油、套管。目前,国内外较好的缓蚀剂主要类型有丙炔醇类、有机胺类、咪唑啉类和季胺类。中原油田对咪唑啉类缓蚀剂在不同浓度和不同分压下进行了试验,缓蚀率达86.7%~96.0%,说明咪唑啉类缓蚀剂能够很好地防CO2腐蚀。管柱下井后反循环替入防腐剂充满油套管环形空间,后期注入过程间断补充防腐剂。投注时,油管先挤入隔离液柴油,然后挤入防腐剂进行油管预处理。

(2)抽油举升工艺

油管和抽油杆:渗镍磷处理技术主要依靠渗镍磷层(厚度为20~40μm)来隔绝钢体与腐蚀介质的接触,从而达到防腐的目的。该技术的优点是工艺简单、成本低。考虑与测试技术相容,油井采用 小接箍外加厚 平式组合油管,即上部800m采用渗镍磷 小接箍外加厚油管,其余井段采用渗镍磷 平式油管。

抽油杆采用Ф25×Ф22×Ф19mmH级表面渗镍磷抽油杆;抽油泵选用Ф32mm整筒泵;抽油机选用YCYJ10-3-37HB节能抽油机;为满足动态监测要求,考虑防CO2腐蚀,井口选用偏心250-EE井口。

(3)机械采油配套工艺

防气工艺:为提高泵效,防止气锁,在抽油泵下安装气锚。

清防蜡工艺:清防蜡剂采用油溶性清防蜡剂。

防腐工艺:采出井见效后,气、水、油混合物存在一定的腐蚀性,在使用防腐蚀油管和抽油杆的同时,生产过程中,采用缓蚀剂防腐,并根据采出液CO2监测量,确定加药制度。

防垢工艺:从江苏油田试验情况看,CO2驱在采出井出现了井下结垢现象,采取的措施是采用点滴加药方式向油套环空加入阻垢剂。大庆油田采油八厂在2000年研究了井下固体防垢工艺,主剂为氨基三甲叉膦酸和聚丙烯酸钠。室内实验结果表明,当防垢剂浓度在2.0~6.0mg/L范围内时,防垢率可达90.2%~98.4%。将防垢剂固化,安装在抽油泵下部,随生产管柱下入井内。现场检测结果表明,试验井采出液中阻垢剂的浓度能够控制在有效浓度之内,有效期1年,起到了较好的防垢作用。因此在采出井下入井下固体防垢器和油套环空加阻垢剂的措施进行防垢。

计量工艺:根据地面流程,确定相应的单井计量工艺,采用液面恢复法和井口收油罐量油或翻斗计量方式同时计量。

3.地面工艺

注入工程:在试验区建注入站1座,液态CO2冷冻储存,升压注入。在注入井西南侧建注入站1座,由CO2站的罐车将CO2送到注入站后,经卸车泵输入30m3储罐,设置一套制冷装置维持储罐温度在0~10℃,储罐内的CO2经注入泵注入井口。由于该工艺未考虑喂液泵,在试验过程中无法正常运行,后调整为撬装注气装置,满足了试验区注气要求。

原油集输工程:原油集输系统新建油井5口采用集中拉油方案。单井计量均采用固定式翻斗仪计量;集油管道内采用熔结环氧粉末防腐层,厚度大于等于350μm,工厂预制;补口采用承插式管道内补口接头,现场焊接。储罐内防腐层结构为:环氧富锌底漆2道,干膜厚度80μm,环氧防静电涂料面漆2道,干膜厚度120μm。

4.方案实施情况

注气井(芳188-138)于2003年3月开始试注,该井只射开FⅠ7层,砂岩厚度10.3m,有效厚度6.0m,未压裂直接投注。初期井口压力14~15MPa,日注液态CO25t。截至2004年6月底,油压13.0MPa,日注液态CO23t左右,受注入状况等因素影响,仅累积注入液态CO2596t。2004年7月以来,按方案实施,平均日注气20t左右。截至2004年12月底,注入压力在12.5MPa左右,累积注入液态CO25396t(0.1079PV)。

2005年继续按方案设计注气(日注20t左右),其间5~7月对注气井组进行了整体试井。截至2005年底,注入压力在12.5~13.0MPa,累积注入液态CO215000t(0.3PV)。

