① 轨道交通车辆和客车车门系统需要轴承吗
车门的常见类型(一)按驱动方式的不同进行区分1、电控风动门电控风动门由压缩空气驱动传动汽缸,在通过机械传动系统和电气控制系统完成车门的开关动作。机械传动系统的作用使将传动奇光活塞杆运动传递至车门,使车门动作。电气控制系统爆过气动门控制、再开门控制、车门动作监视和列车控制电路连锁等内容。其作用是为了保证车门动作可靠和行车安全。2、电传动门电气驱动车门由电动机、传动装置(轴、磁性离合器、皮带轮和齿形皮带)、控制器、闭锁装置和紧急开门装置组成。齿形皮带与两个门翼相固定,闭锁和解锁所需的扭矩由电动机提供。另一种电器驱动装置为电动机通过一根左右同步的螺杆和球面支承螺母驱动滚珠摆动导向件和与其固定的门翼(二)按其开启方式的不同进行区分1、内藏钳入式对开侧移门开关车门时门翼在车辆侧墙的外墙与内护板之间的夹层内移动,传动装置设于车厢内侧车门的顶部。2、外侧移门与上述内藏钳入式对开侧移门区别仅在于开关车门时,门翼均处于侧墙的外侧,车门驱动机构工作原理与内藏钳入式对开侧移门相同。3、塞拉门借助于车门上端的传动机构和导航,车门开启状态时门翼贴靠在侧墙和外侧,车门在关闭状态时,门翼外表与车体外墙成一片面。4、外摆式车门开门时通过转轴和摆杆使车门向外摆出并贴靠在车体外墙板上,门关闭后门翼外表面与车体墙成一片面。(三)按其用途的不同进行区分1、客室侧门:每辆车安装了10个客室侧门(每侧5个,均匀分布),整列车共60个客室侧门,供乘客上下车使用2、紧急疏散门:在A车司机室安装有一个紧急疏散门。列车在隧道内运行一旦发生火灾或其他险性事故时,司机可打开设在前后A车端墙中间的紧急疏散门,引导乘客通过紧急疏散门走向路基中央,然后向两端的车站疏散。3、司机室侧门在司机室侧墙上各有一扇单叶的门,其结构与客室车门类似,供司机上下车。3、司机室后墙门在司机室背墙中间有一通客室的通道门,供司机走入客室的通道。它在客室一侧没有开门把手,乘客是不能开启这扇门的。但在其上方有一红色紧急拉手,其用途是当乘客发现司机因突发疾病时,可用紧急手柄开启通道门对司机进行抢救。
② 地铁理论知识性能特征
地铁车辆是地铁用来运输旅客的运输工具,它属于现代城市快速轨道交通的范畴。那么你对地铁了解多少呢?以下是由我整理关于地铁理论知识的内容,希望大家喜欢!
一、地铁理论知识——车辆简介
从构造上:列车采用动力分散布置形式。根据需要由各种非动力车和动力车(或半动力车)组合成相对固定的编组,两头设置操纵台。由于隧道限界、车辆限界、设备限界的限制,车辆和其各种车载设备的设计要求相当紧凑。在方便检修的同时,尽量采用模块化。
从结构上,车体朝轻量化方向发展,主要采用大断面中空挤压铝型材模块化车体结构设计,采用整体承载结构;悬挂系统具有良好的减振系统;采用电气(再生制动和电阻制动)和空气的混合制动;车辆连接采用密贴式车钩进行机械、电气、气路的全自动连接;车辆间采用封闭式全贯通道,通过量大。
从运用性能上:由于地铁的服务对象是城市高密度、大客流人群,并要与公交系统、小汽车形成竞争力,所以对其安全、正点、快捷上有很高的要求。同时要提供给乘客适当的空间、安静的环境及空调,使乘客感到舒适、便利。
在运行方式上,应用列车自动驾驶系统ATO。在主牵引传动上,采用当今世界先进的调频调压交流传动。在辅助系统中,采用先进的IG-BT技术。
车辆是地铁系统中最关键,也是最复杂的设备,它是多专业综合性 的产品,涉及机械、电气、控制、材料等多领域。总之,车辆是通过各个相对独立的子系统有机地结合在一起,共同来实现列车的安全、可靠、高品质运行的。
二、地铁理论知识——机械部分1、车体
