导航:首页 > 装置知识 > 油气泄露检测装置

油气泄露检测装置

发布时间:2023-06-11 10:28:23

❶ 加油站采用可燃气体检测仪测量油气浓度有哪些要求

检测气体种类及范围:

1、LEL(可燃气体)量程0-100%LEL或0-5%CH4;

2、O2(氧气)量程0~30%Vol;

3、CO(一氧化碳)量程0~500/2000ppm;

4、H2S(硫化氢)量程0~100/500ppm;

四合一气体检测仪可同时检测氧气、硫化氢、一氧化碳和可燃气体,其中硫化氢和一氧化碳气体可以根据场所检测需求选配其它气体,其特头的芯片技术极大提升了气体检测时响应时间及稳定性等各项性能,并同时大幅提高电池使用寿命。

(1)油气泄露检测装置扩展阅读:

四合一气体检测仪使用注意事项:

1、关注不同仪器的气体探测器的使用寿命,其使用寿命是不一样的,当你购买询问仪器的使用寿命,使用保质期,个别企业为了省钱,探测器使用好几年不更换,气体检测只是去做,最终伤害自己。

2、应注意气体对仪器检测的干扰。在检测气体泄漏时,通常使用单台气体探测器检测某一种气体,但在检测环境中通常存在一种以上的气体。

3、要注意气体探测器探测范围的浓度检测之前,除了事先估计的经验的各种有毒、有害气体,而且估计气体浓度,测试气体探测器设置报警值,当气体浓度超出了仪器测试范围,关闭探测器,气体探测器远程测试条件可以导致严重损坏的仪器。

4、注意维护气体检测器的仪表,像其他设备一样,也需要注意定期维护,对其进行不定期的校准和检测,储存在低温环境中,以延长其使用寿命。

❷ 油气管道变形检测的技术方法有哪些

一、管道检测技术的发展方向
长输油气管道运行过程中通常受到来自内、外两个环境的腐蚀,内腐蚀主要由输送介质、管内积液、污物以及管道内应力等联合作用形成;外腐蚀通常因涂层破坏、失效产生。内腐蚀一般采

