⑴ 谁的手最贱
1利用线性整步电压如何检测发电机是否满足准同期并列条件?
答:线性整步电压含有频率差、相位差的信息,但不还有电压差的信息。线性整步电压的周期是滑差周期,能够反映频率的大小,线性整步电压随时间变化过程对应相位差的变化过程,所以利用其周期可以检测是否满足频率差的调节,利用电压随时间变化过程确定合闸时刻使相位差满足条件,但需利用其他方法检测电压差是否满足。
2发电机无功调节特性曲线如何上下平移?如何使发电机推出运行的时刻避免无功电流的冲击?
答:由励磁调节器静态特性可知,当整定值Uref增加时调节器的测量特性将右移,随对应的调节器的工作特性也右移,于此对应得励磁调节器输出特性Ief=f(Ug)曲线平行上移,反之,整定值小于发电机武功调节特性平行下移
推出运行:调节发电机无功调节曲线平行下移,如图,则在位置三时,无功电流减小到0,这样机组就能够平稳推出运行,而不会发生无功电流冲击
3什么是电力系统的一次调频和二次调频?有什么区别?
答:电力系统稳态运行时频率调整可以通过频率的一次调频和二次调频实现,当系统负荷发生变化时,系统中各发电机组均按照自身的静态调节特性,同时通过各自的调速系统实时调整,此为一次调频,一次调频为有差调频,所以当负荷变动较大时,一次调频结束时,稳态频率偏离额定值较大,这时要想使频率回到额定值附近,必须移动静态调节特性,即改变调速系统的给定值,这既是二次调频。
区别:无论是一次调频还是二次调频,最终都是作用于发电机机组,原动力阀门的开度,即通过发电机调速系统实现。但一次调频根据机组的转速变化而动作,结果表现为在某一静态特性上运行点的移动,调整结束时,频率偏离额定值;二次调频根据系统频率变化而动作,结果表现为一条静态特性的平移,调整结束时,频率偏离很小或趋于零。
4电力系统为什么装设AFL?
答:当电力系统因事故而出现严重的有功功率缺额时,即频率随之急剧下降,频率降低较大时,对系统运行极为不利,甚至造成系统崩溃的严重后果,一但发生这种事故将会引起大面积的停电,而且需要很长的时间恢复系统正常供电,所以装设AFL可以防止以上事故发生保证电力系统安全,防止事故扩大
第一章
1采样保持器一般由模拟开关、保持电容和缓冲放大器组成。
2影响数据采样速率和精度的最主要部件是A/D转化器。
3现场总线系统主要由主节点、从节点、路由器三部分构成。
4选择采样周期Ts的依据是采样定理,它指出采样频率必须大于原模拟信号频率的两倍。
5如果量化器满量电压为20V,量化有级数字量为12位,则量化单位为(),绝对误差(),相对误差()。
6利用博氏采样算法对交流信号进行分析得到基频信号的幅值和相位角,进一步可以得到有功功率和无功功率。
7有的变送器的输入信号与被测信号之间的能量显非线性关系,为了提高测量精度可以取线性拟合措施。
第二章
1准同期并列的方法是, 发电机并列合闸前已加励磁,当发电机电压与并列点系列侧电压的幅值,频率,相位接近相等时,将发电机断路器合闸,完成并列操作。
3 滑差是发电机电压角频率与系统电压角频率之差
4发电机并列合闸时,如果测得滑差周期是10S,说明此时发电机系统之间的频率差事0.1Hz.