根据井组内油井受效和见气情况,2005年10月改为脉冲注气,并利用数值模拟技术对脉冲注气周期、注气速度等参数进行了优化。根据优化后的方案,先后分3个段塞注入液态CO25239t。截至2006年底,累积注气20373t,注入地下体积0.407PV。2007年1~2月按方案要求停注,4月份恢复注气11d,共注入CO2301t;受钻关等因素影响,5~9月注气井停住;10月份开展了注气井组双向调剖现场试验,共注入调剖剂480m3和CO2533t。截至2007年底,累计注入CO220674t(0.413PV)。

试验区4口老油井平均单井射开砂岩厚度12.9m,有效厚度10.9m。1999年10~11月用YD-89型射孔枪射孔后,进行了压裂改造,平均单井压裂砂岩厚度12.2m,有效厚度10.3m。2002年底转抽油投产,初期平均单井日产油3.5t,采油强度0.34t/d·m;2004年8月为加快试验进展,投产了距注气井80m的未压裂井芳188-137,投产初期几乎没有自然产能,2005年3月对该井进行了吞吐试验,吞吐后该井开始受效,日产油最高1.5t。试验区从2004年7月开始受效,到2005年3月见到注入气,经过脉冲注气、油井间开等调整措施,投产5年时平均单井日产油0.8t,采油强度0.08t/d·m。

E.  中国南海流花深水油田开发新技术

流花11-1油田位于中国南海珠江口盆地29/04合同区块,在香港东南方220km,海域平均水深305m。

流花11-1油田是中国海油和阿莫科东方石油公司(Amoco Orient Petroleum Company)联合开发的油田。流花11-1油田1987年1月发现,1993年3月在发现该油田6年后,政府主管部门正式批准了该油田总体开发方案,随即启动油田开发工程建设,于1995年5月投产,作业者是阿莫科公司。

流花11-1油田包括3个含油圈闭,即流花11-1、4-1和11-1东3个区块。流花11-1区块基本探明含油面积36.3km2,地质储量15378×104t,控制含油面积53.6km2,地质储量6426× 104t。流花4-1区块控制含油面积18.2km2,地质储量1753×104t。流花11-1东区块控制含油面积11.3km2,地质储量458×104t。全油田探明加控制含油面积为83.1km2,地质储量共计24015×104t,是迄今为止在中国南海发现的最大的油田。目前先投入开发的流花11-1区块,只是流花11-1油田的一部分。

要经济有效地开发这样一个大油田,面临着诸多技术上的难题:水深大、环境条件恶劣、原油比重大、黏度高、油藏的底水充足且埋深浅。针对这些特点,经过中外双方技术人员共同努力,开拓创新,用全新的思维观念,采用了当今世界顶尖的高新技术,在工程开发过程中创造了“3个首次、7项一流”。

流花11-1油田设计开采年限12年,工程设施设计寿命为20年,批准投资预算65300万美元,实际投资决算62200万美元,比预算节约了3100万美元。

一、工程开发方案

流花11-1油田采用深水全海式开发方案。整个工程设施包括5部分:半潜式浮式生产系统(FPS)南海“挑战号”、浮式生产、储卸油装置(FPSO)南海“胜利号”、单点系泊系统、海底输油管线和水下井口系统(图12-1)。

图12-1流花11-1油田工程设施图

二、设计条件

(一)环境条件

a.流花11-1油田作业海区除了冬季风、夏季强热带风暴(台风)的影响外,还有一种特殊的海况——内波流,它也是影响作业和系统选择的主要因素。1990年单井测试期间,曾发生过由内波流引起的几次拉断缆绳、船体碰撞,甚至拉断浮标或挤破漂浮软管的事故。

b.流花11-1油田环境参数见表12-1。

c.流花11-1油田“挑战号”FPS柔性立管设计参数见表12-2。

d.流花11-1油田“挑战号”浮式生产系统FPS设计环境参数见表12-3。

e.流花11-1油田“胜利号”FPSO方向性海况设计参数见表12-4。

表12-1流花11-1油田环境参数

表12-2“挑战号”FPS柔性立管设计参数(百年一遇)

表12-3“挑战号”FPS浮式生产系统环境设计参数

表12-4“胜利号”FPSO方向性海况设计参数

(三)其他设计参数

水下井口配套设备,包括压力仪表,其管路最大工作压力为15.5MPa(22401b/in2);

