导航:首页 > 装置知识 > 空分液化装置设计

空分液化装置设计

发布时间:2023-06-04 16:07:13

⑴ 大家帮忙讲解一下空分工艺流程

工艺原理
利用深冷技术把空气进行深度冷冻液化,然后利用空气中氧气、氮气组分沸点的不同,通过精馏的办法在分馏塔内分离成纯氧气污氮气。
工艺流程简述
空分装置一般是采用常温分子筛净化、增压透平膨胀机提供装置所需冷量、双塔(下塔、上塔)精馏流程。整套设备包括空气过滤系统、空气压缩系统、空气预冷系统、纯化系统、分馏塔系统、仪表系统、电气系统等,整套装置的控制由DCS系统控制完成(联锁、紧急停车)。
空气预冷:原料空气进入自洁式空气过滤器后,除去灰尘和其他颗粒杂质,然后进入离心压缩机加压,经过四级压缩三级间级冷却器冷却后的空气进入空冷塔被冷却水和冷冻水冷却,冷却水由循环水管网来,由冷却水泵打到空冷塔中部。冷冻水由凉水塔来的冷却水经水冷塔与由分馏塔来的多余的污氮气热质交换后由冷冻水泵加压送入空冷塔顶部。
空气经空冷塔和水直接接触,把出空压机的高温气体(<100℃)冷却到~14.5℃,使部分游离水析出,以改善吸附工作状况,大气中的二氧化硫、氧化氮、氯化氮、氨等杂质被水洗涤,硫化氢、一氧化氮不能被水洗涤清除,但能被分子筛吸附。
空气纯化:分子筛吸附器为卧式双层床结构,下层为活性氧化铝,上层为分子筛,两只分子筛切换工作。空气在进入MS1201/MS1202分子筛吸附器前在空冷塔中冷却,以尽可能降低空气温度减少空气中水含量从而降低吸附器的工作负荷,空气中的大部分水份被活性氧化铝清除,二氧化碳和一些碳氢化物被分子筛吸附清除,甲烷、乙烷、乙烯不能被吸附,将会进入塔内。两台分子筛吸附器一台进行工作,另一台进行再生。由分馏塔来的污氮气经电加热器加热至180℃左右,入吸附器加热再生,脱附掉其中的水分、二氧化碳及其他的一些碳氢化合物,后经放空消音器排入大气。
空气精馏:净化后的空气分成三股进入分馏系统:一股加工空气引入循环增压机进行增压,通过冷却器冷却后进入主换热器与反流的气体和液体进行换热,经过换热在主换热器下部这股空气被冷却为液体后送入气、液分离灌进行分离,分离后的气、液送入下塔参与初步精馏。
一股加工空气引入增压透平膨胀机的增压端进行增压,并经水冷却器后进入主换热器,再从主换热器中部(或底部)抽出,经膨胀机膨胀后进入上塔参加精馏;
另一股加工空气进入主换热器,被反流气体和液体冷却后进入下塔参与精馏。(温度在﹣172℃左右)
下塔为筛孔式塔板,液体自上而下逐一流经每块筛板,由于溢流堰的作用,使筛板上造成一定的液层高度,当气体由下而上穿过筛板小孔时与液体接触,产生了鼓泡,这样就增加了气液接触面积使热质交换高效进行,低沸点组份逐渐蒸发,高沸点组份逐渐液化,这样在下塔顶获得低沸点的纯氮,在下塔中部获得液污氮,在下塔底获得高沸点的富氧液空,所需的回流液氮来自下塔顶部主冷。而主冷置于上、下塔之间,下塔上升的氮气在其间被冷凝,而上塔回流的液氧在其间被蒸发,这个过程得以进行,是因为氮气压力高,液氧压力低,例如:氮气压力在0.45MPa时液化温度为﹣177.5℃,而液氧压力在0.05MPa时蒸发温度为﹣180℃,由于两者间温差的存在,氮气的冷凝和液氧的蒸发就得以进行。在上塔,液氧蒸发是上塔所需的上升蒸气,气体穿过分布器沿填料盘上升,液氮、液污氮、液空由下塔引出经过过冷器过冷后经节流阀节流自上往下通过分布器均匀的分布在填料上,在填料表面上气、液充分接触进行充分的热质交换,上升气体低沸点组份(氮)含量不断提高,高沸点组份(氧)被大量的洗涤下来,形成回流液。根据在同等压力下氧、氮沸点不同,经多次蒸发和冷凝,最终在上塔顶部得到低沸点的污氮气,上塔底部获得高沸点的液氧。
下塔产品:纯氮气、纯液氮,液污氮、38%~42%的富氧液空。
富氧液空:经过冷器过冷,节流阀节流后进入上塔,作为上塔回流液。
液污氮:经过冷器过冷,节流阀节流后进入上塔,作为上塔回流液。
纯氮气:在下塔顶部获得纯度为99.99%的纯氮气,一少部分取出经过主换热器换热后送给用户。其余部分进入主冷凝蒸发器中被液氧冷凝成液氮,而液氧吸收热量蒸发成气氧。
纯液氮:一部分液氮回下塔作为下塔回流液体,;另一部分液氮经过冷器过冷后、经节流阀节流后进入上塔顶部参加精馏。
上塔产品:上塔底部产出液氧,顶部产出污氮气。
各种物流进入上塔,经过上塔的进一步分离,在上塔顶部获得纯度为~96%的污氮气,底部获得纯度为99.53%的液氧。污氮气经过冷器、主换热器复热后出冷箱,复热后的污氮气分成两部分,一部分做为分子筛吸附器的再生用气,另一部分也送入水冷塔给水冷却。液氧由上塔底部抽出经过液氧泵加压后进入主换热器与正流气体换热,经过换热液氧被气化后出主换热器复热至常温送给用户。