5发电机准同期并列后立即带上了无功负荷,说明合闸瞬间发电机与系统之间存在电压幅值差,且发电机电压高于系统电压。
6发电机并列后立即从系统吸收有功功率,说明合闸瞬间发电机与系统之间存在电位相位差,且发电机电压滞后系统电压。
7发电机并列后经一定时间的震荡后才进入同步状态进行,这是由于合闸瞬间发电机与系统之间存在频率差。
8正弦整步电压含有电压差,频率差,线性整步电压含有相位差,频率差不含有电压差信息。
10线性整步电压的斜率和发电机系统之间的频率成正比关系。
12线性整步电压的δe=0°点稍滞后与真正的δe=0°点,因为滤波引起了相位滞后
13线性整步电压的最大值对应发电机电压与系统电压的相位差是由接入的发电机电压和系统电压极性决定的。
15将发电机并入电力系统参加并列运行的操作成为并列操作
16实现发电机并列操作的方法通常有准同期并列和自同期并列
17自同期并列方法是未加励磁,接近同期转速的发电机投入系统,随后给发电机加上励磁在原动机转矩同步转矩的作用下将发电机拉入同步完成并列操作
18滑差周期的大小反映发电机与系统之间频率差的大小,滑差周期大表示频率小,滑差周期小表示频率大
19发电机并列操作应遵循的原则:并列瞬间发电机冲击电流尽可能小过允许值,并列后发电机应能迅速进入同步运行,暂态过程要短
20自动准同期并列装置由频率差控制单元、电压差控制单元、合闸信号控制单元、电源
21线性整部电压与实践具有线性关系,自动准同期装置中采用的线性整步电压通常为三角波整步电压,含有相差和频率差信息
22线性整步电压有全波线性和半波线性两种
23线性整步电压的周期为滑差周期,线性整步电压的斜率与频率差成正比
第三章
1对于系统并列的同步发电机励磁调节作用是调节发电机端电压和发电机发出的无功功率
2并联运行的发电机装上自动励磁调节器能稳定发配机组间的无功负荷
3电力系统发生短路故障时,强行励磁装置能提高继电保护的灵敏度
4电力系统发生短路故障时,自动励磁调节器能使短路电流(增大)
5三相全控桥式要整流电路在90°<α<180°是工作在(逆变),在 0°<α<90°是工作在(整流)
8励磁调节器接入正调差单元,发电机的外特性是(下倾特性 )
10 在励磁系统中,励磁电压相应比反映了(励磁相应速度的大小)
11 电力系统发生事故,导致电压降低时,励磁系统应有很快的(响应速度)和足够大的(强励顶值电压)以实现强行励磁的作用。
13半导体励磁调节器的基本控制部分主要包括(调差单元,测量比较,综合放大,移相触发,可控整流)五个单元。
14励磁调节器的辅助控制功能是为了满足发电机的不同运行工况和改善电力系统稳定性而设置的,主要有(励磁系统稳定器,电力系统稳定器,励磁限制器)等。
15同步发电机的外特性是指(发电机端电压与无功电流之间的关系特性)
16同步发电机的特性是发电机的端电压与无功电流之间的关系特性
第五章
1电力系统频率和有功功率自动调节的目的是在系统正常运行状态时维持频率在额定水平
2由于测量元件的不灵敏性实际的调速器具有一定的灵敏曲,调节特性具有一定宽度的带子
3调频器改变发电机组调速系统的给定值,即改变机组的空载运行频率使静态特性上下平移
4电力系统正常运行状态下,负荷变化将引起有功功率不平衡,导致频率偏离额定值,因此需要电力系统频率及有功功率进行调节。
5反映机组转速变化相应调整原动力阀门开度的调节是通过调速系统实现的称为一次调频
6反映系统频率变化而相应调整原动力阀门开度的调节是通过调节器实现的称为二次调频
8不同性质的负荷吸收的有功功率与频率的关系有以下三类:负荷吸收的有功功率与频率无关、负荷吸收的有功功率与频率的二次方或更高次方成正比
第六章
1自动调频解决正常情况下负荷变化引起的系统频率波动,自动低频减载装置用于阻止事故性狂下的系统频率异常下降
2AFL是按照频率下降的不同程度自动断开相应的次要负荷,阻止频率下降,以便使频率迅速恢复的一种安全自动装置
3负荷吸收的有功功率随频率变化的现象称为(负荷调节效应),一般可用(负荷调节效应系数)来描述。
4由于负荷的调节效应,当系统频率下降时,总负荷吸收的总有功功率随之下降当系统频率上升时,总负荷吸收的总有功功率随之上升 理解负荷调节器与频率之间有什么关系。
5当电力系统出现功率短缺造成系统频率下降时,系统频率随时间由额定值变化到稳定频率过程,称电力系统动态频率特性,这一过程是按照指数频率变化的
