⑴ 循环流化床锅炉返料器的流化风和返料风如何分布
循环流化床锅炉返料器的流化风和返料风分布:
1返料装置内部结焦, 造成返料中止
( 1)燃烧室超温。 高温分离器运行时温度与燃烧室温度相近, 有的甚至高于燃烧室温度, 如果燃烧室运行时超温, 则进入旋风分离器的循环灰温度容易超过灰的变形温度, 造成结焦。
( 2)返料系统漏风。 正常工况下返料系统应无漏风, 旋风筒内烟气含氧量少, 循环灰一定速度移动, 停留时间较短, 因此不足以引起循环灰燃烧, 反之若有漏风则易引起循环灰中碳燃烧而结焦。
( 3)飞灰中含碳量过高。 如锅炉点火启动时燃烧不良, 或运行中风量与燃煤粒度匹配不佳, 或燃用矸石, 无烟煤等难燃煤, 因其挥发份少, 细粉量多, 着火温度高, 燃烧速度慢等原因都可导致过多未燃细碳粒进入旋风分离器而使循环灰中含碳量增加, 造成二次燃烧而发生结焦。
( 4 )循环灰量太少。 灰量少使得循环灰在回料系统中移动太慢, 几近静止。 易引起结焦, 同时灰量太少易使燃烧室烟气携带煤粒倒卷吹入返料器, 也易引起结焦。
2返料装置系统内有异物等大块堵塞, 造成返料通路阻断, 返料被迫中止
( 1)旋风分离器顶部浇注料大面积脱落, 进入料腿, 堵塞通路。
( 2)炉膛出口水平烟道处浇注料脱落, 进入料腿, 造成堵塞。
( 3)浇注料脱落的主要原因有施工质量差, 烘炉保养差和司炉在启停锅炉时, 速度过快, 造成浇注料膨胀不均而脱落。
( 4 )锅炉使用煤质差, 烟气中飞灰含量大, 以及风量调整不匹配, 造成浇注料冲刷磨损严重而脱落,进入到返料系统, 形成堵塞。
3返料风量控制不好, 返料器无法正常工作
( 1)锅炉启动初期或者锅炉负荷大幅下降, 返料风过大, 燃烧室烟气反窜进入分离器返料系统的正常循环被破坏。
a . 返料阀立管料柱太低, 不足以形成料封, 被返料风吹透。
b. 返料风调节不当, 使立管料柱流化。
( 2)返料风量小, 造成返料器流化效果差。
a . 运行中返料风门由于振动, 自动关小, 司炉没有及时发现。
b. 返料风机故障, 风压或风量降低。
c. 风帽小孔被脱落的浇注料小颗粒堵塞, 造成通风不良, 不能满足流化物料所需的流化风。
d . 风帽磨损严重, 顶被磨掉, 风向上直行, 破坏了正常的流化工况。
⑵ Barracuda的领域应用
1.化学锋御工业领域
化学工业是属于知识和资金密集型的行业。化工生产具有生产技术复杂、原材料综合利用、生产过程要求严格的比例性和连续性、高耗能等特点。流化装置是在化工生产过程中使用最广泛的关键装备。
大量的工程应用案例表明Barracuda 可以帮助我们理解这些装置中的复杂三维瞬态流化现象,包括在大型深床反应器(直径大于10米)的催化化学反应。反应器类型包顷基闹括:丙烯晴、二氧化钛、聚乙烯。
2.石化工业领域
石油化工是指化学工业中以石油或天然气为原料生雀罩产化学品的领域,最重要的石化生产工艺之一就是流态化的催化和裂解。与循环流化床相关的两个核心部件——反应器和再生器都涉及到这一工艺。
3.能源电力领域
循环流化床燃烧器具有NOx排放低、燃料选择灵活的优点,并且利用石灰石可以捕获其中98%的硫,这得益它对炉内流化床的利用。许多客户成功地应用Barracuda帮助理解复杂的炉子特性,如燃料-空气驻留时间、固体循环、床夹带速率及局部冲蚀。同样也可以优化循环流化床装置的大型旋流器,减轻回路密封的倒置特性。
煤和其它生物燃料气化所产生的合成气体CO和H2可以用作燃料或者化工厂的原料,美国国防部国家能源技术实验室应用Barracuda研究气化炉的复杂气-固流动现象,他们还用Barracuda模拟焦炭静床高度超过30m的大型深床气化炉。TRI公司将Barracuda用于生物热-化学转换设计,采用沙子作为传热媒介。
Barracuda化学反应产物的生成与固体颗粒消耗精确吻合,化学反应将引起颗粒尺度自动缩小,颗粒尺度减少会影响流化和洗选速率。
4.冶金工业领域
许多有价值的矿石必须在初采后进一步加工。这包括:二氧化钛在油漆中被用作白色素,或提取战略资源金属——钛;二氧化锆用于核燃料棒的覆层。几乎所有的矿石处理都涉及到各种气-固和液-固流动过程。以下是与矿石处理有关的流体-颗粒耦合模拟的例子,Barracuda已经成功应用于这些领域。
5.其它矿石处理领域
Barracuda 可以用来帮助设计与矿石处理有关的设备和工艺过程。典型的应用包括:焙烧、干燥、煅烧、氧化铁减量、重力分离,以及各种供给和输运管。
化学工业是属于知识和资金密集型的行业。化工生产具有生产技术复杂、原材料综合利用、生产过程要求严格的比例性和连续性、高耗能等特点。流化装置是在化工生产过程中使用最广泛的关键装备。
大量的工程应用案例表明Barracuda 可以帮助我们理解这些装置中的复杂三维瞬态流化现象,包括在大型深床反应器(直径大于10米)的催化化学反应。反应器类型包括:丙烯晴、二氧化钛、聚乙烯。
⑶ 毕业设计需求!!《循环流化床锅炉 设计步骤》或者是流程大家有资料的麻烦提供下,急急急!!!!!