用情管、加缓蚀剂等手段来处理,近年来随着管道业主对管道运行管理的加强以及对输送介质的严格要求,内腐蚀在很大程度上得到了控制。目前国内外长输油气管道腐蚀控制主要发展方向是在外防腐方面,因而管道检测也重点针对因外腐蚀造成的涂层缺陷及管道缺陷。
近年来,随着计算机技术的广泛普及和应用,国内外检测技术都得到了迅猛发展,管道检测技术逐渐形成管道内、外检测技术(涂层检测、智能检测)两个分枝。通常情况下涂层破损、失效处下方的管道同样受到腐蚀,管道外检测技术的目的是检测涂层及阴极保护有效性的基础上,通过挖坑检测,达到检测管体腐蚀缺陷的目的,对于目前大多数布局北内检测条件的管道是十分有效的。管道内检测技术主要用于发现管道内外腐蚀、局部变形以及焊缝裂纹等缺陷,也可间接判断涂层的完好性。
二、管道外检测技术
埋地管道通常采用涂层与电法保护(CP)共同组成的防护系统联合作用进行外腐蚀控制,这2种方法起着一种互补作用:涂层是阴极保护即经济又有效,而阴极保护又使涂层出现针孔或损伤的地方受到控制。该方法是已被公认的最佳保护办法并已被广泛用于对埋地管道腐蚀的控制。
涂层是保护埋地管道免遭外界腐蚀的第一道防线,其保护效果直接影响着电法保护电流的工作效率,NACE1993年年会第17号论文指出:“正确涂敷的涂层应该为埋地构件提供99 %的保护需求,而余下的1%才由阴极保护提供”。因此要求涂层具有良好的电绝缘性、黏附性、连续性及耐腐蚀性等综合性能,对其完整性的维护是至关重要的。涂层综合性能受许多因素的影响,诸如涂层材料、补口技术、施工质量、腐蚀环境以及管理水平等,并且管道运行一段时间后,涂层综合性能会出现不同程度的下降,表现为老化、龟裂、剥离、破损等状况,管体表面因直接或间接接触空气、土壤而发生腐蚀,如果不能对涂层进行有效的检测、维护,最终将导致管道穿孔、破裂破坏事故。
涂层检测技术是在对管道不开挖的前提下,采用专用设备在地面非接触性地对涂层综合性能进行检测,科学、准确、经济地对涂层老化及破损缺陷定位,对缺陷大小进行分类统计,同时针对缺陷大小、数量进行综合评价并提出整改计划,以指导管道业主对管道涂层状况的掌握,并及实践性维护,保证涂层的完整性及完好性。
国内实施管道外检测技术始于20世纪80年代中期,检测方法主要包括标准管/地电位检测、皮尔逊(Pearson)涂层绝缘电阻测试、管内电流测试等。检测结果对涂层的总体评价到了重要作用,但在缺陷准确定位、合理指导大修方面尚有较大的差距。近年来,通过世界银行贷款以及与国外管道公司交流,管道外检测设备因价格相对较为便宜,操作较为方便,国外管道外间的技术已广泛应用于国内长输油气管道涂层检测,目前国内管道外检测技术基本上达到先进发达国家水平,在实际工作中应用较为广泛的外检测技术主要包括:标准管/地电位检测、皮尔逊检测、密间距电位测试、多频观众电流测试、直流电为梯度测试。
1. 标准管/地点位检测技术(P/S)
该技术主要用于监测阴极保护效果的有效性,采用万用表测试接地CU/CuSO4电极与管道金属表面某一点之间的电位,通过电位距离曲线了解电位分布情况,用以区别当前电位与以往电位的差别,还可通过测得的阴极保护电位是否满足标准衡量涂层状况。该法快速、简单,现仍广泛用于管道管理部门对管道涂层及阴极保护日常管理及监测中。
2. 皮尔逊监测技术(PS)
该技术是用来找出涂层缺陷和缺陷区域的方法,由于不需阴极保护电流,只需要将发射机的交流信号(1000 Hz)加载在管道上,因操作简单、快速曾广泛使用与涂层监测中。但检测结果准确率低,以受外界电流的干扰,不同的土壤和涂层段组都能引起信号的改变,判断是缺陷以及缺陷大小依赖于操作员的经验。