单井高峰日产量:2384m3/d,含水范围0%~93%;

FPSO日处理能力:47670m3/d;

大气温度:16.4~33.7℃;

水下作业温度:11~31℃;

井液温度:11~52℃。

所有的管路材料及计量和压力仪表应适于输送带硫化氢和二氧化碳的液体,内表层应进行化学防腐处理,外表层以油漆和牺牲阳极进行保护。

(四)延长测试

为了解决油田强大底水快速锥进,减缓水锥速度,更大程度地挖掘油田潜能,对油田长期产能作进一步分析,有效地提高采收率,在正式开发之前用了半年时间对3口井进行了延长测试。

a.流花11-1-3井为一口穿透油藏的直井,初始日产量363m3,综合含水20%,42d后日产量350m3,综合含水升至70%。

b.流花11-1-5井,为一口大斜度延伸井,落入油藏段的井斜段达78%,初始日产量为1271m3,综合含水0%;51d后日产量降为874m3,综合含水升至51%,水锥上升速度较直井有明显改善。

c.流花11-1-6井为一口水平井,水平井段全部落入油层顶部渗透率最好的层段,初始日产量1907m3,综合含水为0%;120d后日产量为1017m3,综合含水为26%。与前2口井相比,采用水平井开采不但可以提高单井产量,还可以减缓底水水锥速度,是该油田最佳的开发方案。

三、南海“挑战号”浮式生产平台(FPS)

流花11-1油田海域水深将近310m,使用常规的导管架固定平台结构形式,仅导管架本身费用就高达10亿美元,而新造一座张力腿平台的费用估计要12亿美元。经过技术和经济上的论证和比较,最终采用了改造半潜式钻井平台方案,全部改造费用也不超过2亿美元。根据使用要求,改造后的浮式生产系统不但能抵御海区百年一遇的恶劣海况,还能满足钻井、完井、修井作业要求,并且能够安装、回收和维修水下井口设备,监视控制水下井口,为井底电潜泵提供悬挂月池和供给电力。根据台风极值具有方向性,东北方向的风、浪、流极值明显比西北方向大的特点,改变常规的8根或12根锚链对称系泊方式为非对称的11根锚链,还根据实际受力情况,使大部分锚链长度有所缩短。锚链直径φ127mm,单锚重量40t,是目前使用于海上商业性用途最大的船锚。锚泊力可以承受百年一遇强台风的袭击,将南海“挑战号”永久性地系泊在海底。

“挑战号”的设计使用寿命是20年。

1993年7月购进改造用的半潜式钻井平台,经过22个月改造设计和船厂施工,于1995年4月系泊到油田预定位置。

“挑战号”还配有2台ROV遥控机器人支持作业,通过25根水下电缆向井口供电。生活模块可容纳130人居住。

四、浮式生产储卸油轮(FPSO)和单点系泊系统

(一)南海“胜利号”浮式生产储卸油轮(FPSO)

南海“胜利号”是由一艘14万吨级的旧油轮改装的,该油轮型长280m,型宽44m,型深23m,吃水17m。改装后的油轮具有发电、原油净化处理、原油储存和卸油功能。高峰日处理液量为4.77×104m3,日产油量1.03×104m3,可储存原油72万桶。针对流花11-1油田原油黏稠特点,原油处理流程采用了世界先进的电脱盐/脱水二合一新技术,即在一个设备内,分步完成原油脱盐和脱水。海上油田使用这项新技术在世界上也属首次,不但节省了大量的空间,还节约了上百万美元的工程费用。

“胜利号”生活楼模块可容纳85人居住。储存的合格原油经串靠的穿梭油轮外运销售。

(二)“胜利号”单点系泊系统

“胜利号”浮式生产储卸油系统(FPSO)采用永久式内转塔单点系泊系统。单点用锚链固定于海底,通过油轮船体前部空洞内的转塔机构与船体相连,油轮可绕单点作360°的旋转。这种结构形式在国内是首次采用,在深水情况下比固定塔架式系泊结构要经济得多。设计环境条件采用百年一遇极端海况,用10条Φ114.3mm锚链系泊。根据环境条件各个方向极值的差别,适当调整锚链长度。该单点系泊系统为永久不可解脱式,最大系泊力为600t。