循环流化床锅炉运行、检修、安装调试、设备选择、设计、管理
经验汇编
1 循环流化床锅炉运行经验
1.1炉膛至冷渣器的下渣管堵塞:往往是运行中的一大棘手的问题。采取压力风的办法来解决。沿输渣管长度布置的每个松动风支管上加装一道手动截止阀,投运冷渣器时开启,停运时关闭,防止漏风引起结渣;加装手动阀后还能实现通过松动风支管对落渣管逐根吹扫。
1.2静止床压越高,炉内的蓄热能力越强,并且增强了炉膛上部的传热,静止床压高,密相区与稀相区的分界越不明显,这样也利于传热,所以维持稍高的床压对锅炉的运行是有利的。
1.3流化风速的影响。随着风速的提高,炉内对水冷壁的传热也随之增加,旋风分离器的分离效率也随之升高,有利于增加锅炉的负荷。但是,风速的增加会使系统的自用电量增加,还会增加对尾部受热面的磨损。所以风速也不宜过大。
1.4一、二次风配比的影响。把锅炉燃烧所需的空气分成一、二次风从不同位置分别送入炉膛燃烧室,在密相床内形成还原性气氛,实现分段燃烧。一、二次风的比例直接决定着密相区的燃烧份额,同样的条件下,一次风比大,必然导致高的密相区燃烧份额,此时就要求有较多的温度低的循环物料返回密相区,带走燃烧释放的热量,以维持密相区床温度,如果循环物料量不够,就会导致流化床温度过高,无法多加煤,负荷上不去,这一用来冷却床层的物料可能来自分离器捕集下来的循环灰,或来自沿炉膛周围膜式壁落下的循环灰,灰在下落过程中与膜式壁接触受到冷却。从密相区的燃烧和热平衡上看,一次风比越小,对循环灰的物料平衡要求越低,但实际上一次风比的选取还受燃料粒度及性质等因素制约,一次风比小,要求燃料中不能被吹起进入悬浮段燃烧的大颗粒比例也要小,原则大颗粒因得不到充足的氧气燃烧不完全,使渣的含碳增高。经验值一次风:二次风=6:4或5:5。
1.5旋风分离器内衬脱落及其预防:循环流化床锅炉的旋风分离器入口灰粒冲刷力度大,条件相当恶劣,该部分的内衬经常掉下来,引起回料下部流化不起来,直接影响了物料回送,严重时引发锅炉被迫停炉。非金属材料脱落的主要原因是金属和非金属的膨胀系数不一样,以及选材不当和运行维护不好。旋风分离器内衬脱落的预防。一是要严格合理选材,根据该部分的特点,我们要求有高耐磨耐热性,要求选择性能较好的刚玉质,这是设计阶段务必引起重视的问题。二是严格管理好施工,掺水率要合格,不能错用材料,膨胀缝的结
2 循环流化床锅炉检修经验
2.1
3 循环流化床锅炉安装调试经验
3.1炉膛布风板空板阻力试验:首次试验一定要细致准确,便于今后锅炉冷态启动前再进行该试验(若条件允许,每次冷态启动前均应进行)时进行对比,以判断布风板风帽是否堵塞。在CFB锅炉启动调试及运行中,因启动前未做空板阻力试验,未能进行比较,并且未清理堵塞风帽,造成启动投料后部分区域未流化,引起床面结焦的事例很多,应引起调试和运行人员的高度重视。
3.2料层阻力及临界流化风量试验:布风板空板阻力试验结束后,可进行料层阻力试验。试验前按厂家推荐颗粒细度在布风板上添加一定厚度的底渣,尽量沿炉膛床面铺放均匀,以免造成不同床压测点测量值偏差很大,影响试验的准确性。具体试验方法与空板相似。若条件允许,在调试阶段应尽量多改变几次料层厚度进行试验,便于今后CFB锅炉运行中根据床压对床料厚度进行准确判断。临界流化风量(速)试验是要找出使床料完全流化的最小风量(速)。该试验可随料层阻力试验一并进行。其原理基于床料在完全流化后,阻力将趋于平稳甚至略有下降,从床层阻力与流化风量的对应曲线上找到该拐点,即可得出相应床层厚度的最小流化风量。根据相关资料和经验,在床料的筛分粒径较宽的工业应用试验中,从料层阻力曲线上不一定能得到非常准确的拐点,取值应有一定裕量,并结合流化情况的实际观察结果确定临界流化风量。在今后的运行中,应确保一次风量大于临界流化风量,以保证锅炉的安全运行。
3.3布风装置的布风均匀性和床料流化特性试验:试验时,在布风板上铺一定厚度的床料,启动风机,逐渐增大一次风量,使床料完全流化。观察炉膛的流化情况,然后突停风机,观察整个料层的平整程度,确定布风板的均匀性。停风机后,床面应平整如镜。否则,应检查床料粗细粒径分布是否均匀,是否有超出范围的过粗或过细床料。若问题仍存在,则检查风帽是否堵塞。应注意,床料平整不一定代表流化良好。在逐渐增加流化风量时,应打开炉膛人孔门,仔细观察床料表面是否均匀地冒小汽泡,是否同时逐渐流化,有无松动较晚和不动的区域。若有,则一定要分析原因并加以处理,否则将来运行中这些地方容易结焦。
