A. 微机保护的基本构成和主要部分的功能有哪些
1、微机保护由硬件和软件两部分组成。
微机保护的软件由初始化模块、纯竖数据采集管理模块、故障检出模块、故障计算模块、自检模块等组成。通常微机保护的硬件电路由六个功能单元构成,即数据采集系统、微机主系统、开关量输入输出电路、工作电源、通信接口和人机对话系统。
2、保护功能
定时限/反时限保护、后加速保护、过负荷保护、负序电流保护、零序电流保护、单相接地选线保护、过电压保护、低电压保护、失压保护。
负序电压保护、风冷控制保护、零序电压保护、低周减载亩配保护、低压解列保护、重合闸保护、备自投保护、过热保护、过流保护、逆功率保护、差动保护、启动时间过长保护、非电量保护等。
(1)微机线路保护装置基本功能实验报告扩展阅读:
运行原理:
微机保护装置的数字核心一般由CPU、存储器、定时器/计数器、Watchdog等组成。目前数字核心的主流为嵌入式微控制器(MCU)。
即通常所说的单片机;输入输出通做耐大道包括模拟量输入通道(模拟量输入变换回路(将CT、PT所测量的量转换成更低的适合内部A/D转换的电压量,±2.5V、±5V或±10V)、低通滤波器及采样、A/D转换)和数字量输入输出通道(人机接口和各种告警信号、跳闸信号及电度脉冲等)。
B. WXH-823微机线路保护装置
应用范围:
本装置是总结在国内大量使用的WXH-25/A、25/B微机线路保护装置几百套运行经验的基础上研制的。是适用于220~500kV输电线路的成套数字式保护装置。WXH-801装置在湖南云岗500kV线路,WXH-802装置在湖北葛双500kV线路均已投入运行。
主要特点:
* 吸收原WXH-25A、25B微机线路保护优点,保护原理采用适应性判据
* 采用32位DSP作为保护CPU,运行速度快
* 采用16位A/D作为数据采集,保护测量精度高
* 采用80186芯片作为人机对话(MMI),LCD采用全汉化显示
* 输出报告全汉化输出,可波形输出也可采样值输出
* 具有方便灵活的分析调试软件,可视化软件编程、通过调试分析了解程序逻辑走向
* 保护通道接口灵活。可以与各种通道设备连接。包括各种复用载波机接口装置,还增设了适用于弱电源侧的保护逻辑
* 保护动作事件记录。可记录故障前2周故障后8周数据,且掉电保持
* 具有RS-422/485或LonWorks总线网络。可直接同微机监控或保护管理机相连
* 机箱结构采用6U结构。装置强弱电回路、开入开回路合理布局。提高了装置的抗干扰能力
* 无Y2K问题
* 可选用的故障录波功能
* 带自动测试装置
主要技术指标:
★ 基本数据
◇ 额定交流数据
* 交流电压Un:相电压UΦ: V
* 线路抽取电压UXL: V或100V
* 交流电流In:5A或1A
* 频率:50Hz
◇ 额定直流电压:220V或110V
◇ 打印机工作电压:交流220V、50Hz
◇ 交流回路过载能力
* 交流电压:1.2Un-持续工作
* 交流电流:2In-持续工作,20In-1s
◇ 功率消耗
* 交流电压回路每相不大于 0.5VA
* 交流电流回路:当In=5A每相不大于1VA;当In=1A每相不大于0.5VA
* 直流电压回路:正常运行时,不大于40W;动作时,不大于60W
◇ 输出触点
l 出口跳闸触点在电压不大于250V,电流不大于1A,时间常数L/R为5±0.75ms的直流有感负荷电路中,触点断开容量为50W,长期允许通过电流不大于5A l 在电压不大于250V,电流不大于0.5A,时间常数L/R为5±0.75ms的直流有感负荷电路中,触点断开容量为20W,长期允许通过电流不大于3A