以上只是空分的一种形式..还有其它工艺....但都大同小异....

⑵ 啥叫空分空分装置和系统流程大揭秘

大家对各类压缩机、汽轮机并不陌生,但是他们在空分环节的作用,你是否真正了解?工厂里的空分车间,你知道是什么样的吗?空分,简单地说,就是用来把空气中的各组份气体分离,生产氧气、氮气和氩气的一套工业设备。还有稀有气体氦、氖、氩、氪、氙、氡等。

空分设备

空分设备是以空气为原料,通过压缩循环深度冷冻的方法把空气变成液态,再经过精馏而从液态空气中逐步分离生产出氧气、氮气及氩气等惰性气体的设备,广泛应用于传统的冶金、新型煤化工、大型氮肥、专业气体供应等领域。

简单来说就是空分的系统流程包括:

压缩系统

预冷系统

纯化系统

换热系统

产品送出系统

膨胀制冷系统

精馏塔系统

液体泵系统

产品压缩系统

我们按照空分系统流程对设备进行一一介绍:

压缩系统

有 自洁式空气过滤器 、 汽轮机 、 空压机 、 增压机 , 仪表压缩机 等。

(1)自洁式过滤器一般随着气量的增大,滤筒数增多,层数也越高,一般2.5万等级以上双层,6万等级以上三层布置;一般单台压缩机需要单独布置过滤器,同时布置在上风口。

(2)汽轮机是高压蒸汽进行膨胀做功,带动同轴叶轮转动,从而实现进行对工质做功的型式。汽轮机一般常用的有三种形式:全凝、全背压和抽凝,较为常用的是抽凝。

(4)空压机一般大型空分装置投资均为单轴等温型离心压缩机,进口较国产能耗低2%左右,投资高80%;空压机采用出口放空,不设置回流管路,一般有最小吸入流量防喘振要求,采用入口导叶进行流量调节,进口国产机组均是四级压缩三级冷却(末级不冷却)。主空压机配备一套水洗系统,用以冲洗各级叶轮和蜗壳表面沉积物。该系统随主机成套。