3.4耐火耐磨材料的固化养护:CFB锅炉的耐火耐磨材料通常需要现场敷设,敷设完成后要进行固化养护(烘炉),其目的不仅在于析出水份,更重要的是通过严格的升温控制,使材料中的钢化纤维相互渗透,形成致密结构,达到设计强度要求,从而起到耐火耐磨的作用。所以材料固化是CFB锅炉调试阶段特有的一道重要工序。目前CFB锅炉生产厂商没有在设备制造阶段为烘炉提供一定条件,因而烘炉还没有较为通用、成熟的方式。以往采用不同加热方式时发现,采用特制的压缩空气雾化、出力可做较大范围调整的小油枪效果良好,并具有布置灵活、系统简单、可控制性强的优点。因点火风道内部空间较大,在布置临时排烟口时,一定要充分考虑油枪的位置和烟气流程,尽量减少高温烟气流动的死区,保证固化养护效果。冷渣器内部空间相对狭小,要防止油枪火焰直接冲刷耐火耐磨材料,造成超温破坏。所以特别在冷渣器内部迎火侧墙壁上加装了防护钢板。对于炉膛、回料阀、水平烟道等,可用正式油枪进行烘烤,并结合吹管等工作同时进行。烘炉前,应在冷渣器和点火风道的外表面多开一些布置广泛、均匀的滴水孔,保证烘炉过程中耐火耐磨材料析出的水蒸汽能够及时、充分排出。耐火耐磨材料固化养护时对温度控制的要求很严格,温度控制情况直接影响到养护质量。而CFB锅炉自身的温度测点通常不能完全满足烘炉的控制要求,因此,在烘炉前合理布置一些临时温度测点,这些测点必须能准确反映耐火耐磨材料的真实温度,便于控制。
3.5安装工程进行中须注意的几个问题:1工程技术人员应参加由建设单位组织的设计技术交底,组织有关人员熟悉图纸及有关技术文件,全面了解工程概况和特点,掌握设备安装的方法、要求和质量标准,对施工或工艺提出合理化建议。2设备开箱应持装箱单,会同建设单位代表按下列项目进行检查,并填写设备开箱检查验收记录。检查完毕即与乙方进行交接,由乙方负责保存及管理,出现丢失及毁损情况由乙方负责。3因现场各工程交叉进行,为避免出现扯皮而窝工现象,应定期召开建设单位、监理及各施工单位有关各方的施工协调会,以便了解现场情况,及时解决问题。4因现场情况复杂而出现与设计不符时应及时由设计单位出变更后再施工,并由监理方对工程量进行签证,关于乙方所提材料应由监理方严格把关,避免出现多提、错提材料,以免耽误工期及造成不必要的浪费。5工程竣工后,乙方应备齐各种竣工资料,施工过程中发生的各种变更应在竣工图纸上体现出来。6在锅炉制造安装施工过程中与制造单位、安装单位和监理单位共同采取了如下措施:A、锅炉厂的锅炉
B.1防磨
B.1.1防磨工艺
磨损过程:循环流化床锅炉的燃烧室、炉膛、分离器、回料器构成燃烧系统,或称主循环回 路。其间锅炉材料表面长期经受高速运动的气流中灰、渣、煤粒子从不同角度的撞击、摩擦 ,逐渐引起材料表面减薄、甚至开裂,这便是磨损的简要过程。
金属管壁的磨损具有下列关系:
T∝(η,k,ω3.22,τ,1/2g)
式中:T:磨损量;η:飞灰撞击率;k:飞灰浓度;ω:飞灰运动速度,取烟速;τ:撞 击时间;g:重力加速度。
炉内的重点磨损区域:
炉膛内密相区、边壁效应区、局部涡流区为磨损严重的区域。布风板上的锥体部分及燃烧室 下部(沸腾层之上4~5M高度上下范围)属密相区,磨损严重;炉膛内结构突变部位:如突然 扩 大、突然缩小、突然变角、门、孔、口、弯管、测具、凸台凸点、表面缺陷等部位,均易形 成涡流,属于局部涡流区,出现局部反复冲刷,磨损严重;边壁效应区磨损严重:
炉膛从锥形渐扩至筒形时,高浓度工质的流体呈现“中上、环下”的流线形式,即:在炉膛 中心线区域内,物料向上流动;沿半径向炉膛四壁方向的环形区域内,固体物料向炉膛内壁 水冷壁面斜下、切向运动,这一向炉膛水冷壁面斜下、切向运动的高浓度的固体物料流称为 贴壁灰流,其厚度可达几十厘米,具有强大的冲刷力,称为边壁效应。贴壁灰流所具有的边 壁效应,是影响极大的致磨因素,也是防磨的重要内容。