★ 主要技术性能指标
◇ 纵联保护
◇ WXH-801型纵联方向保护
* 正序故障分量电流元件整定范围:0.2~2In
* 整定误差不超过±10%
* 正序故障分量电压元件最小动作值为4V
* 动作范围:不大于140°,不小于100°
* 整组动作时间为25~30ms
◇ WXH-802纵联距离保护
* 整定范围:0.2~50Ω(1n=5A),1~99.9Ω(In=1A)
* 整定误差不超过±2.5%
* 整组动作时间为25~30ms
◇ 距离保护
* 整定范围:0.01~50Ω(In=5A),0.05~250Ω(1n=1A)
* 整定误差不超过±2.5%,测距误差不超过±2.5%;
* 精确工作电压:0.5V;
* 精确工作电流范围:0.1~20In
* I段的暂态超越不大于5%
* II、III段延时时间元件:0.2~9.9s,误差不超过±1%
* I段整组动作时间:在0.7倍整定阻抗内不大于25ms
◇ 零序电流(方向)保护
* 整定范围:0.1~20In
* 整定误差不超过±5%
* 零序功率方向元件的死区电压:不小于1V,不大于2V
* 零序功率方向元件动作范围:不大于180°,不小于140°
* I段的暂态超越不大于5%;
* 延时段时间元件:0.2~9.9s,误差不超过±1%
* I段整组动作时间:在2倍整定值的条件下,不大于20ms;在1.2倍整定值的条件下,不大于30ms
◇ 综合重合闸
* 具有单重、三重、综重及停用四种功能
* 无压检定元件整定范围为:0.2~0.7Un
* 同期元件整定范围为:20°~60°
* 重合闸延时时间元件:0.3~9.9s,误差不超过±1%
n 抗电气干扰 能承受GB6162规定的频率为1MHz及100kHz衰减振荡波(第一个半波、电压幅值共模为2.5kV、差模为1kV)脉冲群干扰检验
◇ 能承受IEC255-22-2标准规定的严酷等级为Ⅲ级的静电放电干扰检验
◇ 能承受GB/T14598.9标准规定的严酷等级为Ⅲ级的辐射电磁场干扰检验
◇ 能承受GB/T14598.10标准规定的严酷等级为Ⅳ级的快速瞬变干扰检验
C. 线路微机保护原理
微机线路保护原理
1.微机保护硬件可分为:人机接口、保护 相应的软件也就分为:接口软件、保护软件
2.保护软件三种工作状态:运行、调试、不对应状态
3.实时性:在限定的时间内对外来事件能够及时作出迅速反应的性 4.微机保护算法主要考虑:计算机精度和速度 中低压线路保护程序逻辑原理
4.选项子程序原理:判别故障相(选项),判定了故障的种类及相别,才能确定阻抗计算应取用什么 相别的电流和电压
5.电力系统的振荡大致分为:
一种 静稳破坏引起系统振荡,另一种 由于系统内故障切除时间过长,导致系统的两侧电源之间的 不同步引起的 超高压线路保护程序逻辑原理
6.高频闭锁方向保护的启动元件两个任务: 一是 启动后解除保护的闭锁
二是 启动发信回路,因此要求启动元件灵敏度高,以防止故障时不能启动发信
7.(1)闭锁式高频方向保护基本原理:
闭锁式高频方向保护原则上规定每端短路功率方向为正时,不送高频信号。 因此在故障时收不到高频信号表示两侧都为正方向,允许出口跳闸;在一段 相对较长时间内收到高频信号时表示两侧中有一侧为负方向,就闭锁保护。 (2)允许式高频方向保护基本原理:
当两侧均发允许信号时,可判断是区内故障,但就每一侧而言,其程序逻辑是收到对侧允许信号及 本侧视正方向,同时满足经延时确认后发跳闸脉冲。
8.综合重合闸四种工作方式:单相、三相、综合、停用
综合重合闸两种启动方式:①由保护启动 ②由断路器位置不对应启动 电力变压器微机线路保护