五、水下生产系统

(一)水下井口系统的选型

a.分散水下井口生产系统,适用于作业海区海流流向沿深度分布基本一致并相对稳定的情况。水下井口之间可通过柔性管线相连或与总管汇相连,也可直接与油轮相连,这种水下井口系统的优点是已有一定经验,井口和表层套管的定位精度要求低。其缺点是,水下井口之间的软管与特种液压接头的成本及安装费用高,海流方向不稳定时易引起软管的缠绕,造成软管和接头部位损坏,单井修井会影响其他井生产,且施工安装海况要求高、时间长。

b.集中水下井口生产系统,适用于各种海流条件,井口导向底座之间用钢质跨接管相连成一整体。这种结构形式以前还从未采用过,缺乏经验和现成的配套技术及设备,井口和表层套管的定位精度要求高。另一方面,这种结构形式的优点是钢性跨接管接头成本远低于柔性软管和液压接头,只相当于后者约1/3。单井修井作业不影响其他井正常生产,相对独立的软管可以单独安装和回收,且运动范围小,不会发生软管的摩擦和缠绕,钢性跨接管的测量、安装和回收作业可与其他作业同时进行,且不需动用其他船只,在较恶劣海况下照常作业,效率高。通过全面研究对比,最终选用了集中水下井口生产系统。

(二)水下井口系统的主要结构和复装顺序

集中水下井口生产系统被称为“组块搭接式控制体系”,是流花11-1油田工程创新最多的体系,首创的新技术包括:集液中枢管汇;钢制井口间跨接管;湿式电接头在海上平台的应用;浮式生产平台支持的悬链式柔性立管系统;水下生产液压控制系统;遥控水下作业机器人ROV;新型海底管道固定底座及钢制长跨接管;水下卧式采油树。

水下井口设备分三大块安装,先将导向生产底座(PGFB)锁紧在762mm的表层套管头上,用钢制跨接管将PGFB下部集输管线接头连接起来,从而将独立的水下井口连成一体,形成复线的封闭回路,再将水下采油树锁紧在476mm的井口头上,将采油树出油管线接头与生产底座上的阀门相连,最后将采油树帽连同电潜泵电缆一起盖在采油树上,电潜泵的电路被接通,原油经采油树出口进入PCFB下部集输管汇内,汇集到中枢管汇,再从中枢管汇通过钢制长跨接管进入海底输油管道,输往南海“挑战号”进行处理。

(三)水下井口设备的功能

1.中枢管汇

中枢管汇组块长21.3m,宽2.1m,高2.1m,重60t。由2根457.2mm生产管线和1根203.2mm测试管线组成,分别与2条342.9mm(13.5in)海底输油管线和1条152.4mm的海底测试管线对应。每根管线引入6个接头,其中4个接头与井口采油树的4个翼阀相接,1个接头与海底管线相接,1个接头用作管线间的转换阀。安装时用平台吊机将中枢管汇吊起扶正,接近转台,再用钻机大钩穿过月池安放到海底。中枢管汇还作为液压盘的基础,主控室的液压信号通过分配盘传递到各采油树上。

2.永久生产导向底座PGFB

与常规的永久导向底座相比,除了尺寸4.8m×4.8m更大,具有导向和作基础功能外,还具有集液功能。底座下部设计了2条304.8mm集液管,从采油树出来的原油经生产阀进入集液管。底座的导向杆也经过改进,可以回收多次利用。

3.卧式水下采油树

为了适应水下无人工潜水作业,这种采油树帽将所有阀门设计在水平方向并由水下机器人操作。16个不同性能的球阀阀门的开关集中设在便于遥控机器人ROV操作的一块操作盘上,可用机器人操作这些开关,来控制生产阀、环空阀、安全阀、化学药剂注入阀等。这些阀门也可由平台液压控制开启和关闭,在应急情况下安全阀可自动关闭。

4.水下采油树帽

采油树帽盖在采油树顶部,帽内侧固定湿式电接头(WMEC)插座,外侧法兰盘内是干式电接头(DMEC)插头,干式电接头被固定在IWPC终端法兰盘内,在平台上先接好干式电接头法兰。考虑到恶劣的环境条件可能对IWPC拉扯造成采油树的破坏,在IWPC一端设计了一种安全破断法兰,在荷载尚未达到破坏采油树之前,破断法兰的螺栓首先破断,使IWPC与采油树帽脱离。