从上述具有指导性意义的工艺概念中,可确定防范、强化防磨措施的思路:在炉膛内部大面 积的膛壁上,必须有可靠的、大面积的防磨措施;在炉膛出口、分离器进、出口等高烟速 、 高灰浓度,磨损情况恶化区域,必须有可靠的局部区域措施;炉膛内部的结构凸台;焊瘤; 金 属门、孔;耐火材料残余;测具探头等导致局部涡流的异形结构节点,均为高撞击率和局部 高速恶化磨损的部位,必须有可靠的防磨措施;必须针对不同磨损区域、不同磨损因素,采 取综合措施,整体防磨、区域防磨、节点防磨、多重防磨、全程防磨。
B.1.2防磨措施及施工对策
a.在由Φ60×5钢管组成的密布销钉的膜式壁上加敷龟甲网,浇制耐火材料层,厚度:60 ;相对应的施工、安装措施为:(以“CX”表示施工安装措施及序号,下同)
C1:检查销钉焊接牢固程度,不得有漏焊、松动、脱落,必须牢固。
C2:龟甲网材质合格,与销钉焊接牢固成一体;在结构厚重部位、炉门、炉孔、炉角、变形 部分加焊“Y”型抓钉,加强固定耐磨浇注料。
C3:模板平整光滑,支模后必须调整垂直度,表面平整光洁。
C4:耐火耐磨材料六合格:材质合格、配比合格、搅拌合格、浇制合格、试块合格、成型合 格,材料和试块必须附有有效的技术证明文件。
C5:在耐磨浇注料中,加入2%的不锈钢增强纤维,必须均匀搅拌,不能独自成团,失去功能。
C6:拆模后一次成型合格,不得再向火面贴补,并将缝、棱打磨光滑。
b.在炉膛下部与燃烧室上部结合处——局部成型,合金喷焊
该部分处于贴壁灰流向下流动至卫燃带上沿的转向处,在设计制造中已采用弯管结构,并将 卫燃带上沿设计成曲面,与工质共同形成协调的流线边界,避免了强烈撞击和强涡流的区域 ;同时在水冷壁卫燃带上方的150mm区域,喷焊粉末合金,提高局部耐磨能力。
相对应的施工、安装措施为:
C7:复验水冷壁卫燃带管部分的质量:无裂纹、折皱,圆滑过渡,弯曲半径符合图纸规定; 喷焊段长度符合图纸规定。
C8:提高安装精度,确保卫燃带与膜式壁对接处圆滑过渡,无台阶。
c.在炉膛四周——局部成型,施工作业优良
在一般设计中,本项均未作重点提出,但在实际中却大量存在。图纸上规则地给出了炉膛形 态,但在炉膛内部作业条件下,做到这点很难,是必须有严格地工艺保证的。炉膛四周属非 圆滑过渡的涡流区,而在浇制中从模板直角对接缝中渗浆所形成的不规则边棱,加剧了涡流 ,加重了对附近水冷壁的磨损。
相对应的施工、安装措施为:
C9:炉膛角部耐火、耐磨砼结构必须实现圆滑过渡,确保成型规则;
C10:炉膛角部耐火、耐磨砼结构不得存在棱角、浆条,若有,必须磨平。
d.水冷壁的安装不得遗留磨损遗患
循环流化床锅炉的防腐、防爆要害客体是水冷壁和过热器,根据产品调研中直接接触的第一 手资料和文献,膜式壁对接质量不良之处,均是磨损隐患;后水冷壁与侧水冷壁夹角焊接质 量差,是该区域严重磨损原因之一;水冷壁拼接不良,将出现严重磨损。
相对应的施工、安装措施为:
C11:责成安装单位必须制定出可确保安装质量的焊接工艺和工装,确保拼装、组装焊接质 量符合图纸规定,无缺陷;
C12:强化安装自检和监理监检,必须实行锅炉内、外、高位、低位全部、全面的检查,平 台拼接中力避“上好下差”,膜式壁组装中力避“外好内差”,确保全部焊接合格,无施工 隐患遗留。
e.在炉膛出口、炉顶——浇制高强度耐磨、耐火层
炉膛出口部位的烟速从炉膛的5m/s提高到20m/s,提高了近4倍,工质浓度同时急骤提
这是简单的阴由于文件太大
看看吧 要是可以的话 给你发过去
⑷ 循环流化床锅炉返料器能被吹空吗
能被吹空。
只有在重大事故,分离器结焦影响物料循环发生qi器, 要是正常运行中是不可能吹空的 。
返料装置是循环流化床锅炉的关键部位之一,如果返料器突然停止工作,将会造成炉内循环物料量不足,床温将会急骤上升难以控制,危及锅炉的负荷与正常运行。一般返料器堵塞有以下几种情况:
一、流化风量控制不足,造成循环物料大量堆积而堵塞。
二、返料装置处的循环灰高温结焦。
三、耐火材料脱落造成返料器不流化而堵塞。
四、返料器流化风帽堵塞。
五、流化风机故障,致使流化风消失。
六、循环物料含碳量过高,在返料装置内二次燃烧。
七、立管上的松动风管堵塞或未开。
根据不同的事故原因可采取不同的处理方法:
一、适当提高流化风压,以保证返料器内的物料始终处在较好的流化状态。但应注意流化风压不宜太高。