(5)增压机一般大型空分装置投资采用单轴等温型离心压缩机和齿轮式离心压缩机两种,其中齿轮式在能耗上占较大优势,尤其压比较大的工况。

(6)仪表气压缩机一般有三种形式:无油螺杆机,活塞式和离心式。由于活塞式和离心式天然无油,所以不需要除油装置,只需要配套干燥装置(除水)和精密过滤器(除固体颗粒)即可;而螺杆机一般有有油和无油然后除油两种,喷油螺杆机需要设置除油装置,同时需要设置精度非常高的除油过滤器,以满足工艺要求,这种机型的优势是价格较便宜;无油螺杆采用干转子或者水润滑,这种机型优点是绝对不含油,缺点是价格较贵。气量500Nm³/h以下适合选活塞式;气量在2000Nm³/h以下适合选螺杆机或活塞机;气量在2000Nm³/h以上即三种机型都可以选,气量大时离心式压缩机较有优势,其易损件较少,同时好维护,性价比较高。

仪表压缩机在开车时使用,正常运行后由分子筛纯化器后抽取。

预冷系统

预冷系统空冷塔有两种形式: 闭式循环 (空冷塔分为上下两段,冷冻水在空冷塔上段和水冷塔之间循环)和 开式循环 (进循环水系统),闭式循环主要应用于水质不好的化工厂,需要补充新鲜水及药剂;开式循环应用较广,但是循环水系统同样也需要定期补充新鲜水,预冷系统还需要考虑夏天工况。

空冷塔 一般设计为底部为1米φ76不锈钢鲍尔环(耐高温),3米φ76增强型聚丙烯鲍尔环(大通量),4米φ50增强型聚丙烯鲍尔环。

水冷塔 也有两种:两段式(无外加冷源时,干燥污氮气的冷量回收充分,使之预冷系统有保障,但是阻力大一倍,(7米+7米φ50聚丙烯鲍尔环)和一段式(有外加冷源时,8米φ50聚丙烯鲍尔环)。

此外,预冷系统一般所有进水均要设置过滤器(一般6台:4台水泵,水冷塔进水,冷水机组蒸发侧进水),防止杂质带入系统。预冷系统的效果检测为:下段4米填料段出口气比进水低1℃;上段8米填料段出口气比水高1℃,一般在空冷塔中部设置测温计(伸入内部)。

纯化系统

纯化系统采用的的 吸附器 有立式轴向流,卧式双层床和立式径向流三种。

立式轴向流 主要用于1万等级(直径已经到4.6m)以下空分设备的配套,床层厚度1550∽2300mm,双层单层均可布置,立式轴向流吸附器的气流分布最好。

卧式双层床 主要用于大中型空分设备的配套,床层厚度1150mm(分子筛)+350mm(铝胶)。

立式径向流 吸附器可以有效利用容器内部空间,使得同直径吸附层面积扩大1.5倍左右,这样可以有效降低塔器高度,同时立置方式占地面积较小。由于气流分布均匀,不像卧式吸附器气流不均,使得分子筛用量减少20%,再生能耗也节省20%。

但是立式径向流缺点是气流中心集中(扇形区),使得其比卧式穿透时间要快(要求CO2<0.5ppm)。床层厚度1000mm+200mm,立式径向流可以满足2万等级以上的空分设备的配置。

再生加热 有电加热器和蒸汽加热器两种方式。

蒸汽加热器有卧式(4万等级以下),立式(4万等级以上),立式高效蒸汽加热器(蒸汽利用率高,节能20%)布置方式有:一台蒸汽加热器(有H2O泄漏测点);电加热器(两用一备或者一用一备)并联(高温低流量联锁停设置,防止烧坏,加热管材质为1Cr18Ni9Ti);电加热器(满足活化再生,250∽300℃)与蒸汽加热器并联;电加热器与蒸汽加热器串联(蒸汽温度低时,不过造成再生阻力较大)。