6AFL应分级动作,即当系统频率下降到一定数值,ALE相应级动后如果仍然不能阻止频率下降,则下一级再动作
7AFL的末级动作频率应由系统所允许的最低频率下线确定
8AFL动作频率级差的确定有两种原则,即极差强调选择性和极差强不调选择性
9AFL动作,如果切除负荷过少,则不能有效阻止频率下降,如果切除负荷过少,则恢复频率高于期望值
⑵ 同期回路中STK,1STK,TK,DTK,TJJ,HJ的作用
序号元件名称 新符号 旧符号1 继电器 K J2 电流继电器 KA LJ3 负序电流继电器 KAN FLJ4 零序电流继电器 KAZ LLJ5 电压继电器 KV YJ6 正序电压继电器 KVP ZYJ7 负序电压继电器 KVN FYJ8 零序电压继电器 KVZ LYJ9 时间继电器 KT SJ10 功率继电器 KP GJ11 差动继电器 KD CJ12 信号继电器 KS XJ13 信号冲击继电器 KAI XMJ14 继电器 KC ZJ15 热继电器 KR RJ16 阻抗继电器 KI ZKJ17 温度继电器 KTP WJ18 瓦斯继电器 KG WSJ19 合闸继电器 KCR或KON HJ20 跳闸继电器 KTR TJ21 合闸 继电器 KCP HWJ22 跳闸 继电器 KTP TWJ23 电源监视继电器 KVS JJ24 压力监视继电器 KVP YJJ25 电压 继电器 KVM YZJ26 事故信号 继电器 KCA SXJ27 继电保护跳闸出口继电器 KOU BCJ28 手动合闸继电器 KCRM SHJ29 手动跳闸继电器 KTPM STJ30 加速继电器 KAC或KCL JSJ31 复归继电器 KPE FJ32 闭锁继电器 KLA或KCB BSJ33 同期检查继电器 KSY TJJ34 自动准同期装置 ASA ZZQ35 自动重合闸装置 ARE ZCJ36 自动励磁调节装置 AVR或AAVR ZTL37 备用电源自动投入装置 AATS或RSAD BZT38 按扭 SB AN39 合闸按扭 SBC HA40 跳闸按扭 SBT TA41 复归按扭 SBre或SBR FA42 试验按扭 SBte YA43 紧急停机按扭 SBes JTA44 起动按扭 SBst QA45 自保持按扭 SBhs BA46 停止按扭 SBss47 控制开关 SAC KK48 转换开关 SAH或SA ZK49 测量转换开关 SAM CK50 同期转换开关 SAS TK51 自动同期转换开关 2SASC DTK52 手动同期转换开关 1SASC STK53 自同期转换开关 SSA2 ZTK控制开关选择开关 SA按钮开关 SB液体标高传感器 SL压力传感器 SP位置传感器(包括接近传感器)SQ转速传感器 SR温度传感器 ST54 自动开关 QA55 刀开关 QK或SN DK56 熔断器 FU RD57 快速熔断器 FUhs RDS58 闭锁开关 SAL BK59 信号灯 HL XD60 光字牌 HL或HP GP61 警铃 HAB或HA JL62 合闸接触器 KMC HC63 接触器 KM C64 合闸线圈 Yon或LC HQ65 跳闸线圈 Yoff或LT TQ66 插座 XS67 插头 XP68 端子排 XT69 测试端子 XE70 连接片 XB LP71 蓄电池 GB XDC72 压力变送器 BP YB73 温度变送器 BT WDB74 电钟 PT75 电流表 PA76 电压表 PV77 电度表 PJ78 有功功率表 PPA79 无功功率表 PPR80 同期表 S81 频率表 PF82 电容器 C83 灭磁电阻 RFS或Rfd Rmc84 分流器 RW85 热电阻 RT86 电位器 RP87 电感(电抗)线圈 L88 电流互感器 TA CT或LH89 电压互感器 TV PT或YH10KV电压互感器 TV SYH35KV电压互感器 TV UYH110KV电压互感器 TV YYH90 断路器 QF DL91 隔离开关 QS G92 电力变压器 TM B93 同步发电机 GS TF94 交流电动机 MA JD95 直流电动机 MD
⑶ 发电机组的准同期并列有哪些操纵步骤