9.比率制动式差动保护的基本概念:比率制动式差动保护的动作电流是随外部短路电流按比率增大, 既能保证外部短路不误动,又能保证内部短路有效高的灵敏度
10.二次谐波制动原理:
在变压器励磁涌流中含有大量的二次谐波分量,一般占基波分量的40%以上。利用差电流中二次谐 波所占的比率作为制动系数,可以鉴别变压器空载合闸时的励磁涌流,从而防止变压器空载合闸时 保护的误动。
11.变压器零序保护
主变零序保护适用于110KV及以上电压等级的变压器。主变零序保护由主变零序电流、主变零序电 压、主变间隙零序电流元件构成,根据不同的主变接地方式分别设置如下三种保护形式:
①中性点直接按接地保护方式 ②中性点不接地保护方式
③中性点经间隙接地保护方式
12.在放电间隙放电时。应避免放电时间过长。为此对于这种接地式应装设专门的反应间隙放电电流的 零序电流保护,其任务是即时切除变压器,防止间隙长时间放电
微机母线保护及断路器失灵保护
13.1)母线是发电厂和变电站重要组成部分之一。母线又称汇流是汇集电能及分配电能的重要设备
2)在发电厂或变电站,当母线电压为 35至66kv出线较少时,可采用单母线接线方式;而出线较 多时,可采用单母线分段;对110kv母线,当出线数不大于4回线时,可采用单母线分段
3)母线故障类型主要有 :单相接地故障,两相接地短路故障(几率小)及三相短路故障
4)要求:①高度安全性可靠性 ②选择性强、动作速度快 14.母差保护分类
按阻抗分类:高、中、低母差保护
低阻抗母差保护(电流型母线差动保护) 按动作条件分:
①电流差动式母差保护 ②母联电流比相式母差保护③电流相位比较式母差保护
15.大差元件用于检查母线故障,小差元件选择出故障所在的哪段或哪条母线
16.不同型号母差保护,采用的启动元件有差异,通常有:电压工频变化量元件、电流工频变化量元 件、差流越限元件
17.TA饱和时其二次电流有如下特点:
(1)在故障瞬间,由于铁芯中的磁通不能越变,TA不能立即进入饱和区,而是存在一个时域为3至5ms 的线性传递区。在线性传递区内,TA二次电流与一次电流成正比
(2)TA饱和之后,在每个周期内一次电流流过零点附近存在不饱和时段,在此段内,TA二次电流又与 一次电流成正比
D. 有谁知道微机继电保护和测试仪的差动实验的整组实验要怎么做,最好有完整的过程,详细一点了!
你好,微机继电保护和测试仪的差动实验的整组实验具体操作步骤:
整组试验相当于继电保护装置的静模试验,通过设置各试验参数,模拟各种瞬时、永久性的单相接地、相间短路或转换性故障,以达到对距离、零序保护装置以及重合闸的动作进行整组试验或定值校验。下面以“整组试验Ⅰ”为例,简要说明其使用方法。软件界面如图。
整组校验过流、零序和距离等保护,进行整组传动试验
能测试在有(无)检同期和检无压条件下,重合闸及后加速动作情况
能模拟转换性故障、反方向故障
第一节 界面说明
故障量设置
● 故障类型
可设定为AN、BN、CN、AB、BC、CA、ABN、BCN、CAN、ABC型故障。
● 整定阻抗
按照定值单给定的阻抗设置方式,故障阻抗可以Z、Φ方式输入或R、X方式输入,当以一种方式输入,另一种方式的值软件会自动计算出来。
● 短路阻抗倍数
为nד整定阻抗”,以此值作为短路点阻抗进行模拟。一般按0.95或1.05倍整定值进行检查。如果不满足,也可以0.8或1.2倍整定值进行检查。这是“容忍性”的检查界限,如果保护还不能正确动作,请检查其它方面的原因。
● 零序补偿系数
Ko = ( Z0 / Z1 – 1 ) / 3
