A. 快子难道比光子还快吗
60年代以来,有人提出了超光速粒子的新课题,他们称这种粒子为“快子”。超光速理论工作一般从狭义相对论出发,将其推广,求得既适合于慢子(低于光速的粒子)和光子,又适合于快子的相对论理论。据理论上的推测,快子具有奇异的物理性质。它的质量是虚数,它的速度将随能量的耗散而无限增加,当它的能量趋于零时,则速度趋于无穷大。快子一旦产生,就具有大于光速的速度。要使它的速度减小,必须供给它能量。如要减小到光速,则必须供给它无限大的能量才行,因此其速度不可能减小到光速或低于光速。快子的负能问题是一个复杂的问题。由于负能量的出现,将意味着任何一个物理系统,因为可能无限地释放快子而处于不稳定状态,系统将无限地增加自己的能量,从而导致永动机的出现。而且,更为使人惊异的是,即使无限地产生快子对,也不会破坏能量动量守恒定律,同时也不会改变真空中的总能量。另外,根据洛伦兹变换,快子从一个坐标系转换到另一个坐标系的过程中,可能改变时间的顺序,即时间倒流。这样一来,也许就要出现像打油诗“年青女郎名葆蕾,神行有术光难追,快子理论来指点,今日出游昨夜归”所描绘的 “奇迹”。这两个困难问题虽然可以借助二次说明原理(即应该将一个具有负能量的粒子看作是先被吸收,然后再发射,这样一来,负能量与时间倒流和正能量与时间顺流的物理意义完全一样,因而变换坐标系后物理定律依然不变)来解释,但它并没有解决不变的因果律的问题。另外,快子有可能以无限大的速度传播,因而假若存在着快子,就可能瞬时传递作用信息,似乎又可能回到“超距作用”论的概念上去。不过,近10多年来,虽说在理论方面和实验方面都作了不少的工作,但至今尚未取得重大突破。要使快子理论与现代物理学理论协调起来,还需要克服相当多的困难。不过,这却有可能迫使人们跳出目前的理论框架,克服早已习惯了的观念,从而产生巨大而深远的影响。
相对性原理是狭义相对论的另一个基本原理,它认为一切惯性系彼此等价,没有任何实验能确定那个更为优越。但是,作为现代宇宙学两个理论基础之一的哥白尼原理(另一个是广义相对论)却要求,存在着描述宇宙演化的宇宙时标和宇宙空间的标准坐标,典型星系或星系团在其中的分布是均匀各向同性的。宇宙背景辐射和各向同性的发现等大量观察资料都支持把哥白尼原理作为描述宇宙大尺度行为的基本原理。于是,宇宙时标就是相对优越的时标,它描述着宇宙的演化,而相对于这个时标的同时性在宇宙演化上具有本质的意义。典型星系或星系团均匀各向同性的空间就是宇宙背景空间,它相当于一个优越的坐标系。可以推知,若在相对于该坐标系以某一速度运动的参照系上观测星系,就会发现它们的分布不是均匀各向同性的,因此原则上就有可能测出运动坐标系相对于优越背景空间的速度。现在,已有人测出地球相对于各向同性背景辐射(优越的背景空间)的速度为每秒数百公里,这和地球相对于典型星系或星系团的速度是基本一致的。众所周知,作为整个相对论物理学根基的狭义相对论,恰恰否定了牛顿的绝对时间和绝对空间,否定了同时性的绝对性。虽然宇宙时标和宇宙背景空间的概念并不是牛顿的绝对时间和绝对空间,相对于宇宙演化的同时性也不是牛顿意义的同时性的绝对性,但在概念的物理意义上毕竟有可以比拟之处。这表明,狭义相对论的时间、空间概念以及惯性运动和惯性系的概念,还有相对性原理本身,在宇观尺度上统统不再成立了。这样一来,对于这个宇宙背景空间上的局部引力现象的更精确的描述就应以宇宙学原理为基础,而不应当以广义相对论为基础。这意味着相对论在宇观尺度范围内必须从根本上加以改造。