用准同期法进行并列操作,发电机组电压必须相同、频率相同以及相位一版致,这可通过权装在同期盘上的2块电压表、2块频率表以及同期表和非同期指示灯来监视,并列操作步骤可以总结为如下四个步骤:
(1)将其中一台发电机组的负荷开关合上,将电压送至母线上,而另一台机组处在待并状态。
(2)合上同期开头,调节待并发电机组的转速,使它等于或接近同步转速(与另一台机组的频率相差在半个周波以内),调节待并发电机组的电压,使其与另一台发电机组电压接近,在频率与电压均相近时,同期表的旋转速度是越来越慢的,同期指示灯也时亮时暗;
(3)当待并机组与另一台机组相位相同时,同期表指针指示向上方正中间位置,同期灯最暗,当待并机组与另一台机组相位差最大时,同期表指向下方正中位置,此时同期灯最亮,当同期表指针按顺时针方向旋转时,这说明待并发电机的频率比另一台机组的频率高,应降低待并发电机组的转速,反之当同期表指针按逆时针方向旋转时,应增加待并发电机组的转速;
(4)当同期表指针顺时针方向缓慢旋转,指针接近同期点时,立即将待并机组的断路器合闸,使两台发电机组并列。并列后切除同期表开关和相关的同期开关。
⑷ 为什么准同期装置都是利用脉动电压这一特性进行工作的
实验 1 手动准同期并网实验、实验目的1.加深理解同步发电机准同期并列运行原理,掌握准同期并列条件。 2.掌握手动准同期的概念及并网操作方法,准同期并列装置的分类和功能。 3.熟悉同步发电机手动准同期并列过程二、原理说明 在满足并列条件的情况下, 只要控制得当, 采用准同期并列方法可使冲击电流很小且对 电网扰动甚微, 故准同期并列方式是电力系统运行中的主要并列方式。 准同期并列要求在合 闸前通过调整待并发电机组的电压和转速, 当满足电压幅值和频率条件后, 根据“恒定越前 时间原理” ,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令, 这种 并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。依并列操作的自动化程度, 又可分为手动准同期、 半自动准同期和全自动准同期三种方 式。正弦整步电压是不同频率的两正弦电压之差, 其幅值作周期性的正弦规律变化。 它能反 映发电机组与系统间的同步情况, 如频率差、 相角差以及电压幅值差。 线性整步电压反映的 是不同频率的两方波电压间相角差的变化规律, 其波形为三角波。 它能反映电机组与系统间 的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。手动准同期并列,应在正弦整步电压的最低点 (相同点) 时合闸, 考虑到断路器的固有 合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。自动准同期并列, 通常采用恒定越前时间原理工作, 这个越前时间可按断路器的合闸时 间整定。准同期控制装置根据给定的允许压差和允许频差, 不断地检测准同期条件是否满足, 在不满足要求时,闭锁合闸并且发出均压、均频控制脉冲。当所有条件均满足时, 在整定的 越前时间送出合闸脉冲。三、实验内容与步骤选定实验台面板上的旋钮开关的位置: 将“励磁方式” 旋钮开关打到 “微机励磁” 位置; 将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“手动”位置。
微机励磁装置设置为“恒 Ug ”控制方式。1.发电机组起励建压,使 n=1485 rpm ; Ug= 390V。 将自耦调压器的旋钮逆时针旋至最小。 按下 QF7 合闸按钮, 观察实验台上系统电压表,顺时针旋转旋钮至显示线电压 400V,然后按下 QF1和QF3合闸按钮。2.在手动准同期方式下,发电机组的并列运行操作 在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内 ,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。⑴将实验台上的“同期表控制”旋钮打到“投入”状态。投入模拟同期表。观察模拟式同期表中,频差和压差指针的偏转方向和偏转角度,以及和相角差指针的旋转方向。 ⑵按下微机调速装置上的 “+” 键进行增频,同期表的频差指针接近于零;此时同期表 的压差指针也应接近于零,否则,调节微机励磁装置。