一般车体采用模块化设计。它包括自支撑构架,用螺栓连接的司机室和中间端。车体构架和中间端是由铝合金大型型材和板组成,而司机室是由型钢构成的。焊接的型材与中间端和司机室端通过机械紧固装置相互连接。司机室和中间端都由较大的玻璃钢罩板覆盖。通过车钩系统中的压溃管吸收能量。当发生事故时车前端的防爬装置能够分散碰撞力。
列车通过贯通道连接在一起,贯通道上设计有折棚和位于车钩上的渡板。列车表面喷涂根据城市的特点进行。
2、车门
根据车辆运营环境的不同,选择不同的车门。以广州地铁二号线车辆采用外挂式电控电动门为例。它由双向作用的电机为驱动装置,采用皮带传动及丝杆装置作为传动机构。由EDCU(电子门控单元)来控制车门的开关及锁定。在司机室操作控制按钮,通过EDCU控制电机转动来实现车门的开关,并设有障碍物探测重开门。由行程开关给出车门的状态信号,故障信号由EDCU通过编码硬线传送给VTCU(车辆及列车控制单元)。
从安全可靠性上来讲,移动门一般适用于速度低于100km/h的列车上。特别是外挂门,由于外挂门属于外吊悬挂式结构,下部悬空无支承。当列车在隧道中运行,随着速度的提高,其空气的阻塞比大大增加,对外吊的悬挂门产生较大的压力。如果门的结构及强度不随速度的提高而改进设计的话,车门会产生晃动等不稳定因数,影响车门的安全可靠性。
由于移动门的结构决定车门与车体之间必须保证一定的间隙,因 此,移动门的密封性差。当列车达到一定的行驶速度时(超过100km/h以上)便会产生车厢内窜风,给乘客带来不适;在车辆进出隧道等外界压力变化时,车内压力随着变化,舒适性下降。由于移动门的密封性差,车辆走行部件产生的噪音很容易传入车内;同时由于移动门或凹或凸于车体,列车在行驶中会使附近的空气产生涡流,空气阻力大,也就限制了移动门的使用速度。
塞拉门由于与车体在同一平面内保持列车较好的流线型,所以具有密封性好、空气阻力小等特点,但塞拉门的结构较移动门复杂,且造价较高。
车门的形式种类虽然各不相同,但实现的功能却大同小异,性能参数也差不多。
为了安全起见,逃生装置在前端墙的中部,包括一个在顶部铰接的大窗和位于两个司机台之间的一个梯子,正常情况该梯子折叠并隐藏起来。在列车不能到达下一站时,逃生装置用于疏散乘客。
3、车钩及缓冲装置
车钩缓冲装置由车钩及缓冲器等部件组成,装在底架牵引梁上,是车辆的一个安全部件。其作用是:
(1)将车辆互相联挂,联结成为一组列车;
(2)传递纵向牵引力和冲击力;
(3)缓和车辆之间的动力作用;
(4)实现电路和气路的连接。
车钩缓冲装置共分三种类型:自动车钩、半自动车钩、半永久牵引杆。三种车钩均设有可复原能量吸收功能,采用橡胶缓冲器。在自动车钩和半永久牵引杆上还设有超载保护装置,不可复原的可压溃变形管。其结构均采用先进的密贴式车钩,它是依靠相邻车辆钩头上的凸锥和凹锥口互相插接,起紧密连接作用。其优点是:节省人力,保证安全方便。缺点是:构造较复杂,强度较低。所以适用于地铁、轻轨等轻型轨道车辆上。
4、转向架
转向架是支承车体并担负车辆沿着轨道走行的支承走行装置。为了便于通过曲线,在车体和转向架之间设有心盘或转轴,转向架可以绕一中心轴相对车体转动。为了改善车辆的运行品质和满足运行要求,在转向架上设有弹簧装置和制动装置。对于动车,转向架上还装有牵引电机和减速机构,以驱动车辆运行。转向架主要由以下部分组成:轮对轴箱装置、弹性悬挂装置、构架、制动装置、牵引电机和齿轮变速传动装置、转向架支承车体装置。另外,在拖车转向架上还安装了ATC的通讯天线。
车辆在轨道上运行时,由于线路的不平顺、轨隙、道岔、轨面的缺陷和磨耗以及车轮踏面的斜度、擦伤和轮轴偏心等原因,常会伴随产生复杂的振动和冲击。为了提高运行的平稳性必须设有弹簧减振装置,空气弹簧在改善车辆的动力性能和运行品质上具有显著优点,被地铁和轻轨广泛应用。为了改善车辆的振动性能,地铁上大多采用液压减振器。