3. 密间距电位测试技术(CIS、CIPS)
密间距电位测试(Close Interval Survey)和密间距极化电位(Close Interval Potential Survey)监测类似于标准管/地电位(P/S)测试法,其本质是管地电位加密测试和加密断电电位测试技术。通过测试阴极保护在管道上的密集电位和密集化电位,确定阴极保护效果的有效性,并可间接找出缺陷位置、大小,反映涂层状况。该方法也有局限性,其准确率较低,其准确率较低,依赖于操作者经验,易受外界干扰,有的读书误差达200~300 mV。
4. PCM多频管中电流测试
多频管中点留法是监测涂层漏电状况的新技术,是以管中电流梯度测试法为基础的改进型涂层检测方法。它选用了目前较为先进的PCM仪器,按已知检测间距测出电流量,测定电流梯度的分布,描绘出整个管道的概貌,可快速、经济地找出电流信号漏失较严重的管段,并通过计算机分析评价涂层的状况,再使用PCM仪器的“A”字架检测地表电位梯度精确定位涂层破点。该方法是与不同规格、材料的管道,可长距离地检测整条管道,受涂层材料、地面环境变化影响较小,适合于复杂地形并可对涂层老化状况评级;可计算出管段涂层面电阻 R g值,对管道涂层划分技术等级,评价管道涂层的状况,提出涂层维护方式。采用专用的耦合线圈,还可对水下管道进行涂层检测。
5. 直流电位梯度(DCVG)方法
该方法通过检测流至埋地管道涂层破损部位的阴极保护电流在土壤介质上产生的电位梯度(即土壤的 IR降)并依据IR降的百分比来计算涂层缺陷的大小,其优点在于不受交流电干扰,通过确定电流是流入还是流出管道,还可判断管道是否正遭受到腐蚀。
6. 几种测试方法的比较
近几年,笔者在四川龙——苍线、工——自线、泸——威线、申——倒线等多条管道涂层及阴极保护有效性检测方面,对上述几种方法进行了比较,发现各种涂层缺陷检测技术都是通过在管道上加载直流或交流信号来实现的,不同的仅是在结构上、性能上、功用上的差异。每种方法各有侧重,在对涂层综合性能评价方面均具有一定说服力,但各有利弊。
为克服单一检测技术的局限性,现场检测中笔者发现综合几种检测方法对涂层缺陷进行检测,可以弥补各项技术的不足。对于由阴极保护的管道,可先参考日常管理记录中(P/S)的测试值,然后利用CIPS技术测量管道的管地电位,所测得的断电电位可确定阴极保护系统效果,在判断涂层可能有缺陷后,利用DCVG技术确定每一缺陷的阴极和阳极特性,最后利用DCVG确定缺陷中心位置,用测得的缺陷泄漏电流流经土壤造成的IR降确定缺陷的大小和严重性,以此作为选择修理的依据。对于未事假阴极保护的管道,可先用PCM测试技术确定电流信号漏失较严重的管段,然后在PCM使用的“A”字架或皮尔逊检测技术精确定位涂层破损点,确定涂层破损大小。PCM测试技术也可用于具有阴极保护的管道,其检测精度略低于DCVG技术。
由于所有涂层检测技术均是在管道上施加电信号,因此各种技术均存在一些不足,对某些涂层缺陷无法查找,如部分露管涂层破损处管体未与大地接触,信号因不能流向大地形成回路,只能通过其他手段查找;因屏蔽作用,不适用于加套管的穿越管线;所有技术均不能判定涂层是否剥离。
三、管道内检测技术