对纯化系统还需要设置节流再生管路以满足开车需要。另外再生气侧设置安全阀,蒸汽加热器侧设置安全阀,防止设备或者阀门压力高侧泄漏或者超压,以及节流超压。

再生流路配置手动蝶阀来调配阻力,以使得主塔运行稳定(或者不设置,采用总管设置调节阀时序调节)。

换热系统

换热系统严格来说多股流混合介质设计在同一换热器里,让各介质传热自动平衡,能耗最低,但是这样对于内压缩流程会造成全部换热器均为高压换热器,会造成投资的积聚增加,所以2万等级以上内压缩换热器组织还是采用高低压分开的办法,更为经济些,2万等级以下采用全部高压换热器配置。

产品送出

低压氧氮产品 ,设置产品调节阀与放空流路,放空进消音器(氮气内件为碳钢,氧气内件为不锈钢)。污氮气设置去水冷塔放空(起污氮气放空作用、调配再生气以及调整上塔压力的作用,要求水冷塔塔径能够满足泄放要求,尤其有氮气也通入的场合,不能使上塔压力憋高,水冷塔阻力6kPa(8米高填料),管路及阀门4kPa,对大气放空压差2kPa,总共12kPa)。

高压氧气产品 ,放空采用两级节流,先是高压产品气节流至10barG,经过偏心异径管,中间设置蒙乃尔降噪板,再通过偏心异径管扩大管路直径,氧气介质流速控制在10m/s以下,再通入消声塔节流放空,消声元件不锈钢;高压氮产品,氮气产品先节流至10bar,通过不锈钢降噪板,再通入消声塔节流放空,消声元件碳钢;氧气阀门要求不得人去操作(调节阀禁带手轮,手动阀放置防爆墙内)。

消声塔还可以与压缩机系统放空合二为一,空压机增压机降噪(按照空压机量计算),通入消声塔,以及纯化系统泄压空气,增压机打回流,泄放部分。

膨胀制冷系统

膨胀机一般有三种,即 低压膨胀机 , 中压膨胀机 和 液体膨胀机 。

对于一定类型的气体膨胀机来说,工质体积流量越大,效率越高。一般流量8000Nm³以上的低压膨胀机效率为85∽88%,流量小于3000∽8000Nm³效率会低至70∽80%。

中压膨胀机一般采用一台进口一台国产(备用)。气量8000Nm³/h以上进口膨胀机效率82∽91%(增压端少4个点);国产膨胀机效率78∽87%(增压端少5个点)。

膨胀机启动前需要先吹扫(除去管系杂质,膨胀机蜗壳内杂质),再通密封气(正常时由增压端提供),然后进行油系统外循环,内循环,做完联锁测试然后方能启动,冷试合格后冷紧;冷启动需要启动油箱加热器,正常运行后不需要,此时轴承的冷热已经平衡。

液体膨胀机本质是利用高压液体的压力头来进行水力做功(同时液体焓值降低,但是与气体相比,相差甚远),一般4万等级以上内压缩空分设备均可用液体膨胀机代替高压液空节流阀。它的优势为利用液体膨胀机制冷和膨胀功发电达到节能目的,一般可实现节能2%左右,但是其投资达千万元。

精馏塔系统

下塔1.5∽5万等级采用筛板塔较多,环流塔板在1.5万等级以下直径塔较有优势(液体流程较对流长,但是制造复杂),对流3万等级以下应用较多,1.5万等级以上较占优势,四溢流在3万等级以上大塔较占优势,填料塔能耗较低,不过下塔高度要增加5米左右。5万等级以上空分较占优势,尤其上下塔平行布置的情况。