5.采油树及采油树帽的安装

安装作业所使用的工具是一种多功能完井、修井工具(URT)。这种工具经4条导向缆坐在采油树上,整套系统由液压控制,能自动对中,调整高度,平缓而高效,不但能安装采油树和采油树帽,还能回收采油树帽,暂时停放在PGFB上,进行油管塞密封压力和湿式电接头电路测试,省去了将采油树帽和IWPC收回到平台测试再安装的复杂作业。这种工具的下部为一长方形框架结构,4根用作导向的漏斗柱体间距与采油树导向漏斗完全相同,1根中心杆,通过液压控制,可平缓移动。

6.水下遥控机器人(ROV)

2台机器人都是根据流花11-1油田的使用要求设计制造的,一台为永久式,在平台上作业;另一台为移动式,能移到工作船上进行潜水作业。2台机器人的功率均为73.5kW (100HP),6个推进器,6架摄像机(其中1架为可调焦,1架为笔式装在机械手上),能在2浬的海流中拖着183m的脐带作业,配备有多功能的模块——MFPT。ROV配备有下列模块:旋转工具模块、机械手插入式液压推进器、自动对中伸缩液压驱动器、辅助作业工具、柔性工作绳剪断器、电缆截断器、电缆抓紧器、低压冲洗枪、黄油注入工具、定位伸缩吸盘、液压圆锯、1只7功能Schilling机械手、1只5功能Schilling大力机械手和拔插销功能等。由于设计时考虑了各种作业工况的要求,并事先进行了模型试验,因此,在实际作业过程中性能良好,一直保持着非常高的作业效率。

7.海底管线连接固定基座(TIB)

海底管线连接固定基座(TIB)是一个将海底管线与水下井口连接在一起的装置。它的一侧通过3根长为22.9m、17.4m和11.3m的钢制长连接管与水下井口中枢管汇相连,另一侧与3条海底管线相接。海底管线连接固定基座(TIB)由浮式生产平台安装,TIB与3条海底管线的连接则由一套无潜水软管连接系统(DFCS)完成。DFCS由1台ROV携带下水,当海底管线下放到接近目标位置时,另1台 ROV将从 DFCS上引出一条钢丝绳,将钢丝绳端的QOV卸扣挂在海底管线连接头的吊点上,拉紧钢丝绳,使海管接口顺导向槽逐渐贴近TIB上的接口,由ROV将液压驱动器插头插进接头锁紧孔锁紧接头,密封试压合格后,松掉接头上的ROV卸扣,便完成安装作业。

六、海底输油管线

流花11-1油田海底管线包括3部分内容。

1.生产管线

数量:2根;

直径:131/2”;

输送介质:油水混合液体;

材质:动力柔性软管;

距离:从“挑战号”浮式生产系统(FPS)下面的海管立管基座到“胜利号”浮式生产、储卸油装置下面的立管基座(PRB);

长度:2.24km。

2.计量管线

数量:1根;

直径:6”;

输送介质:油水混合液体,单井计量或应急情况下代替生产管线;

材质:动力柔性软管;

距离:从“挑战号”浮式生产系统(FPS)下面的立管基座到“胜利号”浮式生产储、卸油装置下面的立管基座(PRB);

长度:2.24km。

3.立管

数量:生产立管2根,计量立管1根;

直径:生产立管131/2”,计量立管6”;

输送介质:液体;

材质:动力柔性软管;

距离:从“胜利号”浮式生产储、卸油装置下面的立管基座到上面的转塔式单点。

七、水平井钻井技术

(一)井眼轨迹的设计

该油田特点是面积大、油层埋藏深度浅,从泥面到油藏顶面的垂直距离只有914m。受油藏埋深限制,平台钻水平井的最大控制半径约为3km。为保证电潜泵能在无横向扭矩条件下运转,水平井井眼轨迹设计分为2个造斜井段,在2个造斜井段之间设计了一段稳斜井段,将电潜泵下入到稳斜井段中。为防止电潜泵下入时受到损坏,第一个造斜井段的造斜率不得超过7°/30m。20口水平井设计的水平井段均处在厚度约为6.8m孔隙度最好的B1层,水平段长度为800m,总水平位移约为910~2590m。