管道内检测技术是将各种无损检测(NDT)设备加在岛清管器(PIG)上,将原来用作清扫的非智能改为有信息采集、处理、存储等功能的智能型管道缺陷检测器(SMART PIG),通过清管器在管道内的运动,达到检测管道缺陷的目的。早在1965年美国Tuboscopc公司就已将漏磁通(MFL)无损检测(NDT)技术成功地应用于油气长输管道的内检测,紧接着其他的无损内检测技术也相继产生,并在尝试中发现其广泛的应用前景。
目前国外较有名的监测公司由美国的Tuboscopc GE PII、英国的British Gas、德国的Pipetronix、加拿大的Corrpro,且其产品已基本上达到了系列化和多样化。内检测器按功能可分为用于检测管道几何变形的测径仪、用于管道泄漏检测仪、用于对因腐蚀产生的体积型缺陷检测的漏磁通检测器、用于裂纹类平面型缺陷检测的涡流检测仪、超声波检测仪以及以弹性剪切波为基础的裂纹检测设备等。下面对应用较为广泛的几种方法进行简要介绍。
1. 测径检测技术
改技术主要用于检测管道因外力引起的几何变形,确定变形具体位置,有的采用机械装置,有的采用磁力感应原理,可检测出凹坑、椭圆度、内径的几何变化以及其他影响管道内有效内径的几何异常现象。
2. 泄漏检测技术
目前较为成熟的技术是压差法和声波辐射方法。前者由一个带测压装置仪器组成,被检测的管道需要注以适当的液体。泄漏处在管道内形成最低压力区,并在此处设置泄漏检测仪器;后者以声波泄漏检测为基础,利用管道泄漏时产生的20~40 kHz范围内的特有声音,通过带适宜频率选择的电子装置对其进行采集,在通过里程轮和标记系统检测并确定泄漏处的位置。
3. 漏磁通过检测技术(MFL)
在所有管道内检测技术中,漏磁通检测历史最长,因其能检测出管岛内、外腐蚀产生的体积型缺陷,对检测环境要求低,可兼用于输油和输气管道,可间接判断涂层状况,其应用范围最为广泛。由于漏磁通量是一种相对地噪音过程,即使没有对数据采取任何形式的放大,异常信好在数据记录中也很明显,其应用相对较为简单。值得注意的是,使用漏磁通检测仪对管道检测时,需控制清管器的运行速度,漏磁通对其运载工具运行速度相当敏感,虽然目前使用的传感器替代传感器线圈降低了对速度的敏感性,但不能完全消除速度的影响。该技术在对管道进行检测时,要求管壁达到完全磁性饱和。因此测试精度与管壁厚度有关,厚度越大,精度越低,其适用范围通常为管壁厚度不超过12 mm。该技术的精度不如超声波的高,对缺陷准确高度的确定还需依赖操作人员的经验。
4. 压电超声波检测技术
压电超声波检测技术原理类似于传统意义上的超声波检测,传感器通过液体耦合与管壁接触,从而测出管道缺陷。超声波检测对裂纹等平面型缺陷最为敏感,检测精度很高,是目前发现裂纹最好的检测方法。但由于传感器晶体易脆,传感器元件在运行管道环境中易损坏,且传感器晶体需通过液体与管壁保持连续的耦合,对耦合剂清洁度要求较高。因此仅限于液体输送管道。
5. 电磁波传感检测技术(EMAT)
超声波能在一种弹性导电介质中得到激励,而不需要机械接触或液体耦合。这种技术是利用电磁物理学原理以新的传感器替代了超声波检测技术中的传统压电传感器。当电磁波传感器载管壁上激发出超声波能时,波的传播采取已关闭内、外表面作为“波导器”的方式进行, 当管壁是均匀的,波延管壁传播只会受到衰减作用;当管壁上有异常出现时,在异常边界处的声阻抗的突变产生波的反射、折射和漫反射,接收到的波形就会发生明显的改变。由于基于电磁声波传感器的超生壁检测最重要的特征是不需要液体耦合剂来确保其工作性能。因此该技术提供了输气管道超声波检测的可行性,是替代漏磁通检测的有效方法。