上塔、粗氩塔及精氩塔采用填料塔,厂家一般为苏尔寿或天大北洋,对粗氩塔冷源配置一般是富氧液空,同时可将废气放散入污氮气管路,氩系统停运时能耗低;精氩塔热源为富氧液空,或下塔氮气,冷源可以是贫液空或者液氮,进料有液相和气相两种。需要注意的是粗氩塔冷凝器板式的密封性要求较高,否则会导致氩产品不合格。

主冷有单层,立式双层、卧式横列双层,立式三层和降膜主冷(液氧与气氧向下,与氮气同流向)。

精馏塔系统的布置有6种方式:

(1)上下塔垂直布置,为常规布置方式,高度较低,无下塔液体难以进入上塔或者粗氩塔冷凝器的状况(管路全液相上行背压能够满足,此时管径不能小);

(2)上下塔垂直布置,为常规布置方式,高度适中,下塔液体难以进入上塔或者粗氩塔冷凝器采用设置汽提管路带液体去上塔(要求管路出口满足ρυ²>3000,ρ为密度,υ为流速,进气位置在管路汽化率为1%高度处,此时需要适当缩小管径,同时液体过冷度不能大);

(3)上塔自氩馏分段落地布置,采用两台循环氧泵连接,降低上塔高度可以解决下塔液体无法进入上塔或者粗氩塔冷凝器的状况;

(4)上塔自氩馏分段落地布置,采用循环泵连接,粗氩塔最上段座在上塔上部,这样可以使冷箱空间缩小;

(5)上塔自主冷落地布置,采用循环泵连接,主冷在下塔顶部,优点是主冷可以做的很大;

(6)上塔自主冷落地布置,采用循环泵连接,粗氩塔最上段座在上塔上部,优点是主冷可以做的很大,同样可以使冷箱空间缩小。

液体泵系统

卧式泵 水平布置(进液管低于排液管),需要设置加温气(设置在泵后,或者泵前过滤器前,防止杂质进入),密封气,排液排气阀(低处排液,高处排气)和回流管路(回液进气相),卧式泵转速不能太高,一般排压30barG以下,卧式泵由于水平布置,冷态收缩轴承受力较好,但是转速高转子动平衡不好满足。

立式泵 采用轴承悬挂式布置(进液管高于排液管),承受向下拉力较大,转子重心与轴重合,转速可以很高;一般30bar以上,需要设置:泵前回气(注意卧式泵无),加温气(设置在泵过滤器前,高处进气), 密封气,排液排气阀(低处排液,高处排气,预冷时看是否冷透)和回流管路(回液进气相)。立式泵一般均是多级,回气管路要求不得向下(平出,或者倾斜向上),否则会造成气体不能排出,易导致泵汽蚀。另外低温泵电机需要设置吹风管路,防止夏天过热,冬天结霜。

液氧泵液氮泵 在线冷态备用,其中液氮泵密封气密封气压力7barG以上;氧泵密封气压力4barG(下塔压力氮气即可满足);循环液氩泵,一用一备,密封气一般采用液氩汽化密封,要求流量有20%的余量。一般液氩泵自身回流阀压力-旁通控制,出口阀流量-液位控制,采用双回路控制。

产品压缩系统

氮透一般压缩空气的均可满足, 氮气透平压缩机 压力较高采用齿轮式较为节能。

氧透根据排压有单缸(压力低)和双缸(高压缸和低压缸)(8级压缩至30bar),一般30barG以下,需要设置5barG的密封气(压力氮气可满足),同时由于氧气介质有高压高温火患原因,所有过流部分均采用铜合金,需要设置保安氮气,一般由工程设计院考虑;进口氧透价格较高,为国产2倍左右,一般不采用,目前一般均杭氧氧透,排压3∽30barG,流量8000Nm³/h以上均可满足。但是流量小,氧透效率较低,一般8000Nm³/h(55%)∽80000Nm³/h(68%)。

氧透一般应用于外压缩流程,从3∽30barG均有,不过一般要和带增压机的内压缩流程(效率一般70%以上,也有流量限制,效率要较氧透高10个点以上,这样甚至可以抵消外压缩较内压缩少复热附加能耗损失的优势,但是内压缩用于钢厂排压需要提高,以免换热系统波动)进行能耗比较,最后确定方案。

⑶ 正常运行的空分装置增设液化装置需要办理哪些手续

1:要工商部门立项批文,
2:报安监局审核验收,
3:报卫生,环保部门审批,办完手续再拿工商营业执照,税务登记。
4.建好之后要进行消防验收.
5.还有防雷检测.