⑶观察整步表上指针位置, 当相角差指针旋转至接近 0 度位置时(此时相差也满足条件)手动按下 QF0 合闸,合闸成功后,并网指示灯闪烁蜂鸣。观察并记录合闸时的冲击电流将并网前的初始条件调整为:发电机端电压为 410V, n=1515 rpm,重复以上实验,注意观察各种实验现象。3•在手动准同期方式下,偏离准同期并列条件,发电机组的并列运行操作 本实验分别在单独一种并列条件不满足的情况下合闸,记录功率表冲击情况;⑴电压差、相角差条件满足,频率差不满足,在 fg> fs和fgV fs时手动合闸,观察并记录实验台上有功功率表 P和无功功率表Q指针偏转方向及偏转角度大小, 分别填入表3-3-5-1 ;注意:频率差不要大于 0.5Hz。⑵频率差、相角差条件满足,电压差不满足, Vg> Vs和VgV Vs时手动合闸,观察并记录实验台上有功功率表 P和无功功率表Q指针偏转方向及偏转角度大小, 分别填入表3-3-5-1;注意:电压差不要大于额定电压的 10%。⑶频率差、电压差条件满足,相角差不满足, 顺时针旋转和逆时针旋转时手动合闸,观 察并记录实验台上有功功率表 P和无功功率表Q指针偏转方向及偏转角度大小,分别填入 表3-3-5-1。注意:相角差不要大于 30。
表3-1偏离准同期并列条件并网操作时,发电机组的功率方向变化表
、、状态参数 fg > fs fg V fs Vg> Vs VgV Vs 顺时针 逆时针
P (kW)
Q (kVar)
⑷发电机组的解列和停机。 (见第一章)四、实验报告1 •根据实验步骤,详细分析手动准同期并列过程。2•根据实验数据,比较满足同期并列条件与偏离准同期并列条件合闸时,对发电机组 和系统并列时的影响。
实验 2 半自动准同期并网实验一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件。2.掌握半自动准同期装置的工作原理及使用方法。 3.熟悉同步发电机半自动准同期并列过程。二、原理说明为了使待并发电机组满足并列条件, 完成并列自动化的任务, 自动准同期装置需要满足 以下基本技术要求:1.在频差及电压差均满足要求时,自动准同期装置应在恒定越前时间瞬间发出合闸信号,使断路器在 笔=0时闭合。2.在频差或电压差有任一满足要求时,或都不满足要求时,虽然恒定越前时间到达, 自动准同期装置不发出合闸信号。3.在完成上述两项基本技术要求后,自动准同期装置要具有均压和均频的功能。如果 频差满足要求, 是发电机的转速引起的, 此时自动准同期装置要发出均频脉冲, 改变发电机 组的转速。 如果电压差不满足要求, 是发电机的励磁电流引起的, 此时自动准同期装置要发 出均压脉冲,改变发电机的励磁电流的大小。同步发电机的自动准同期装置按自动化程度可分为: 半自动准同期并列装置和自动准同 期并列装置。半自动准同期并列装置没有频差调节和压差调节功能。 并列时, 待并发电机的频率和电 压由运行人员监视和调整, 当频率和电压都满足并列条件时, 并列装置就在合适的时间发出 合闸信号。 它与手动并列的区别仅仅是合闸信号由该装置经判断后自动发出, 而不是由运行人员手动发出。三、实验内容与步骤选定实验台面板上的旋钮开关的位置: 将“励磁方式” 旋钮开关打到 “微机励磁” 位置; 将“励磁电源” 旋钮开关打到 “他励”位置;将“同期方式” 旋钮开关打到 “半自动” 位置。 微机励磁装置设置为“恒 Ug”控制方式;“手动”方式。1.发电机组起励建压,使 n=1480rpm ; Ug=400V。(操作步骤见第一章)2.查看微机准同期的各整定项是否为附录八中表 4-8-2 的设置(出厂设置) 。如果不符,则进行相关修改。然后,修改准同期装置中的整定项:
“自动调频” :退出。“自动调压” :退出。“自动合闸” :投入。注:QF0合闸时间整定继电器设置为 td- (40〜60ms)。td为微机准同期装置的导前时间 设置,出厂设置为 100ms,所以时间继电器设置为 40〜60ms3.在半自动准同期方式下,发电机组的并列运行操作在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差 在允许范围内 ,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸。⑴观察微机准同期装置压差闭锁和升压和降压指示灯的变化情况。 升压指示灯亮, 相应操作微机励磁装置上的“+”键进行升压,直至“压差闭锁”灯熄灭;降压指示灯亮,相应 操作微机励磁装置上的“-”键进行降压,直至“压差闭锁”灯熄灭。此调节过程中,观察 并记录观察并记录压差减小过程中, 模拟式同期表中, 电压平衡表指针的偏转方向和偏转角 度的大小的变化情况。⑵观察微机准同期装置频差闭锁和加速和减速指示灯的变化情况。 加速指示灯亮, 相应 操作微机调速装置上的“+”键进行增频,直至“频差闭锁”灯熄灭;减速指示灯亮,相应 操作微机励磁装置的“-”键进行减频,直至“频差闭锁”灯熄灭。此调节过程中,观察并 记录观察并记录频差减小过程中, 模拟式同期表中, 频差平衡表指针的偏转方向和偏转角度 的大小的变化,以及相位差指针旋转方向及旋转速度情况。⑶“压差闭锁”和“频差闭锁”灯熄灭,表示压差、频差均满足条件,微机装置自动判断相差也满足条件时,发出 QF0 合闸命令, QF0 合闸成功后,并网指示灯闪烁蜂鸣。观察 并记录合闸时的冲击电流。将并网前的初始条件调整为:发电机端电压为 410V, n=1515 rpm ,重复以上实验,注意观察各种实验现象。⑷发电机组的解列和停机。 (见第一章)四、实验报告1.根据实验步骤,详细分析半自动准同期并列过程。2.通过实验过程,分析半自动准同期与手动准同期的异同点
¥
5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
电力系统自动化实验2018
实验 1 手动准同期并网实验
、实验目的
1.加深理解同步发电机准同期并列运行原理,掌握准同期并列条件。 2.掌握手动准同期的概念及并网操作方法,准同期并列装置的分类和功能。 3.熟悉同步发电机手动准同期并列过程
二、原理说明 在满足并列条件的情况下, 只要控制得当, 采用准同期并列方法可使冲击电流很小且对 电网扰动甚微, 故准同期并列方式是电力系统运行中的主要并列方式。 准同期并列要求在合 闸前通过调整待并发电机组的电压和转速, 当满足电压幅值和频率条件后, 根据“恒定越前 时间原理” ,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令, 这种 并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。
⑸ 模拟式同期装置存在的主要问题是什么
摘要:针对当前国内大中型发电厂自动准同期装置的运行情况及存在的问题进行了分析,介绍了SID-2X型自动选线器和SID-2CM微机型自动准同期装置工作原理,并对如何应用新技术、新设备的方法进行了探讨。
关键词:自动准同期装置 发电机 系统 断路器 并网 DCS 应用
1 概述
从国内目前电力系统来看,不同大小容量、不同类型的发电机组要并网发电,一般主要通过以下两种方式:自同步方式和准同步方式。
1.1、采用自同步方式的发电机组,应符合定子绕组的绝缘及端部固定情况良好、端部接头无不良现象,自同步并列时,定子超瞬变电流的周期分量不超过允许值的要求。在系统故障情况下,水轮发电机组可采用自同步方式,100MW以下的汽轮发电机组也可采用自同步方式。
1.2、在正常情况下,同步发电机组的并列应采用准同步方式。
为此,电力系统明文规定,在发电厂中,对单机容量在6 MW以上的发电厂,应装设自动准同步装置和带相位闭锁的手动准同步装置。
在九十年代及以前,除了当时全套引进国外设备的发电机组外,国内各发电厂基本上都是使用电磁型继电器、晶体管元器件或小规模集成电路构成的ZZQ系列自动准同步装置。
但随着全世界范围内计算机技术的飞速发展,作为技术、经济高度密集型的发电厂,其自动控制技术及其产品开发已是日新月异、层出不穷,尤其是自动准同期装置,微机化、智能化产品也是型式多样。
2 旧同期设备存在的主要问题
由于投产比较早的国产发电机组,绝大多数都是采用国产的自动准同期装置,它们都普遍存在以下不足之处:
2.1、如果过大的相角差并网,使发电机组的定子转子绕组、轴瓦、联轴器等过大的振动而受到严重的累积机械损伤,或诱发发电机组转子大轴系统扭振,使发电机组正常的运行寿命大大缩短是有可能的。