由于地铁承担运送乘客的任务,并且运行于地下隧道或高架线路上,要求转向架有较低的噪声和良好的减振性能,并且能适应重载和空载变化的能力。一般广泛采用空气弹簧和橡胶弹簧作为弹性悬挂元件,弹簧减振装置包括一系悬挂——人字形多层橡胶弹簧或者圆锥弹簧、二系悬挂——空气弹簧、垂向液压减振器、横向液压减振器、抗侧滚扭杆和横向橡胶缓冲挡。
牵引传动装置在电动客车中占有十分重要的地位,是驱动列车运行的核心装置。包括一个牵引电机,齿式联轴节和齿轮。其作用是将牵引电机输出的功率传给轮对。车辆的驱动机构是一种减速装置,用来使高转速、小扭矩的牵引电动机驱动阻力矩较大的动轴,对驱动机构的要求:能使牵引电动机功率得到发挥;电动机电枢轴应与联轴节保证同心度,以降低线路不平对齿轮的动作用力。用方框图来简述传动线路:
牵引电机采用三相交流感应电机,由于采用这一电传动方式,牵引性能良好,运行可靠,使车辆具有良好的牵引制动性能。
5、制动装置
据成熟地铁 经验 ,摩擦制动采用闸瓦制动。为了改善摩擦性能和增加耐磨性,大多数地铁车辆采用合成闸瓦。但合成闸瓦的导热性能较差,又选择了导热性能良好的产品——粉末冶金闸瓦。既具有较好的摩擦性能,又有良好的耐磨性。在闸瓦制动方式中,动能转化为热能的能力大,但热能散于大气的能力相对较小。当要求的制动功率较大时,有可能发生产生的热能不能散失到大气中,而在闸瓦与车轮踏面积聚集,使他们的温度升高,严重的会导致闸瓦熔化或车轮踏面产生裂纹。因此,在采用闸瓦制动时,对制动功率要有限制,即在车辆上安装一定的防滑系统。
动力制动在制动时,将牵引电机变为发电机,使列车动能转化为电能,对这些电能的不同处理方式形成了不同方式的动力制动,主要有电阻制动和再生制动。其中的再生制动是把电动车组的动能通过电机转化为电能后,再使电能反馈回电网给别的列车使用。显然这种方式既能节约能源,又减少了制动时对环境的污染,并且基本上无磨耗,是当前地铁行业首选的制动方式。在制动控制系统方面,目前的制动系统主要有空气制动系统和电气制动控制系统,在比较两者后,发现电气制动更具有优越性,电气制动的主要优点是全列车制动和缓解的一致性好,在制动和缓解时纵向冲击小,制动距离短,便于做到动力制动和空气制动的协调。
6、车辆内部设备
车辆内设包括服务于乘客的车体内的固定装置如车电、通风、取暖、空调、座椅、拉手等和服务于车辆运行的设备装置大多吊挂于车底架,如蓄电池箱、继电器箱、主控制箱、电动空气压缩机组、总风缸、电源变压器、各种电器开关和接触器箱等。故障率较高的空调需要经常清洗,大多采用车顶修和拆卸修。此设备中,控制器的故障率较高,主要是影响客室环境,不对行车造成影响,需要使用大量的备件进行替换。
三、地铁的性能特点优点
节省土地:由於一般大都市的市区地皮价值高昂,将铁路建於地底,可以节省地面空间,令地面地皮可以作其他用途。
减少噪音:铁路建於地底,可以减少地面的噪音。
减少干扰:由於地铁的行驶路线不与其他运输系统(如地面道路)重叠、交叉,因此行车受到的 交通干扰较少,可节省大量通勤时间。
节约能源:在全球暖化问题下,地铁是最佳大众交通运输工具。由於地铁行车速度稳定,大量节省通勤时间,使民众乐於搭乘,也取代了许多开车所消耗的能源。
减少污染:一般的汽车使用汽油或石油作为能源,而地铁使用电能,没有尾气的排放,不会污染环境。
其他优点
地铁与城市中其他交通工具相比,除了能避免城市地面拥挤和充分利用空间外,还有很多优点。
1、 运量大。地铁的运输能力要比地面公共汽车大7~10倍,是任何城市交通工具所不能比拟的。
2、 准时,正点率一般比公交高。