二、应控制返料的温度,在燃用灰份大、灰熔点低的煤种时应尤其注意。
三、在实际运行中返料器中耐火材料的脱落,是返料器事故中比较棘手的问题,它不但能够造成返料器的堵塞,它还容易造成返料器外壁及中隔板烧损事故。
四、应保证流化风机的稳定运行,以防止流化风消失和风帽堵塞事故的发生。
五、应尽可能的在炉膛内为煤颗粒的燃烧创建最佳的燃烧环境,以减少循环物料中的含碳量。
六、采取措施疏通松动风管或根据料位的高度开出相应的松动风门。
⑸ 布袋除尘器设计的注意事项
布袋除尘器的注意事项
除尘器,布袋式除尘器,袋式除尘器;
除尘器对滤袋数量的选择
滤袋除尘器的型号确定要根据使用场合、烟气温度等条件确定使用的滤袋的过滤风速。
若过滤风速1.2m/min时,若处理风量选26000m3/h需要滤袋的过滤面积是:26000/60/1.2=362m2。
若选择规格为130*2450的滤袋,则每条滤袋的过滤面积为1m2,大概就需要362条滤袋.
若采用气箱脉冲袋收尘器,选择6个室,单室64条滤袋的袋收尘器,即PPC64-6,这样滤袋总数为:384条,则总过滤面积:384m2.这样过滤风速26000/60/384=1.13m/min,符合要求,选型合理.
静电除尘器,电除尘器,电除尘; 碱回收炉电除尘器
除尘滤料中英文对照
一.使用条件选择滤料要考虑的使用条件主要有:
1.除尘器所处理的含尘气体的特性 2.粉尘的特性 3.除尘器的清灰方式
二.纤维原料制作滤料过去都用天然纤维,常用的有棉花和羊毛。后来逐步改用合成纤维和玻璃纤维,现在已经几乎没有使用天然纤维的了。目前用于滤料的合成纤维主要有以下几种:
(1)聚酯(PE-Polyester),商品名称为涤纶。
(2)聚丙烯(PP-Polypropylene),商品名称为丙纶。
(3)共聚丙烯腈(PAN copolymer——Polyacrylonitrile copolymer),商品名称为亚克力。
(4)均聚丙烯腈(PAN homopolymer——Polyacrylonitrile homopolymer),商品名称为Dolarit。
(5)偏芳族聚酰胺(m-AR—m-Aramide),商品名为Nomex(诺美克斯)、Conex 、Metamax(美塔斯)
(6)聚酰亚胺(PI-Polyimide),商品名称为P84。
(7)聚苯硫醚(PPS——Polyphenylensulfide),商品名称为 Ryton(赖登)、Procon、Torcon。
(8)聚四氟乙烯(PTEE——Polytetrafluoroethylene),商品名称为Teflon(特氟隆)。
电袋复合除尘器,电袋除尘器,电袋组合式除尘器;
袋除尘使用的行业
现在各行业生产排放的大量亚微米粉尘较其它粒径粉尘对人类及环境的危害更大,却难以脱除。如何收集化工行业亚微米粉尘已成为气溶胶和除尘界的一个难题,我们的除尘产品收率达到99%以上,除尘颗粒半径最小可达到0.5μm,由于系统运行效率和除尘效率高,装置运行稳定,为企业创造了较大的经济效益和社会效益,废气排放完全达标。
•化工行业
高分子聚合物:聚丙烯、聚乙烯、聚脂化合物、聚丙烯酰胺、三聚氰铵、离子交换树脂、活性碳纤维、淀粉、纤维素衍生物等。
精细化工品:医药、农药、染料、颜料、化肥、炸药、洗涤剂、催化剂、橡胶塑料添加剂、混凝土添加剂、水处理剂、油田化学品。
无机化工品:酸、碱、盐、氧化物、氢氧化物、白炭黑、增白剂、精细陶瓷。
•工业窑炉
水泥立窑炉、燃煤玻璃炉、焦化炉、复合肥干燥回转窑炉、城市垃圾干燥回转窑炉、陶瓷及各种建材燃烧炉的尾气除尘。
水泥立窑排放气中含1μm以下的粉尘占7.92%,2μm以下的占19.05%,3μm以下的占24.83%,现水泥窑多数采用布袋除尘。
•工业锅炉
各种燃煤、燃油、燃气的工业锅炉及高炉煤气、煤粉炉、流化床锅炉的尾气除尘。
•建材矿业
超细碳酸钙、高岭土、膨润土、铝矾土、氢氧化镁、超细石英、硅胶颗粒、石墨粉尘,金属粉尘、矿石粉尘、煤粉煤灰的除尘。
•冶金行业
钢铁行业中的高炉、电炉、转炉、烧结炉的高温烟气除尘及矿石和焦炭的装卸料除尘。
高炉的烟气除尘难点是气体温度高,若用布袋除尘须加大吸气量以降低温度,使布袋的处理量、能耗和投资增大数倍。