2.2、为追求理想的同期合闸点,对电压差、频率差过分精细的调节,不但会消耗大量的时间,而且会带来较大的因维持发电机组空转而造成的能耗浪费。
2.3、在同频合环操作过程中,如发电机倒厂用电等操作,如果不考虑功角、压差的因数,有可能造成系统继电保护误动作,甚至造成系统振荡。
2.4、更为严重的是,由于集中控制的需要和节省投资,过去往往设计成多台不同类型的断路器、几台发电机组共用一组同期小母线和一套准同期装置,不可避免地共用了一套准同期并网定值。由于不同类型的断路器合闸性能差异性很大,如合闸速度的不同,不同电压等级的电压互感器二次同期比较的幅值和相位也有所不同,直接导致合闸导前时间的不同,在唯一的导前时间定值下,从而不可避免地会出现合闸脉冲的不准确性。
2.5、服役时间长,元器件老化严重,用户维护调试困难,产品质量难以保持。
2.6、电力系统自动控制系统发展迅速,非智能型的自动准同期装置无法满足现代化电力工业发展的要求。
3 微机型自动准同期装置的应用
综观大江南北,无论是单机容量30万KW、60万KW及以上的大型发电厂,还是单机容量几万KW、几千KW的小型电厂,无论是水电厂还是火电厂,不管是新机投产还是旧机改造,都不遗余力地选用微机型自动准同期装置,由于它们的先进性、高可靠性、高精度且高速度、智能化且维护使用方便,得到发电行业的广泛应用。下面仅以在发电厂使用最为广泛的SID-2CM型自动准同期装置和SID-2X型自动选线器为例,重点介绍在发电厂DCS系统普遍采用的今天,如何设计、运用微机型自动准同期装置,以达到提高整套机组自动化运行水平的目的。
3.1 SID-2CM装置主要功能:
3.1.1、SID-2CM有8个通道可供1~8台、条发电机或线路并网复用,可适应不同类型的断路器进行并列操作,并具备自动识别并网对象类别及并网性质的功能。
3.1.2 、设置参数有:断路器合闸时间、允许压差、过电压保护值、允许频差、均频控制系数、均压控制系数、允许功角、并列点两侧PT二次电压实际额定值、系统侧PT转角、同频调速脉宽、并列点两侧低压闭锁值、单侧无压合闸、同步表、开入确认单侧无压操作等。
3.1.3、控制器在发电机并网过程中按模糊控制理论的算法,根据实测DEH和AVR控制特性所确定的均频及均压控制系数,对机组频率及电压进行控制,确保最快最平稳地使频差及压差进入整定范围,实现更为快速的并网。
3.1.4、控制器在进行线路同频并网(合环)时,如并列点两侧功角及压差小于整定值将立即实施并网操作,否则就进入等待状态,并发出信号。控制器具备自动识别差频或同频并网功能。
3.1.5、发电机并网过程中出现同频时,控制器将自动给出加速控制命令,与DEH共同作用,消除同频状态。控制器与DEH共同作用,可确保不出现逆功率并网,亦可实施并列点单侧无压合闸、双侧无压合闸等功能。
3.1.6、控制器完成并网操作后将自动显示断路器合闸回路实测时间,及每个通道保留最近的8次实侧值,以供校核断路器合闸时间整定值的精确性。同频并网因不需要合闸时间参数,故同频并网时控制器不测量断路器合闸时间。
3.1.7、控制器提供与上位机的通讯接口(RS-232、RS-485),也可以通过硬接线的方式与DCS系统接口,以完全满足将自动准同期装置纳入DCS系统的需要。
3.1.8、控制器输出的调速及调压继电器为小型电磁继电器,可直接驱动DEH和AVR系统进行自动调频和调压,省去外加中间继电器。
3.2 SID-2X装置主要功能:
3.2.1、SID-2X最多具有8(或12)个多路开关模块通道对8(或12)个并列点的同期信号进行切换。
3.2.2、接受由DCS或经RS-485总线发来的选线指令,控制指定的某路开关进行选线操作,且有RS-485接口。
3.2.3、接受由DCS发来的点动开关信号控制指定的某路开关进行选线操作。
3.2.4、在并网过程中,如遇到紧急事件,选线器可接受由DCS发来的紧急中止同期命令执行紧急中止同期操作。
3.2.5、在选线器上有8(或12)个指示灯指示被选中的多路开关通道号,选线器具有闭锁重选功能,确保每次只选通一路多路开关。选线器可提供切换后的同期电压作为手动同步的同期表使用,并有接口与手动的调压、调速和合闸按钮相连。
3.2.6、选线器的CPU模块故障时,可在选线器面板上手动操作8(或12)个带"唯一性"闭锁钥匙的开关进行人工选线操作。