如果正序组抗角Φ(Z1)与零序阻抗角Φ(Z0)不等,此时Ko为一复数,则常用Kor、Kox进行计算。
Kor = ( R0 / R1 – 1 ) / 3 Kox = ( X0 / X1 – 1 ) / 3
对某些保护(如901系列)以Ko、Φ方式计算的,如果Φ(Z1)=Φ(Z0),即PS1=PS0,则Ko为一实数,此时需设置Kor=Kox=Ko 。
● 故障方向
如果保护具有方向性,请注意选择正确的故障方向。
● 故障性质
选择“瞬时性”或“永久性”故障的不同点在于:在“时间控制”的试验方式下,选择“瞬时性” 故障时,当测试仪接收到保护的动作信号后即停止故障输出进入下一状态,尽管此时故障时间还没有结束;但在“永久性”故障时,即便测试仪接收到保护的动作信号,故障量继续存在,直到所设置的“故障持续时间” 到。也就是说,“永久性”故障时,测试仪的故障输出时间只受“故障持续时间”控制。因此,在“永久性”故障下试验容易造成后加速保护动作,并且重合闸无法重合。所以,建议一般选择“瞬时性”故障方式。
● 故障电流
以上只设置了相应的短路阻抗,如果再告诉软件一定的故障电流,软件将自动计算出相应的故障电压,由测试仪输出相应的故障电压和电流给保护。设置的故障电流应满足以下要求:1、大于保护的启动电流;2、故障电流与短路阻抗的乘积应不大于57.7V。
● 时间控制/接点控制
接点控制时,由测试仪接收到的保护的跳闸、重合闸、永跳接点变位信号来控制试验状态,决定测试仪在相应状态应输出的电流、电压。
时间控制时,装置根据所设置的时间顺序,依次输出故障前、故障时、跳闸、重合闸、永跳后的各种量,保护跳合闸时只记录时间,而不改变各种量的输出进程。
故障时间、断开时间、重合时间
在时间控制方式,用于控制输出故障量的持续时间、故障断开后输出正常量的持续时间、重合闸再次输出故障量的持续时间,见上图。在接点控制时不起作用。
转换性故障/非转换性故障
用于设置转换性故障。从故障开始时刻起,当转换时间到,无论保护是否动作跳开断路器,均进入转换后故障状态。但跳开相的电压电流不受转换性故障状态影响,其电压V=57.7V(PT安装在母线侧)或0V (PT安装在线路侧),I=0A。故障转换时间是指从第一次故障开始时算起的时间。
转换后故障类型
可设定为AN、BN、CN、AB、BC、CA、ABN、BCN、CAN、ABC型。一般转换后的故障类型设置为与第一次故障类型不同更符合实际。
转换起始时刻和转换时间
可以设定为从第一次开始故障时起算,还是从保护跳闸后起算,还是从重合闸后起算,何时发生故障转换。
故障起始角
故障发生时刻电压初始相角。由于三相电压电流相位不一致,合闸角与故障类型有关,一般以该类型故障的参考相进行计算:单相故障以故障相、两相短路或两相接地以非故障相、三相短路以A相进行计算。
PT安装位置
模拟一次侧电压互感器是安装在母线侧还是线路侧。PT装于母线侧时,故障相断开后,该相电流为零,电压恢复到正常相电压(V=57.7V,I=0A); PT装于线路侧时,故障相断开后,该相电流及电压均为零(V=0V,I=0A)。
分相跳闸/三相跳闸
用于定义开入量A、B、C三端子是作为“跳A”、 “跳B”、 “跳C”端子还是“三跳”端子。若设为“分相跳闸”时,则单相故障时可以模拟只跳开故障相。即这种情况下,“跳A”、“跳B”、“跳C”哪几个信号到,模拟哪几相跳开。
断路器断开/合闸延时
模拟断路器分闸/合闸时间。装置接收到保护跳/合闸信号后,将等待一段开关分闸/合闸延时,然后将电压电流切换到跳开/合闸后状态。
故障后开出1延时闭合时间