(二)钻井技术和特点

a.首先使用随钻下套管的新工艺安装套管,成功地完成了25根导管安装作业。安装作业时间总计14.4d,平均单井安装时间14.8h,与常规方法相比较节约时间36d。

b.采用成批钻井方法,对444.5mm(171/2in)和311.2mm+215.9mm(121/4in+81/2in)井段分别采用成批作业方式。444.5mm井段测量深度650m,平均单井完成时间1.5d;311.2mm+215.9mm井段测量深度2040~3048m,平均单井完成时间10.8d。成批钻井作业方法的应用大大加快了钻井作业的速度。

c.钻井液使用PHPA水基泥浆体系和海水(加Xanvis泥浆)钻造斜段和水平段,降低了泥浆成本,提高了钻井速度,减少了对油层的污染,保护了环境。

d.导向钻井技术采用先进的水平井设计技术和GST(GeosteeringTool)井下导向钻井工具,随时掌握钻井状态和监测钻遇地层,及时确定目的层的深度和调整井眼轨迹,不但加快了钻井进度,还使水平井准确落入厚度仅为6.8m的B1目标层位的比例达到91%。

(三)主要钻井指标

油田投产前,钻井作业除成批安装25套762mm(30in)导管外,共钻井17口,完井12口,总进尺28207m,总天数180d,平均测量井深2351m,水平井段813m,水平井段落入B1目标层位的比例为91%,单井作业周期13d,单井费用196万美元。

八、完井管柱

1.油管挂

完井管柱的安装是通过油管挂安装工具(THRT)起下油管挂来完成的。油管挂经导向槽导向着陆,再锁紧在采油树内的密封布芯内。

2.湿式电接头(WMEC)

湿式电接头(WMEC)是电潜泵井下电缆的终端,通过招标选用国外标准化产品,其插头固定在油管挂中,插座固定在采油树帽中,在盖上采油树帽时,套筒形的插座随采油树帽一起套在油管挂插头上,在海水中对接即可通电,且保证不会漏电,无需再专门进行安装。插头咬合部分类似于普通的三相插头,整个套筒插座长约50cm,直径约8cm。

为保险起见,用电绝缘液冲洗采油树帽与油管挂之间的空间,再用氮气将电绝缘液挤出,以保证湿式电接头(WMEC)不会因长时间在变高压和变频强电流工作状态下,工作产生高热量导致采油树帽热膨胀而损坏。

湿式电接头的工作参数为:电压5kV,电流125A,频率60Hz。

3.电潜泵

由于流花11-1油田原油黏度高、密度大、井底压力低以及后期含水上升快等特点,因此选用加电潜泵采油工艺。所选用的电潜泵是Reda公司提供的562系列电潜泵总成,HN13500、73Stages、540HP、125Ams、5000Volts。为电潜泵供电的水下电缆下端与采油树帽相连,上端悬挂在FPS下层甲板上,与电潜泵控制室中的变频器相连。单井生产阀和安全阀的开关由FPS上的液压系统直接控制,采油树上的液压接头通过水下控制软管与水下中枢管汇液压分配盘相连,而液压分配盘通过液压控制缆与FPS中控室相接。

4.水下坐封式生产封隔器

由NODECO提供的可再次坐封的封隔器有4个通道,包括地层液流动通道、ESP电缆穿越器、化学药剂注入管线和备用管线通道。它的主要特点是可以再次坐封,采用再次坐封的封隔器可以避免每次修井都要起出管柱更换封隔器,从而节约了修井时间和费用。

阅读全文

与封隔器性能测试实验装置相关的资料

热点内容
电热水器阀门那里滴水怎么回事 浏览:79
农残200项检测用什么仪器 浏览:910
库房阀门类怎么摆放 浏览:702
笔记本机械内存什么意思 浏览:860
地球是球体的模拟实验装置 浏览:212
洗车电机轴承怎么拆卸 浏览:230
夜晚餐饮用什么器材好 浏览:286
物流企业需要的设备有哪些 浏览:883
二手机械设备在哪个网站上找 浏览:729
溧阳制冷机服务方案多少钱 浏览:211
全自动半自动钩缓装置 浏览:633
排气阀门关不死怎么办 浏览:799
煤气阀门1000 浏览:495
仪表盘加电阻有什么用 浏览:441
健身器材怎么练后背 浏览:844
ecu在仪表中是什么意思 浏览:266
为什么逍客车空调不制冷 浏览:602
改装阀门有什么作用 浏览:819
什么设备需三相电 浏览:421
受损车辆制动性能检测装置 浏览:221