3、 速度快,地铁列车在地下隧道内风驰电掣地行进,行驶的最高时速普遍80公里,可超过100公里甚至有的达到了120公里。
缺点
建造成本高:地铁工程路线长,影响范围广,通常需要对路线沿线的建构筑物、管线、道路进行拆迁、改造、保护等 措施 ,工程以外的费用比较大。地铁工程多为地底,由於要钻挖地底,地底建造成本比建於地面高。
前期时间长:兴建地铁的前期时间较长,由於需要规划和政府审批,甚至还需要试验。从开始酝酿到付诸行动破土动工需要非常长的时间,短则几年,长则十几年也是有可能的。
部分灾害抵御能力弱:虽然地铁对於雪灾和冰雹的抵御能力较强。但是对地震、水灾、火灾和恐怖主义等抵御能力很弱。由於地铁的构造,而导致极易因为这些因素发生悲剧。为此自地铁出现以来,工程师们就不断持续研究如何提高地铁的安全性。
具体缺点如下:
1、地震
可以导致行进中的车辆出轨,因此地铁都设计有遇到地震立即停驶的功能。为防止地铁地道坍塌,处於地震地带的地铁结构必须特别坚固。
2、水灾
由於地铁内的系统低於地平线,而导致地上的 雨水 容易灌入地铁内的设施。因此地铁在设计时不得不规划充分的防水排水设施,即使如此也可能发生地铁站淹水事件。为此在发生暴雨之时,地铁车站入口的防潮板和路线上的防水闸门都要关闭。一个知名的例子是台北捷运在纳莉台风侵袭时曾经发生淹水事件。还有北京地铁一号线因暴雨积水关闭了数小时。
3、火灾
在以前,人们不太重视地铁站内的防火设施,车站内一旦发生火灾,瞬间就会充满烟雾,而引发严重的灾祸1987年11月18日,英国伦敦地铁King's Cross站发生火灾,导致31人死亡。产生火灾的原因之一是因为伦敦地铁内采用了大量木质建筑。因此,日本地铁部门规定在地铁站内禁烟来避免火灾。
2003年2月28日,韩国大邱广域市的地铁车站因为人为纵火而产生火灾,13辆车卡被烧毁,192人死亡,148人受伤。这次火灾产生如此严重死伤的原因除了车卡内部装潢采用可燃材料之外,车站区域内排烟设施不完善也是重要因素,加上车辆材质燃烧时产生了大量的一氧化碳等有害物质,而导致不少人中毒死亡。
③ 列车塞拉门的手动塞拉门
手动塞拉门是对于单个门系统由基础安装部分、驱动装置、门板、门板附件、锁闭装置、电热装置组成具有使门的开启与关闭方便、省力、安全,能防止车门挤压旅客但不能进行自动开门和集中控制。手动塞拉门的操作使用:开门只有在车辆处于静止状态时才能进行开门操作。开门前,应先将隔离锁的隔离状态解除。通过扳动门内、外三角锁芯手动开门。
在隔离琐打到开位时,可以操纵门内、外三角锁芯将门打开,此时门状态指示灯由绿色变为红色。B、关门通过门内、外扣手手动关门。操纵门内扣手或门外扣手将门关闭到二级锁闭状态,此时可以观察到门状态指示灯由红色变为绿色。之后,必须将隔离锁打到关位,将门处于隔离状态后,乘务员方可离开门区。C、门的隔离锁闭通过隔离锁隔离锁闭。在列车停运时,单个车门可以用三角钥匙拧动隔离锁锁芯,使锁舌伸出别住门框,实现门的机械隔离锁闭功能,肉不解除隔离锁的隔离锁闭状态,门将不能打开。紧急制动阀在列车运行中,遇有紧急情况时,使用紧急制动阀,它将列车管压力空气急剧排入大气,施行急剧减压,使三通阀产生制动作用而达到紧急制动的目的。人力制动装置人力制动装置安装在车厢一号位,为蜗轮蜗杆式。作用原理是,人力制动机的摇把是个蜗杆,将摇把向外拉出顺时针旋转,则可带动蜗轮、主轴、锥型链轮转动,使链条卷饶在锥型链轮上,从而拉动人力制动拉杆,带动基础制动装置发生作用。停止转动摇把时,因蜗轮蜗杆的自锁作用,受制动装置可保持制动而不发生缓解。逆时针转动摇把,可缓解制动作用。到目前为止使用电控气动塞拉门的列车型号只有少数25G型客车装有手动塞拉门。
④ 轨道交通动力装置是什么
1 概述