输出故障量后开出1将会延时这一时间闭合。此功能可用于:在试验高频保护时,用开出1模拟收发信机的“对侧收信输入”信号。
开出量2
开出2跟踪断路器的状态变化,即保护跳闸时,开出2断开,保护重合时,开出2闭合。故开出2可以作为模拟断路器使用。
检同期重合闸及Ux设置
Ux选择
Ux是特殊相,可设定输出 +3U0、-3U0、+×3U0、-×3U0、检同期Ua、检同期Ub、检同期Uc、检同期Ubc、检同期Uca、检同期Uab。
前4种3U0的情况,Ux的输出值由当前输出的Ua、Ub、Uc组合出的3U0成分乘以各系数得出,并跟随其变化。
若选等于某检同期抽取电压值,则在测试线路保护检同期重合闸时,Ux用于模拟线路侧抽取电压。以检同期Ua为例,在断路器合上状态,Ux输出值始终等于母线侧Ua(但数值为100V),在保护跳闸后的断开状态,Ux值则等于所设定的检同期电压幅值和相角,该值可以设定为与此刻的Ua数值或相位有差,用以检验保护在此种两侧电压有差的情况下的检同期重合闸情况。
整组试验Ⅱ说明
整组试验Ⅱ与整组试验Ⅰ的功能基本相同。整组试验Ⅰ是按照阻抗方式设定各种故障情况,用于保护进行整组试验,但对于某些保护无法获知故障阻抗,而只有故障电压和电流,如零序保护或35KV线路保护,此时可以用整组试验Ⅱ进行试验。
故障类型
可设定为AN、BN、CN、AB、BC、CA、ABC型故障。
故障电压U
对于单相故障和三相故障,故障电压U为故障相电压值,对于相间故障,故障电压U为故障两相的线电压值。
整定电流I
为保护某段整定电流值。
短路电流倍数
短路电流为试验倍数nד整定电流”,以此值作为短路点电流进行模拟试验。
注意:
1. 整组试验中,所有故障数据全部由计算机完成。计算机根据所设定的故障电流和故障阻抗计算得出的短路电压,每相不得大于额定电压(57.7V),如果过大,则自动降低故障电流值,以满足Vf ≤ 额定电压(57.7V)的条件。
2. 如果故障阻抗较小,一般应设置较大故障电流,故障阻抗较大,可设置较小故障电流,以使故障电压比较适当。这也符合实际运行情况。否则有可能影响测量结果。
其它各选项以及测试过程均与整组试验1完全相同。
第二节 试验指导
整组试验过程说明
数据设定完毕,按下“开始试验”,装置输出“正常状态”的各相对称量,此时各相电压为为额定电压(57.7V)、电流为负荷电流。按下 “开始故障”按钮,或“开入c”接通,装置进入故障状态,输出故障电流、电压,加至保护装置上。保护跳闸后,装置输出跳闸后状态量。保护重合闸后,如果是瞬时性故障,装置输出正常量(各相电压为57.7V、电流为负荷电流);如果是永久性故障,装置再次输出故障量,至保护第二次跳闸(永跳)后,再恢复输出正常量。
“开入c”接通时装置自动进入故障状态
此功能有两种作用: 1 、可模拟手合到故障线路后加速跳闸,可以很方便地测出动作时间。具体做法是将手合接点或TWJ接点接至“开入c”,手动合闸时接点动作测试仪即输出故障量,可测试保护的动作情况。2、可由GPS 装置的接点启动故障,模拟线路两侧同步故障。
试验期间,任何时候按下“停止”键,则试验过程中止并退出。
试验结束后,计算机自动将测试记录区中的测试结果在硬盘“试验报告\整组试验\”子目录下按文本格式存档,并可用“打印”按钮进行显示、打印。亦可以拷贝出来进行编辑、修改。
参考资料:http://www.whhuatian.com/shownews_jswz.asp?id=3847
E. 微机保护装置的使用和二次系统的认识
微机保护装置的使用方法:
1、微机保护单元箱面板布置。
2、装置整定值设置。