⑷ 空分工艺流程具体是怎样的

楔横轧专业化工厂的主要工艺流程

楔横轧专业化工厂主要工艺流程如下:长棒料→定尺下料→加热→轧制→空冷→正火→抛丸→矫直→检验
下面就每一工序的作用加以说明:
(1)长棒料。从冶金厂来的棒料一般长度为4~6m,到厂后应经检验,主要内容包括:化学成分、直径公差及椭圆度、表面有无缺陷,中心疏松级别等。
(2)定尺下料。按照零件毛坯体积(加烧损)加上料头损失为下料体积进行定尺下料。用剪断机下料的优点是生产率高、在断口处无材料损失,缺点是剪口有马蹄形。故这种下料只能用于产品两头需轧细并去掉料头的产品。用带式锯下料虽然有切口损失,但由于切口质量好,是楔横轧车间主要下料方式。
(3)加热。楔横轧车间理想的加热方法为电感应加热。它与燃料加热比较,优点为不容易发生过热与过烧,产品质量有保证;氧化铁皮损失小;生产机动灵活;生产环境好以及节省人力与地方;容易实现机械化,自动化生产等。所以,凡有条件的工厂都应采用中频电感应加热。
(4)轧制。轧制是楔横轧轴类零件的主要工序。轴类零件的成形工艺在这里完成,所以也是整个生产流程的中心环节。对于碳素钢和低合金钢,一般轧制温度为
1000~1200℃。对利用楔横轧工艺制坯,紧接着模锻成形零件(如生产发动机连杆),一般取较高的温度轧制,没有特殊要求的取较低的温度轧制。轧机的生产率一般为每分钟6~12件(或对)。
(5)空冷。多数轧件采用轧后空冷。空冷经检验后就可以向用户交货,也有需要正火状态交货的,大多采用空冷后,再加热经正火后交货的,但也有采用轧后余热正火的。
(6)正火。一般采用台车式电阻正火炉进行轴类零件毛坯的正火处理。正火的主要目的是得到符合切削加工的硬度(一般hb190~220);符合晶粒度等内部组织的要求以及消除零件的内应力等。
(7)抛丸清理。轴类零件毛坯多采用抛丸清理。其主要目的一是清除轧制、正火后轧件表面形成的氧化铁皮及其他缺陷(皱纹、毛刺等),减少在切削加工中刀具的磨损;二是显露轧件表面缺陷,为检查轧件质量提供条件。
(8)矫直。对于楔横轧轴类件,尤其是细长的轴类件,在加热、轧制、冷却以及正火处理中,免不了有弯曲变形,所以通常需要矫正工序。一般做法是,在小型压力机的工作台上垫上v形铁,靠人工操作将冷下的轧件矫直。
(9)检验。轧件质量检验的目的在于保证产品质量符合锻件的技术标准。其检验的内容包括:尺寸与几何形状、表面质量、内部质量、力学性能与化学成分等。