城市轨道交通具有安全、快速、准时、高效、节能、无污染和占地少的特点,能满足城市发展和环境保护的现实要求。发展城市轨道交通是解决城市公共交通问题的根本途径,也是城市可持续发展战略的必然选择。现代快速城市轨道交通系统采用全封闭车道、自动信号控制调度系统和轻型快速电动车组,行车密度大,h~ 40 km 平均旅行速度一般为30 km /h,最高运行h~ 90 km 速度为80 km /h,单向最大载客能力可达6 万人h~ 8 万人h。城市轨道交通车辆有三大关键技术:VVV F 调频调压交流传动与控制技术;轻量化车体技术;轻量化、高性能、高可靠性转向架技术。
现代城市轨道交通车辆的类型一般可以分为A 型、B 型、C 型和低地板轻轨车。其中,低地板轻轨车又可分为70% 低地板和100% 低地板2 种。目前,同时具有发展城市轨道交通的现实需要和经济实力的多为客流量大的大中型城市,其快速轨道交通系统发展的主流是以A 型车或B 型车为基础,基本编组单元为2M + 1T 或1M+ 1T 的电动车组立体化运行。整个轨道交通系统正朝着地下铁道、高架轻轨和近郊地面三位一体的立体化、网络化方向发展。采用VVV F 交流传动技术和轻量化耐候钢或不锈钢车体的B 型车,能够满足我国一些城市轨道交通系统的发展要求,并有一定的技术经济性,其走行部为轻量化、低噪声的无摇枕转向架。
2 转向架选型分析
2. 1 城市轨道交通对转向架的特殊要求
与干线铁路相比,城市轨道交通有以下特点:
(1) 间距短,启停频繁,对牵引和制动性能要求很高;
(2) 曲线半径小,对走行部要求高;
(3) 线路坡度大,可达30‰~ 60‰;
(4) 载重从1816 t (310 人) 到26 t (432 人),空重车重量差大;
(5) 行车密度大,最短行车间隔可达115 m in~ 2 m in,自动控制程度高;
(6) 运行环境特殊,安全可靠性要求极高;
(7) 对噪声要求严格;
(8) 需满足城市总体风格和居民的审美要求,车辆造型和色彩要求极富创造性。
对于转向架的运行稳定性、轻量化、低噪声、高可靠性、易维护及特殊的运行环境必须给予足够的重视。转向架对车辆的运行性能和行车安全至关重要,对轨道交通系统运行的经济性有重大影响。
2. 2 国内既有转向架的特点
目前,国内地铁、轻轨电动客车用转向架除国产的外,还有引进国外技术的,主要有2 种:一种是上海地铁1 号线、2 号线和广州地铁1 号线用转向架,为从欧洲整机进口的产品;另一种是北京复八线地铁用转向架,为引进韩国韩进重工技术研制生产的产品。其中,上海2 号线地铁车辆也用于我国第一条高架轻轨—— 明珠线。为便于分析比较,将各种转向架的主要技术特征和参数列于表1。
表1 现有地铁、轻轨转向架的主要技术特征和参数
注:上海地铁1 号线用转向架为橡胶弹性联轴器
2. 3 转向架的发展方向
纵观国内外情况,A 型或B 型城市轨道交通车辆走行部的发展趋势是轻量化、低噪声的无摇枕转向架,一系悬挂为橡胶弹簧,二系悬挂为空气弹簧与抗侧滚扭杆并用,牵引电机横向架悬,采用单元式基础制动装置。城市轨道交通车辆的线路条件和走行特性与干线铁路车辆有很大不同,如转向架的结构设计空间十分苛刻;采用交流传动技术,齿轮传动比很高;载客量很素的综合作用给城市轨道交通车辆转向架的设计带来大,运行环境特殊,安全可靠性要求极高,等等。这些因了特殊的困难。
3 转向架总体设计要求和主要技术参数
3. 1 转向架总体设计要求
(1) 转向架的综合性能应符合规定的限界和线路条件,能够满足地下铁道、高架线路和近郊地面大容量、快速城市轨道交通系统的运用要求。
(2) 转向架具有适宜的运行稳定性和良好的曲线通过能力。