矿石焦炭除尘矿石卸料及将其送至地仓和高仓有多个扬尘点均需除尘。
烧结厂烟气除尘某钢铁公司烧结机头烟气量为18万m3/h,温度为80℃,因气体湿度大结雾严重,布袋除尘吸潮糊袋,导致压降上升,布袋损坏过快,运行费用高;
•石油炼制
催化裂化单元提升管反应器、再生器的内外除尘器。
提升管反应器出口的快速分离装置、沉降器内一、二级内旋风除尘器、外旋风除尘器、再生器一、二级内旋风除尘器和多管式的三级外旋风除尘器。上述设备分离效率的高低直接关系到炼油过程催化剂的耗量及烟气轮机的使用寿命,其压降的大小亦影响到系统能耗和能量的回收。
•原油采出液除沙
我国多数油田均已进入采油后期,采出液中含有大量细纱,提高细纱分离效率已成为三次采油采出液分离的难题,国家攻关项目“高含水率原油的除沙”是采用旋液新型高效液固分离器进行除沙,单台设备的处理量达到3000t/h,设备压降仅有0.04MPa,相当于国外较先进的旋流器除沙压降指标的40%,使能耗大幅度降低,除沙率达到92%以上,各项性能指标均为国际领先水平。
•其他行业:火电、气流输送、铸造、冶金粉末、拌合站、工艺品加工、粮食加工等行业的尾气粉尘收集和除尘。
脉冲布袋除尘器,锅炉除尘器,低压脉冲布袋除尘器;防爆袋式除尘器
我国除尘技术的进步与发展
我国的除尘技术取得了长足的进步,袋式除尘技术的发展尤其迅速,主要体现在以下各个方面。
(1)效率更高、排尘浓度更低,是除尘设备发展的总趋势。这是因为:排尘标准更加严格;执法力度不断加大,手段日益先进;对于微细粒子的控制受到重视;公众的环境意识迅速增强。在此背景下,袋式除尘技术的发展更为突出。发达国家袋式除尘器的增长最为迅速,并早已占据市场的主导地位,我国虽然滞后,这种发展趋势也已很明显。
(2)我国袋式除尘器的排尘浓度低于30mg/Nm3~50mg/Nm3已不鲜见,有许多达到10mg/Nm3以下,甚至1mg/Nm3~5mg/Nm3。主要缘于以下两方面:
其一,针刺毡滤料普遍应用,同时“表面过滤材料”等新型滤料也占据一定市场份额。表面过滤材料可以进一步提高除尘效率,又有利于清灰。它具有三种不同的类型:将滤料覆以聚四氟乙烯薄膜;对滤料进行涂层;以超细纤维做成滤料的面层。
其二,除尘滤袋接口技术有了很大进步。一种新的方法是对花板的袋孔和滤袋袋口精确加工,并以袋口的弹性元件使滤袋嵌入袋孔内,两者公差配合,密封性好,从而消除了以往普遍存在的除尘器同滤料除尘效率的差距。
(3)对于袋式除尘设备阻力的关注程度,超过对除尘效率的关注。这是因为越来越多的人认识到,袋式除尘器阻力的低或高,关系到袋式除尘工程的成败。因此,进入20世纪90年代后,以弱力清灰为共同特征的几种反吹风袋式除尘器从其应用高潮退了下来,而脉冲喷吹类强力清灰的除尘器则逐渐成为首选的设备。以CD系列长袋低压脉冲布袋除尘器为代表的新一代脉冲袋式除尘器技术,完全克服了传统脉冲的缺点,具有清灰能力强、除尘效率高、滤袋长(达6 m甚至8 m)、占地面积少、设备阻力小、所需清灰气源压力低、能耗少、工作可靠、换袋方便、维修工作量小等优点,日益广泛地用于绝大多数工业部门,获得良好效果。
(4)脉冲袋式除尘器趋于大型化,性能达到国际水平。上钢五厂100 t炼钢电炉配套的长袋低压脉冲除尘器,处理风量100万m3/h,排尘浓度8mg/Nm3~12mg/Nm3,设备阻力在1200 Pa以下,喷吹压力≤0.2 MPa,清灰周期长达60 min~75 min。滤袋整体使用寿命(无一条破损)达到55个月,脉冲阀膜片使用寿命三年。
该台设备的过滤面积为11716 m2。此后一大批电炉或其他炉窑竞相采用此种设备,其中一台过滤面积为15865m2,处理风量150万m3/h,用于鞍钢转炉烟气净化已两年以上。
(5)袋式除尘器在适应高含尘浓度方面实现突破,能够直接处理浓度1400g/Nm3的含尘气体并达标排放,入口含尘浓度比以往提高数十倍。因此,许多工业部门的粉料回收系统可抛弃原有的多级收尘工艺,而以一级收尘取代。例如,以长袋低压脉冲袋式除尘器的核心技术为基础,强化其过滤、清灰和安全防爆功能,形成高浓度煤粉收集技术,已成功用于煤磨系统的收粉工艺,并在武钢、鞍钢等多家企业推广应用。实测入口煤粉浓度675 g/Nm3~879 g/Nm3,排尘浓度0.59 mg/Nm3~12.2 mg/Nm3,设备阻力低于1 100 Pa,经济效益、社会效益、环境效益显著。