❸ 如何使用管道泄漏检测的探讨

锅炉在设计时考虑在制造、安装、检修和进行锅炉水压试验时需排除容器内空气,因此在汽包或饱和蒸汽引出管、各级过热器、再热器上联箱或连通管均设计了空气管。很多时候,锅炉投入使用后会发生空气管泄漏事故,泄漏部位大多为空气管与管接头对接焊缝和空气支管与空气总管角焊缝。分析泄漏原因为:空气管路一般为安装单位根据现场情况自行排放,各类监督检查不重视,焊口无坡口、对口偏斜、管道开孔为气割、焊缝夹渣、气孔、未焊透等缺陷较多,运行中由于震动、热应力等原因使内在缺陷发展成泄漏。
锅炉排污疏水管道属于安装单位根据现场情况自行敷设,大多数是沿锅炉敷设。此类管道泄漏有以下几种情况:因管道敷设焊口背面焊接条件差,焊接缺陷多,从而导致泄漏;管道与阀门对接焊口泄漏较多,原因多为管道未打坡口且对口不同心、偏折、强力对口等;联箱管接头与管道对接焊口或焊止线泄漏,主要因为管道固定在钢架上,而联箱随炉膨胀,由于锅炉起停频繁,导致焊口疲劳;管道因内外腐蚀减薄而爆管,主要是内部不流动疏水和外部雨水的腐蚀造成。对于此类泄露可以对锅炉排污疏水管道进行光谱、测厚检查,对已减薄的管道进行更换,对全部安装焊口重新规范焊接并进行无损检验。对膨胀不畅的管道进行重新调整。
过热器、再热器减温水管道也会发生泄漏,有如下几种情况:减温水流量孔板泄漏,由于锅炉原配减温水流量孔板为法兰式,布置较紧凑,各支路管流量、温度不均等;管道爆漏多是由于减温水管一般并排敷设,管与管间隙小甚至无间隙,运行时因震动导致磨损而泄漏;因介质冲刷减薄管壁而泄漏,主要发生在弯头部位;管道焊缝泄漏,主要因焊口未打坡口、焊接缺陷较多而导致泄漏。针对上述问题可采取以下措施:将法兰式流量孔板更改为焊接式,并适当拉开距离便于检修和操作;对减温水管进行全线检查、测厚,对管壁减薄的进行更换,未打坡口的焊口全部重新焊接;对管系进行合理的布置和固定避免碰磨,进行有防雨措施的保温避免外部腐蚀。
由于锅炉主、再热蒸汽系统、给水系统的温度套管大多数为螺纹连接式,投运后随着启停次数的增加,管内介质流动引起振动,会造成因温度套管螺纹处泄漏而在低谷时焊补或机组调停时更换温度套管,给安全、经济运行带来一定的威胁。处理措施是利用机组大小修将螺纹连接式温度套管更改为焊接式温度套管。
文章对国内外输油管道泄漏检测方法进行了分析,对油田输油管道防盗监测的方法进行了探讨。针对油田输油管道防盗监测问题,指出了油田输油管道防盗监测系统的关键技术是管道泄漏检测报警及泄漏点的精确定位,并介绍了胜利油田输油管道泄漏监测系统的应用情况。
主题词:
输油 管道 泄漏 监测 防盗
泄漏是输油管道运行的主要故障。特别是近年来,输油管道被打孔盗油以及腐蚀穿孔造成泄漏事故屡有发生,严重干扰了正常生产,造成巨大的经济损失,仅胜利油田每年经济损失就高达上千万元。因此,输油管道泄漏监测系统的研究与应用成为油田亟待解决的问题。先进的管道泄漏自动监测技术,可以及时发现泄漏,迅速采取措施,从而大大减少盗油案件发生,减少漏油损失,具有明显的经济效益和社会效益。
1 国内外输油管道泄漏监测技术的现状
输油管道泄漏自动监测技术在国外得到了广泛的应用,美国等发达国家立法要求管道必须采取有效的泄漏监测系统。
输油管道检漏方法主要有三类:生物方法、硬件方法和软件方法。
1.1 生物方法
这是一种传统的泄漏检测方法,主要是用人或经过训练的动物(狗)沿管线行走查看管道附件的异常情况、闻管道中释放出的气味、听声音等,这种方法直接准确,但实时性差,耗费大量的人力。
1.2 硬件方法
主要有直观检测器、声学检测器、气体检测器、压力检测器等,直观检测器是利用温度传感器测定泄漏处的温度变化,如用沿管道铺设的多传感器电缆。声学检测器是当泄漏发生时流体流出管道会发出声音,声波按照管道内流体的物理性质决定的速度传播,声音检测器检测出这种波而发现泄漏。如美国休斯顿声学系统公司(ASI)根据此原理研制的声学检漏系统(wavealert),由多组传感器、译码器、无线发射器等组成,天线伸出地面和控制中心联系,这种方法受检测范围的限制必须沿管道安装很多声音传感器。气体检测器则需使用便携式气体采样器沿管道行走,对泄漏的气体进行检测。
1.3 软件方法
它采用由SCADA系统提供的流量、压力、温度等数据,通过流量或压力变化、质量或体积平衡、动力模型和压力点分析软件的方法检测泄漏。国外公司非常重视输油管道的安全运行,管道泄漏监测技术比较成熟,并得到了广泛的应用。壳牌公司经过长期的研究开发生产出了一种商标名称为ATMOS Pine的新型管道泄漏检测系统,ATMOS Pine是基于统计分析原理而设计出来的,利用优化序列分析法(序列概率比试验法)测定管道进出口流量和压力总体行为变化以检测泄漏,同时兼有先进的图形识别功能。该系统能够检测出1.6kg/s的泄漏而不发生误报警。
目前国内油田长距离输油管道大都没有安装泄漏自动检测系统,主要靠人工沿管线巡视,管线运行数据靠人工读取,这种情况对管道的安全运行十分不利。我国长距离输油管道泄漏监测技术的研究从九十年代开始已有相关报道,但只是近两年才真正取得突破,在生产中发挥作用。清华大学自动化系、天津大学精密仪器学院、北京大学、石油大学等都在这一方面做过研究。如:中洛线(中原—洛阳)濮阳首站到滑县段安装了天津大学研制的管道运行状态及泄漏监测系统(压力波法),东北管道局1993年应用清华大学研制的检漏系统(以负压波法为主,结合压力梯度法)进行了现场试验。
2 管道泄漏监测技术的研究
通过对国内外各种管道泄漏检测技术的分析对比,结合油田输油管道防盗监测的特殊要求,胜利油田油气集输公司等单位组织开展了广泛深入的调查研究。
防盗监测系统的技术关键解决两方面的问题:一是管道泄漏检测的报警,二是泄漏点的精确定位。针对这两项关键技术胜利油田采用的技术思路是:以压力波(负压波)检测法为主,和流量检测法相结合。
2.1 系统硬件构成
① 计算机系统:在管道的上下游两端各安装了一套工业控制计算机,用于数据采集及软件处理。
② 一次仪表: 压力变送器
温度变送器
流量传感器
③ 数据传输系统:两套扩频微波设备,用于实时数据传输。