(3) 运行平稳性指标按GB5599—1985 《铁道车辆动力学性能评定和试验鉴定规范》的规定执行:车辆在空载和满载之间的任何载荷条件及各种运营速度下,其垂向和横向平稳性指标均小于或等于215,且性能稳定。
(4) 转向架的安全性指标按GB5599—1985 《铁道车辆动力学性能评定和试验鉴定规范》的规定执行:脱轨系数Q ?P ≤1. 0;轮重减载率?P ?P ≤016;倾覆系数D ≤018。
(5) 转向架关键零部件的静强度、动强度符合有关国际标准或TB1335—1996 《铁道车辆强度设计及试验鉴定规范》的要求。
(6) 适当采取轻量化措施,转向架总重约415t(不含驱动装置)。
(7) 可靠性高,对可能的故障均采取安全措施。
(8) 可维护性好。
3. 2 转向架主要技术参数
4 转向架主要结构设计特点
B 型城市轨道交通车辆转向架为轻量化、低噪声、无摇枕转向架。轴箱弹簧为无磨耗圆锥叠层橡胶弹簧,采用H 型钢板压型焊接构架,中央悬挂为空气弹簧直接支承车体的三无结构,采用单元式单侧闸瓦踏面制动装置,牵引电机横向架悬。转向架分为动车转向架(图1) 和拖车转向架(图2)。在动车转向架的每根车轴上装有1 台交流牵引电动机、齿轮传动箱和联轴器。动车转向架与拖车转向架相比,除轴箱弹簧的特性参数不同外,其他零部件可完全互换。
图1 动车转向架装配图
图2 拖车转向架装配图
首次采用I2DEA S 软件对转向架直接进行三维装配设计。构架、轴箱等的三维造型设计为后续的有限元强度计算打下了基础。对各零部件进行了准确的质量、转动惯量、重心和主惯性轴位置的计算,以便为转向架的动力学性能计算提供可靠的基础数据。
4. 1 轮对轴箱定位装置
轮对轴箱定位装置采用圆锥叠层橡胶弹簧(图3) ,橡胶弹簧的优点在于具有非线性刚度特性,并有隔离高频振动和降低轮轨噪声的作用。对三向弹簧参数进行优化选择,在获得转向架适宜的蛇行运动稳定性和满足传递制动力、牵引力要求的前提下,注重提高转向架的曲线通过能力。在轴箱弹簧与轴箱之间设有调整垫片,以便于落车调整。轴箱盖与构架之间设有安全吊环。
图3 轮对轴箱弹簧装配图
采用我国现行标准的H SD 型车轮,车轮滚动圆直径为<840 mm ,踏面为LM 型磨耗形踏面。远期有条件时将采用噪声优化车轮和大等效斜度圆弧踏面。车轴为非标RC3 轴,轴颈直径为<120 mm,轴颈中心距为1 930 mm 。采用<120mm ×<240mm ×160mm 双列圆柱滚子轴承,轴箱材料为铸钢,有条件时将采用铝合金。
4. 2 构架组成
构架为H 型轻量化低合金高强度钢板焊接结构,主要由2 根侧梁和2 根横梁组成(图4)。侧梁上盖板、下盖板和立板的厚度分别为12 mm 、14 mm 、10 mm,侧梁内部设有多块厚度为8 mm 的筋板。构架横梁采用直径<180 mm 、壁厚14 mm 的无缝钢管,可提高构架主体结构的可靠性。侧梁与横梁的连接处和两横梁之间设有纵向加强梁。
图4 构架装配图
构架侧梁上焊有制动缸安装座、轴箱弹簧定位座等,横梁上焊有牵引电机吊座、齿轮箱吊杆座、牵引拉杆座和横向缓冲器座等。所有关键安装座的位置精度均通过对转向架构架的整体加工获得。采用三维有限元分析法进行了构架应力和振动模态分析。计算表明,构架整体应力分布合理,不存在薄弱环节。模态分析采用了L anczo s 方法,最低阶模态振型为构架扭曲,频率为3011 H z 。正常运用情况下,转向架构架的使用寿命不低于车体寿命(30 a),在此期间内不需要对转向架进行结构修整。转向架焊接制造完工后需进行消除焊接内应力的处理。
4. 3 中央悬挂装置