⑸ 大型空分装置用低温液体膨胀机设计及数值研究-赵威 学位类型:工学硕士 导师:孙金菊 :2008

大型空分装置用低温液体膨胀机设计及数值研究-赵威 学位类型:工学硕士 导师:孙金菊 :2008
对大型内压缩流程空分装置用低温液体膨胀机在不同工况下的整级流 场进行了数值模拟计算,预测了不同工况下转子的轴向力水平,对影响轴向力的因素进行了参数化研究.数值结果显示,轴向力随着流量的增加而线性地缓慢增加; 随着轴封密封齿与转子间的间隙增大,轴向力迅速减小并反向;轴向力计算的结果为改进和进行轴向力平衡结构的设计提供了相应的依据.同时,通过分析、对比计 算轴向力的两种方法(数值模拟和经验公式法)所得的结果,指出了经验公式法计算轴向力的局限

⑹ 关于空分操作方面的问题

1.你这样的问题是很难有确切的答案的。空分装置的设计有很多种流程,大小的跨度也非常大。2.排放200Nm^3/H时(你可能指的是低压氧),液氮产量的变化为每小时约800Nm^3左右,即1000KG,比例约为1:4。
3.如果是大型的空分,增加液氧量(即减少气氧)可以用上塔的压力增加或者气量的减少来调节,不一定要动液氮。如果你确认是增加的气氧量,(你的低压氧的液或气态必须明确),那可以通过降低上塔的压力或者增加气量的方式来调节,也不一定要动液氮。
4.如果你即要增液氧(或者气氧),还想通过增加液氮排放的方法来控制氩馏分,那液氩产量必然要减少。因为总的制冷量是一定的。尤其是增加液氮时,总液体产量必减。因为氮耗费的能量是最大的。它的液化温度在三者中是最低的。

⑺ 空分装置基本原理和过程

空分设备是以空气为原料,通过压缩循环深度冷冻的方法把空气变成液态,再经过精馏而从液态空气中逐步分离生产出氧气、氮气及氩气等惰性气体的设备,广泛应用于传统的冶金、新型煤化工、大型氮肥、专业气体供应等领域。

具体流程为:自空压机来的压缩空气,经分子筛除去水分、二氧化碳、碳氢化合物等杂质后,一部分空气被直接送往精馏塔的上塔,另一部分则进入膨胀机经膨胀制冷后,被送往下塔。精馏塔中,上升蒸汽和下落液体经热量交换后,在上塔的顶部可得到纯度很高的氮气,在上塔底部可得到纯度很高的氧气。

(7)空分液化装置设计扩展阅读:

空分生产生产区现场人员的衣着必须无油和无油脂。装置工作区内禁止贮放可燃性物品。对装置运行所必需的润滑剂和原材料,必须由专人妥为保管。要防止氧气的局部增浓。如果发现某些区域空气中的氧气已经增浓或存在增浓的可能性,则必须清楚地作出标记,并加以强制通风,对存在氢增浓的地方也应参照办理。

在空分装置正常运行时,2#膨胀机增压后空气出口水分含量分析AIA402突然出现波动,最高上涨到54.7ppm,以远远超过正常值在2ppm。同时2#膨胀空气与主换阻力PI405AA也增长至50kPa,导致膨胀空气进塔量突然减少2000m/h。

阅读全文

与空分液化装置设计相关的资料

热点内容
阀门什么赚钱 浏览:267
次氯酸分解用到哪些仪器 浏览:82
曲轴轴承间隙过大会怎么样 浏览:688
如何给苹果设备断电 浏览:333
公司制冷费发票怎么开 浏览:772
轴承型号4kf什么意思 浏览:497
保洁五金件 浏览:171
常规机床夹具中有可能没有什么 浏览:677
绘画工具箱价格 浏览:267
燃气阀门需要经常开关 浏览:475
半轴是万向传动装置吗 浏览:339
毛桃冷库用什么制冷好 浏览:544
如何让机械硬盘启动不了 浏览:486
水的总硬度测定实验装置图 浏览:963
英雄联盟恢复工具箱 浏览:4
大众低配迈腾怎么调出仪表设置 浏览:451
能量转换装置的作用 浏览:671
稳定土拌合设备按拆如何套用 浏览:358
机械表走走停停怎么回事 浏览:597
wps新工具箱 浏览:343