这项技术已经成功地促进了水泥磨机系统的优化。水泥磨以往主要依靠旋风除尘器收集产品,而以袋式除尘器控制粉尘外排。现在变为以袋式除尘器同时完成收集产品和控制外排两项任务,使产量大幅度提高,消耗降低。
对于以往在袋式除尘器前加预除尘的做法,现在普遍认为对袋式除尘不但无利,而且使清灰变得困难。这同以往的观念完全不同。
(6)袋式除尘滤料发展迅速。高温滤料多样化,除美塔斯外,P-84、莱登滤料也已普遍应用,巴士福滤料已商品化;我国玻纤针刺毡的制造和应用技术已经成熟,品种增加;通过对滤料进行砑光、憎油、憎水、阻燃、抗水解、防静电等处理,使滤料能适应多种复杂环境,性能更优。
(7)一种不同于现有清灰方式的袋式除尘器出现于木材加工行业。它采用从滤袋袋口直接“吸尘”(不是“吸风”)的方式,使滤袋清灰。清灰气流携带从滤袋清落的粉尘全部进入一个专用的旋风除尘器,粉尘进入回收系统,而尾气则回到袋式除尘器。它的清灰效果比“反吹”清灰好,过滤风速较高,而构造相对简单。它是作为木材加工原料气力输送系统的一个组成部分来应用的,入口含尘浓度约为230 g/Nm3。这种除尘器尚未见到用于其他行业的报道。
(8)袋式除尘器的应用技术也有长足进步。面对千变万化的生产工艺和粉尘属性,在设备类型选择、参数确定、各种不利因素(高温、高湿、高含尘浓度、微细粉尘、吸湿性粉尘、腐蚀、易燃、工况大幅度波动等)的防范、合理运行和维修制度的建立等方面,都更可靠、完善,这是其应用领域不断扩大的重要原因。
值得一提的是,我国长期为电除尘器一统天下的燃煤电厂锅炉烟气除尘领域现已开始采用袋式除尘器。呼和浩特电厂两台20万kW机组率先实现这一进步,其中一台已经投产,另一台正在建造之中。至于工业锅炉应用袋式除尘器,则在几年前便已成功实施。现在一批燃煤电厂和工业锅炉正在或准备采用这项除尘技术。
袋式除尘器应用的另一个新领域是垃圾焚烧烟气净化。垃圾焚烧过程中产生的粉尘、烟气脱酸和吸附二恶英等有害气体形成的固体颗粒物都由袋式除尘器收集,要求出口含尘浓度低于5mg/Nm3~10 mg/Nm3。
(9)除尘设备的病害诊断和更新、改造技术是除尘技术进步的一个重要内容,其中以袋式除尘器最为活跃。先对老、旧除尘设备进行调研、测试,确定病害之所在,制定根治方案;采取保留外围结构、更换核心部件、合理组织气流、配套电脑控制等措施,使病害设备恢复正常,老旧设备更新换代。一大批不同类型袋式除尘器以及炼钢、水泥企业的数台电除尘器已被改造为长袋低压脉冲袋式除尘器,达到先进的技术经济指标。电除尘器自身的改造则是以提高除尘效率为目标而进行的。
(10)袋式除尘设备清灰机理的研究趋于深化。证明影响滤袋清灰的决定性因素不是风量的大小和持续时间的长短,主要在于清灰时滤袋内的压力峰值、压力上升速度以及袋壁能够获得多大的反向加速度;测试了几种袋式除尘器的清灰强度。这些研究成果对于指导袋式除尘设备的研制、选用和检验,已经产生积极作用。
(11)除尘器自动控制于1983年开始采用微机技术。目前,袋式除尘和电除尘广泛应用可编程控制器(PLC),工控机(IPC)的应用也在扩大。除了清灰程序控制(定压差或定时可任选)外,袋式除尘自控系统的功能还包括:温度、压差、压力、流量等参数监测和控制;对喷吹装置、停风阀、卸料器等部件的工况监视;清灰参数显示;故障报警。
(12)电除尘器在板、线形式和配置、防止二次扬尘、烟气调质、高(或低)比电阻粉尘的处理方面取得一些进步,结合自控技术的发展,使除尘效率有所提高,许多静电除尘器的排尘浓度比国家标准更低。与之相比,在设备轻型化方面的努力,结果更为显著,钢耗大幅度下降,加上钢材降价,其造价已能同某些袋式除尘器抗衡。
(13)出现“高浓度电除尘器”,用于解决电厂燃煤烟气脱硫后粉尘浓度成倍增加的问题。在含尘浓度800 g/Nm3时,排尘浓度低于200 mg/Nm3。
(14)湿式除尘器的应用大大减少,除了高温烟气、小型电厂锅炉等少数场合外,几乎从除尘领域中销声匿迹。最近十年来,喷淋塔、冲击式等湿式除尘器又重获重视,被发展为除尘脱硫一体化设备,用于小型锅炉,可以削弱燃煤烟气污染,但远不能做到普遍达标排放。