2.2 检漏方法
2.2.1负压波法
当长输管道发生泄漏时,泄漏处由于管道内外的压差,使泄漏处的压力突降,泄漏处周围的液体由于压差的存在向泄漏处补充,在管道内产生负压波动,这样过程从泄漏点向上、下游传播,并以指数律衰减,逐渐归于平静,这种压降波动和正常压力波动大不一样,具有几乎垂直的前缘。管道两端的压力传感器接收管道的瞬变压力信息,而判断泄漏的发生,通过测量泄漏时产生的瞬时压力波到达上游、下游两端的时间差和管道内的压力波的传播速度计算出泄漏点的位置。为了克服噪声干扰,可采用小波变换或相关分析、基于随机变量之间差异程度的kullback信息测度检测等方法对压力信号进行处理。前苏联从20世纪70年代开始研究和使用自动检漏技术,负压波检漏系统的普及,使输油管线泄漏事故减少88%。负压波的传播规律跟管道内的声音、水击波相同,其速度取决于管壁的弹性和液体的压缩性。国内曾经实测过大庆原油管道在平均油温44℃、密度845kg/m3时的水击波传播速度为1029m/s。对于一般原油钢质管道,负压波的速度约为1000~1200m/s,频率范围0.2~20kHz。负压波法对于突发性泄漏比较敏感,能够在3min内检测到,适合于监视犯罪分子在管道上打孔盗油,但是对于缓慢增大的腐蚀渗漏不敏感。
负压波法具有较快的响应速度和较高的定位精度。其定位公式为
上下游分别设置压力测点p1、p2,当管线在X处发生泄漏时,泄漏产生

的负压波即以一定的速度α向两边传播,在t和t+τ0时刻被传感器p1、p2检测到,对压力信号进行相关处理,式中α为波速,L为p1、p2之间的距离
未发生泄漏时,相关系数Φ(τ)维持在某一值附近;当泄漏发生时,Φ(τ)将发生变化,而且当τ=τ0时,Φ(τ)将达到最大值。

理论上:解出定位公式如下:

式中:X 泄漏点距首端测压点的距离 m
L 管道全长m
a 压力波在管道介质中的传播速度 m/s
上、下游压力传感器接收压力波的时间差 s
由以上公式可知要实现准确的定位,必须精确的计算压力波在管道介质中的传播速度a和上、下游压力传感器接收压力波的时间差。
① 压力波在管道介质中传播速度的确定
压力波在管道内传播的速度决定于液体的弹性、液体的密度和管材的弹性:

式中 α——管内压力波的传播速度,m/s;
K——液体的体积弹性系数,Pa;
ρ——液体的密度,kg/m ;
E——管材的弹性,Pa;
D——管道的直径,m;
e——管壁厚度,m;
C ——与管道约束条件有关的修正系数;
式中弹性系数K和密度ρ随原油的温度变化而变化,因此,必须考虑温度对负压波波速的影响,对负压波波速进行温度修正。在理论计算的基础上,结合现场反复试验,可以比较准确的确定负压波的波速。
② 压力波时间差 的确定
要确定压力波时间差 ,必须捕捉到两端压力波下降的拐点,采用有效的信号处理方法是必须的,如:Kullback信息测度法、相关分析法和小波变换法。
③ 模式识别技术的应用
正常的泵、阀、倒罐作业等各种操作也会产生负压波。为了排除这些负压波干扰,在系统中采用了先进的模式识别技术,依据泄漏波与生产作业产生的负压波波形等特征的差别,经过现场反复模拟试验, 提高了系统报警准确率,减少了系统误报警。
2.2.2流量检测
管道在正常运行状态下,管道输入和输出流量应该相等,泄漏发生时必然产生流量差,上游泵站的流量增大,下游泵站的流量减少。但是由于管道本身的弹性及流体性质变化等多种因素影响,首末两端的流量变化有一个过渡过程,所以,这种方法精度不高,也不能确定泄漏点的位置。德国的阿尔卑斯管道公司(TAL)原油管道上安装使用了该系统,将超声波流量计,夹合在管道外进行测量,然后根据管道温度、压力变化,计算出管道内总量,一旦出现不平衡,就说明出现泄漏。日本在《石油管道事业法》中也规定使用这种检漏系统,并且规定在30s中检测到泄漏量在80L以上时报警。流量差法不够灵敏,但是可靠性较高,它跟压力波结合使用,可以大大减少误报警。
3 应用效果与推广情况
经过胜利油田组织的专家验收和现场试验,系统达到的主要技术指标:
①最小泄漏量监测灵敏度:单位时间总输量的0.7%;
②报警点定位误差:≦被测管长的2%;
③报警反应时间:≦200秒。
胜利油田输油管道泄漏监测报警系统整体水平在国内居于领先地位,应用效果和推广规模都是较好的,目前胜利油田油气集输公司输油管道上已经推广应用检漏系统,取得了明显的效益,多次抓获盗油破坏分子,有力地打击了盗油犯罪,为油田每年减少经济损失1000多万元,为管道的安全运行提供了保证。
4结论
4.1 采用负压波与流量相结合的方法监测输油管道的泄漏是有效的、可靠的;
4.2 依靠油田局域网进行实时数据传输能够提高泄漏监测系统的反应速度,能够实现全自动的泄漏监测报警与定位;
4.3 在油田输油管道安装管道泄漏监测系统能够确保管道安全运行,明显减少管道盗油事故的发生,具有明显的社会效益和经济效益。

❹ 油气浓度检测仪与可燃气体报警器有什么区别

油气浓度检测仪主要由可燃探测器(以下简称探测器)和可燃报警控制器(以下简称控制器)两部分组成.
控制器通过采集探测器周围的气体浓度,对其进行分析处理完成报警功能并可将报警信息上传至消防控制平台。油气浓度检测仪当主电源掉电时可自动转换至备用电源工作,探测器直接由控制器供电,各探测器分别工作互不干扰且通道间可以随意调换。油气浓度检测仪使用范围:各类石油、石化、化工生产、消防、燃气、电信\煤炭、冶金、电力等.
体报警器是当检测到有毒之类气体时,自动报警,相当于自动灭火器那类。气体报警器中有检测模块。气体浓度达到一定的极限,也就是所谓的爆炸极限时,报警器就会报警,提醒人们采取措施。气体报警器可以测出各种气体浓度。经常用在化工厂,石油,燃气站,钢铁厂等有气体泄漏的地方。应用比较广泛。希望可以帮到你!(樽祥科技提供)

❺ 天然气泄漏报警系统规范 这个在安装时有没有什么国标的规范,比如用料上什么的,小弟新人。谢谢

安装位复置
安装在距燃气具或燃制气源水平距离4米以内,2米以外的室内墙面上;根据探测燃气类型,选择安装的上下位置:液化石油气(P):距地面0.3米以内。人工煤气(C)、天然气(N):距天花板0.3米以内。
安装方法
在选定的墙面位置,对应随机安装板上的二个安装孔位作好打孔标记(板上挂钩应水平朝上);打好安装孔,放入随机安装胶塞,然后用随机自攻螺钉将安装板固定在墙面上;将机体背面的三个孔位对准安装板上的固定挂钩,挂好机体;连接相关输出信号线后,接通电源。
工作状态
正常监测状态:通电预热3分钟后,绿灯稳定发光,表示报警器工作正常处于监测状态;预热过程中,报警器可能发出“嘟…嘟…”声及红灯闪烁,绿灯亮之前消失属正常。现场报警状态: 当报警器周围空气中燃气含量超过报警点,探测器会发出“嘟…嘟…”间断刺耳鸣叫,同时红色指示灯闪烁,提醒用户尽快作现场处理;报警输出状态: 现场声光报警持续10秒后,不同规格的报警器会输出不同类型的报警信号,通知报警系统或启动相应的联动装置。燃气泄漏报警器的使用大大降低了使用燃气设备的场所由于燃气泄漏发生重大事故的概率。