中央悬挂装置采用低横向刚度、大扭转变形的空气弹簧直接支承车体的三无结构,垂向用可变阻尼节流阀减振,横向安装油压减振器,还设有非线性横向缓冲止挡和新型抗侧滚扭杆装置(图5)。动车头部转向架装设排障器和信号天线托架。当采用第三轨受电时,还需装设第三轨受流器。
图5 无摇枕型中央悬挂装配
牵引装置由中心销、牵引梁、复合弹簧和新结构Z 形牵引拉杆组成,牵引点距轨面高度为385 mm 。新结构Z 形牵引拉杆具有低的横向及垂向附加刚度,提高了车辆的横向及垂向动力学性能,实现了无磨耗、无间隙牵引。
4. 4 基础制动装置
动车、拖车转向架均采用单侧单元式踏面制动装置,制动力优先由动车的再生制动负担。每轴设1 个带弹簧停放制动器的单元制动缸,停放制动能力满足用户规定的最大限制坡道要求。此方案的优点在于,动车、拖车转向架的制动装置(除制动倍率外) 完全相同。与轴装盘形制动和轮装盘形制动相比,该转向架具有较低的簧下质量,有利于减小轮轨之间的动作用力。单元制动缸的主要技术参数见表3。
4. 5 齿轮传动装置采用斜齿轮一级减速,以使传动平稳,降低传动噪声。为降低簧下质量,齿轮箱材料采用高强度铸造铝合金。采用刚性可移式鼓形齿联轴器或TD 型挠性板式联轴器(图6)。齿轮箱采用具有双面密封效果的机械式迷宫密封,免维护,无磨损。传动装置的传动比等主要技术参数将依据列车基本单元的配置和牵引电机的选择来确定。
图6 牵引电机传动装置
4. 6 其他装置
5 转向架动力学性能参数优化
铁道车辆是一个复杂的多体动力学系统,不但有各个部件之间的相互作用力和相对运动关系,还有轮轨之间复杂的相互作用关系。在转向架设计过程中,笔者与北方交通大学合作,利用德国铁路专用软件S IM 2 PA CK 建立了车辆系统的多体动力学模型,对影响车辆动力学性能的转向架主要参数进行了优化计算。包括:一系圆锥橡胶弹簧的三向刚度、二系横向减振器阻尼、抗蛇行减振器阻尼、抗侧滚扭杆刚度和车轮踏面斜度的变化等。车辆系统的每种参数对车辆的动态响应、蛇行运动稳定性和曲线通过性能三个方面的影响是不同的,而且,提高车辆蛇行运动临界速度和改善车辆曲线通过性能这两者对悬挂参数的要求是有矛盾的。因此,车辆悬挂系统的结构设计和参数选择,只能按实际运用条件进行综合考虑。这些条件包括最高运营速度、曲线半径和超高以及线路不平顺等。通过多方案的参数优化选择,转向架蛇行运动的计算临界速度为220 km /h,动车、拖车的运行平稳性指标小于2. 5,曲线通过能力和运行安全性指标满足有关标准的要求。
6 结论与建议
立足于国内技术,研制出具有国际先进水平的转向架,对我国城市轨道交通的发展具有重大意义。转向架的结构设计受车辆限界、地板高度、车辆宽度和轴重等的严格限制。通过B 型城市轨道交通车辆转向架的设计,笔者有以下几点体会:
(1) 虽然完成了转向架的设计和理论分析计算,但结构设计的合理性、关键零部件的疲劳强度以及运行性能仍有待于进一步试验和长期的运用考验。
(2) 对于采用VVV F 交流传动的A 型和B 型城市轨道交通车辆来说,踏面单元制动是较理想的基础制动方式。
(3) 车轮直径大小及其辐板形式不仅影响轮轨之滑防空转控制传感器、接地电刷装置和固体轮缘润滑间的相互作用,也关系到转向架传动装置的设计和牵引电机的选择。应尽快研制车轮直径和辐板形式合理的噪声优化车轮。
(4) 有关单位应研制专门适用于城市轨道交通车辆的大等效斜度圆弧踏面,以提高城市轨道交通系统运营的经济性。
(5) 城市轨道交通车辆转向架的研制是一个复杂的系统工程。转向架的设计与线路、限界条件、传动技术的发展以及转向架基础零部件的技术水平密切相关。
(6) B 型城市轨道交通车辆转向架的基本结构和技术完全可以用于A 型车,只需根据A 型车铝合金车体的设计特点对转向架固定轴距和空气弹簧上支承面高度进行适当调整即可。