(15)旋风、多管除尘器在提高除尘效率方面没有质的突破,尚难有把握达标排放。除少数场合外,更多的用作预除尘。
除尘设备,烧结板除尘器, 塑烧板除尘器,滤筒式除尘器
袋式除尘器选型计算
袋式除尘器的种类很多,因此,其选型计算显得特别重要,选型不当,如设备过大,会造成不必要的流费;设备选小会影响生产,难于满足环保要求。
选型计算方法很多,一般地说,计算前应知道烟气的基本工艺参数,如含尘气体的流量、性质、浓度以及粉尘的分散度、浸润性、黏度等。知道这些参数后,通过计算过滤风速、过滤面积、滤料及设备阻力,再选择设备类别型号。
1、处理气体量的计算
计算袋式除尘器的处理气体时,首先要求出工况条件下的气体量,即实际通过袋式除尘器的气体量,并且还要考虑除尘器本身的漏风量。这些数据,应根据已有工厂的实际运行经验或检测资料来确定,如果缺乏必要的数据,可按生产工艺过程产生的气体量,再增加集气罩混进的空气量(约20%~40%)来计算。
应该注意,如果生产过程产生的气体量是工作状态下的气体量,进行选型比较时则需要换算为标准状态下的气体量。
2、过滤风速的选取
过滤风速的大小,取决于含尘气体的性状、织物的类别以及粉尘的性质,一般按除尘器样本推荐的数据及使用者的实践经验选取。多数反吹风袋式除尘器的过滤风速在0.6~13/m 之间,脉冲袋式除尘器的过滤风速在1.2~2m/s 左右,玻璃纤维袋式除尘器的过滤风速约为0.5~0.8m/s 。下表所列过滤风速可供选取参考。
粉尘种类清灰方式自行脱落或手动振动机械振动反吹风脉冲喷吹炭黑、氧化硅(白炭黑)、铝、锌的升华物以其它在气体中由于冷凝和化学反应而形成的气溶液、活性炭、由水泥窑排出的水泥。0.25~0.40.3~0.50.33~0.600.8~1.2铁及铁合金的升华物、铸造尘、氧化铝、由水泥磨排出的水泥、碳化炉长华物、石灰、刚玉、塑料、铁的氧化物、焦粉、煤粉0.28~0.450.4~0.650.45~1.01.0~2.0滑石粉、煤、喷砂清理尘、飞灰、陶瓷生产的粉尘、炭黑(二次加工)、颜料、高岭土、石灰石、矿尘、铝土矿、水泥(来自冷却器)0.30~500.50~1.00.6~1.21.5~3.0
3、过滤面积的确定
(1) 总过滤面积 根据通过除尘器的总气量和先定的过滤速度,按下式计算总过滤面积:
求出总过滤面积后,就可以确定袋式除尘器总体规模和尺寸。
(2)单条滤袋面积 单条圆形滤袋的面积
在滤袋加工过程中,因滤袋要固定在花板或短管,有的还要吊起来固定在袋帽上,所以滤袋两端需要双层缝制甚至多层缝制:双层缝制的这部分因阻力加大已无过滤的作用,同时有的滤袋中间还要固定环,这部分也没有过滤作用。
在大、中型反吹风除尘器中,滤袋长10m,直径0.292m,其公称过滤面积为0.0292×10=925m;如果扣除没有过滤作用的面积0.75m,其净过滤面积由8.25-0.75=7.5m。由此可见,滤袋没用的过滤面积占滤袋面积的5%~10%,所以,在大、中除尘器规格中应注明净过滤面积大小。但在现有除尘器样本中,其过滤面积多数指的是公称过滤面积,在设计和选用中应该注意。
⑹ 流化床反应器的设计处理能力是什么
流化床反应器的设计处理能力是什么:
与固尘帆虚定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失轿尘活速率高的过程的进行,石油派燃馏分催化流化床裂化的迅速发展就是这一方面的典型例子。
⑺ 比较说明农产品干燥时采用的喷雾干燥方法,流化床干燥方法和真空冷冻干燥方法的特点。
喷雾干燥法特点:1.干燥速度快,物料受热时间短。2.干燥条件和产品的质量指标易于雹凯调节。3.生产效率高,操作人员少。4.生产过程简化,后续碰肆核工序少。缺点是干燥室庞大,回收被废气夹带的成品粉末的装置复杂。流化床式干燥法特点:干燥均匀度笑掘较好,但因干燥时间较短其降水幅度较小(1%——1.5%)。该机没有冷却装置,干燥后的粮食需由人工摊晒降温。真空冷冻干燥法特点:1.加热蒸汽玉沸腾体之间的温度差可以增大。2.可以用压强较低的蒸汽作为加热蒸汽。3.由于蒸汽温度较低,有利于保存食品中的营养成分及色.香.味。4.浓缩设备的热损失减少。不足之处须有抽真空系统,热量消耗大。