3、注意事项。二次系统的认识对于一个断电保护装置进行拆解,将各个板卡拿出,能逐个判断各个板块的名称和功能,并对照图纸对其背板接线进行熟悉。
F. 简述微机保护硬件电路的构成及各部分的作用。
这是浙江华健HJ501F微机综合保护装置的硬件原理和作用。请参考。
结构
采用标准机箱,整面板、背插式结构,嵌入式、后接线安装
方式,强弱电隔离,大大加强了其产品的电气性能。
本装置的插件上包括CPU插件、AC和TRIP插件:其中CPU
插件
插件为装置的核心,为高度集成的CPU,其中包括了RAM、Flash
Memory和AD等芯片的功能;AC插件包括电源和模拟量采集;
TRIP插件包括出口、开入和操作回路。
◆ CPU1)
CPU系统
CPU系统由微处理器CPU、RAM、ROM、Flash Memory等
构成。包括高性能的64位微处理器CPU,大容量的ROM、RAM
及Flash Memory,使得该CPU模件具有极强的数据处理及记录能
力,可以实现各种复杂的故障处理方案和记录大量的故障数据,
可记录的事件数不少于500次。保护定值等运行配置信息也存入该
存储器中,这些信息在装置掉电后均不会丢失。
2)开关量输入及输出部分
开入量分为内部开入和外部开入,内部开入采用DC5V开
入,电源由装置电源本身提供,外部开入采用一级光耦,实现
DC220V直接输入电平。
开出是用于驱动出口的继电器, 共有2个,一个为跳闸继电
器,一个为合闸继电器。
3)通信部分
本插件内含通信速度极高、具备通用性接口的RS485总线网
络芯片,RS485网为本装置接入系统的主要通信接口。
4)时钟回路
插件内设置了硬件时钟回路,采用的时钟芯片精度高,并配有电
池以掉电保持。
另外,CPU插件采用了多层印制板及表面封装工艺,外观小
巧,结构紧凑,大大提高了装置的可靠性及抗电磁干扰能力。
◆ 开入、开出及操作回路
1)外部开入回路:设置有8路外部开入回路,均采用DC220V
直接开入方式,装置软件采取了防抖措施,避免了误发信。
2)逻辑继电器:逻辑继电器由CPU插件直接驱动,这类继电
器包括:跳闸继电器、合闸继电器。
3)操作回路:DC220V或AC220为操作电源,它由各种操作
回路跳闸继电器组成。其中包括了跳闸位置继电器(TWJ)、合
闸位置继电器(HWJ)、手动跳闸继电器STJ、跳闸保持继电器
TBJ、合闸保持继电器HBJ等。跳闸、合闸保持电流的调整采用自
适应方式,范围0.5A~4A,采用此种电路避免了跳合闸参数变化
后需更换相应继电器的麻烦。
◆ 交直流回路
人机对话(MMI)插件主要功能是显示保护CPU输出的信
息,本插件上的显示窗口采用四行,每行八个汉字的液晶显示
器,人机界面清晰易懂,配置通用的键盘操作方式,使得人机对
话操作方便、简单。本插件上还配置了灯光指示信息,使本装置
的运行信息更为直观。
1)直流逆变电源:DC220V电压输入经抗干扰滤波回路后,利
用逆变原理输出本装置需要直流电压,且采用浮地方式,同外壳不相
连。
2)模拟量采集:外部电流经隔离互感器隔离变换后,由低通
滤波器输入至模数变换器,CPU经采样数字处理后,构成各种数
字式保护继电器,并实时计算各种测量值。UA、UB、UC 、U0
、IA、IB、IC、I0端子为保护模拟量输入, Ia、Ib、Ic为测量模拟量
输入。
人机对话插件(MMI)
人机对话(MMI)插件主要功能是显示保护CPU输出的信
息,本插件上的显示窗口采用四行,每行八个汉字的液晶显示
器,人机界面清晰易懂,配置通用的键盘操作方式,使得人机对
话操作方便、简单。本插件上还配置了灯光指示信息,使本装置
的运行信息更为直观。