❻ 石油化工企业可燃气体报警系统设置要求有哪些

1、可燃气体探测报警系统应由可燃气体报警控制器、可燃气体探测器和火灾声光警报器等组成,能够在保护区域内可燃气体泄露浓度低于爆炸下限的条件下提前报警,从而预防由于可燃气体泄漏引发的火灾和爆炸事故的发生。
2、可燃气体探测报警系统应独立组成,可燃气体探测器不应接入火灾报警控制器的探测器回路;当可燃气体的报警信号需接入火灾自动报警系统时,应由可燃气体报警控制器接入。
3、石化行业涉及过程控制的可燃气体探测器,可按现行国家标准《石油化工可燃气体和有毒气体检测报警设计规范》GB50493的有关规定设置,但其报警信号应接入消防控制室,以保证消防救援时能及时获得相关信息。
4、可燃气体报警控制器的报警信息和故障信息,应在消防控制室图形显示装置或起集中控制功能的火灾报警控制器上显示,但该类信息与火灾报警信息的显示应有区别。
5、可燃气体报警控制器发出报警信号时,应能启动保护区域的火灾声光警报器,以警示相关人员进行必要的处置。
6、可燃气体探测报警系统保护区域内有联动和警报要求时,应由可燃气体报警控制器或消防联动控制器联动实现。
7、可燃气体探测报警系统设置在有防爆要求的场所时,还应符合有关防爆要求。

❼ 加油站应用哪些传感器

加油站现场安装的参数检测传感器和视频监控摄像机主要有:

1)液位检测内传感器:安装在油罐容内,对高液位进行监控与报警。

2)温度检测传感器:安装在油罐内,对油温超高进行监控与报警。

3)流量检测传感器:安装在加油机处,对油液流量进行监控与报警。

4)可燃气体检测传感器:安装在油罐、加油机等场所,对油气泄漏进行监控与报警。

5)全方位云台一体摄像机:安装油罐、加油机处,监视和控制油罐与加油机处的安全状况。

6)彩色枪式定焦摄像机:安装在加油站进出口处、财务室和业务室等,监视进出加油站的车辆情况、收银情况及员工工作情况等。
传感器均采用防爆型或本安型,本安型探测器还配备安全栅用以在探测器本安防爆系统发生故障时,将窜入危险场所的电能限制在安全值以内,从而保证了加油站现场的本安特性。

阅读全文

与油气泄露检测装置相关的资料

热点内容
三星仪表出现故障et2怎么解决 浏览:741
无塔供水设备在哪里 浏览:712
团队管理工具箱 浏览:261
笔记本插上usb显示无法识别usb设备怎么办 浏览:853
天然气总阀门不小心关了怎么开 浏览:69
皇冠车仪表显cruise是什么意思 浏览:407
各类轴承英文如何写 浏览:940
米沃奇M18v电动工具 浏览:800
做断桥铝门窗设备哪个品牌好 浏览:638
地热阀门蓝色的是什么 浏览:276
冰柜怎么调节制冷时间 浏览:111
淮安正规机械设备哪里有 浏览:168
乐清阀门厂销售电话 浏览:801
设备删除ipad退不了id怎么办 浏览:716
五金机电城开业时间 浏览:735
手动阀门传动装置d485sh 浏览:450
秦川机床债转股代码是什么 浏览:200
简单的弹簧传动装置 浏览:450
同样是24度为什么制冷就是冷风 浏览:489
冷凝器自动清洗装置品牌 浏览:475