爱因斯坦为了在相对性原理(意味着一切惯性系平权,没有优越的惯性系)和光速不变原理(指光速在“空虚空间”中不变)上建造他的狭义相对论,他就没有必要再保留以太概念。但是,空虚空间的概念毕竟是一个令人困惑的概念,爱因斯坦本人在建立广义相对论时,也认为空虚空间是不可思议的,为此他赋予空间以物质的内容,引入了所谓的“相对论以太”。但广义相对论并非狭义相对论的简单推广,所以狭义相对论中的“空虚空间”是一个幽灵。爱因斯坦后来想在统一场论中解决这个问题,但他的宿愿未能实现。1929年,狄喇克在解决相对论性电子理论产生的负能困难时,提出了一个基于新的真空图像的解决方案。原来,空虚空间即真空并非一无所有,而是所有的负能态都已填满,所有的正能态都未被占据的最低能态,它作为一种普通存在的背景并没有可观察效应。因此,真空不再是绝对的虚空,而是—种充满了物质实体的存在形式,这就给爱因斯坦的“相对论以太”描绘了一幅实在的图景。在某种意义上也可以说,这是古老的以太概念在新科学中获得了“新生”。比如,在现代场论中占有重要地位的真空自发破缺,就与这种“新以太”观念有着内在的联系,而当前对真空结构的研究就可以看作是对以太结构的研究。其实,李政道博士在研究“不寻常核态”的工作中,也发现空虚空间存在着真空物质。现在,人们已经认定,真空是一种物理实体,它能对其它物质发生影响;真空具有相对论不变性,在有的情况下,真空也系某种介质,当不满足某种不变性时,就形成真空自发破缺,从而使规范场粒子获得静止质量;处于真空状态的场仍保持持续不断的振荡,即所谓真空起伏,非阿贝尔规范场有一类特殊的叫作“瞬子”的真空物质。
广义相对论是物理学理论宝库中前所未有的珍品。这个理论以其概念的深刻、结构的严谨,内容的新颖和推论的精确而为人称道,但它之所以能轰动一时,主要还在于它解释了牛顿引力理论无法解释的水星近日点的剩余进动,并预言出不久经过实验证实的光线偏折和引力红移。50年代,有人改良了仪器设备,将厄缶实验的精度10-8提高到10-11,证明引力质量与惯性质量相等,近几年又有人将精度提高到10-12的数量极,这也是对等效原理的支持。由于采用穆斯堡尔效应,科学家在实验室中验证了引力红移。有人早已通过测量人造卫星中悬浮陀螺的进动,来验证广义相对论。70年代初,又有人通过测量对遥远行星的雷达回波的方式检验了广义相对论。70年代末,几家大天文台同时报道采用射电天文学的方法测量某些类星体发出的射电信号经过太阳的弯曲程度,大大提高了检验光线偏折的精度,对广义相对论提供了新的实验支持。
但是,广义相对论也面临着一些困难和亟待解决的问题。广义相对论一建立,爱因斯坦就企图用它来描述作为一个整体的宇宙大尺度的行为。从此以后,广义相对论和天文学密切结合,形成了相对论天体物理学的一个富有成果的领域——现代宇宙学。值得一提的是,现代宇宙学在60年代取得丁长足的进展,观察材料已经支持早期宇宙的大爆炸模型,发现了空间各向同性的微波背景辐射。在这里,尤为值得一提的是霍金(S.Hawking)等著名的相对论学者关于黑洞理论和大尺度时空结构的研究。
广义相对论的引力场在理论上存在着奇性,这种奇性具有十分奇特的性质,沿着短程线运动的粒子或光线会在奇性处“无中生有”或不知去向。按照广义相对论,演化到晚期的星体只要还有两三个太阳的质量,就会迟早变为黑洞,包括光线在内的任何物体都会被黑洞的强大引力吸到里面而消失得无影无踪。不仅如此,黑洞还要不断坍缩到时空奇性。时间停止了,空间成为一个点,一切物理定律,包括因果律都失去意义,一切物质状态都被撕得粉碎。此外,经典理论中的一个黑洞永远不能分裂为两个黑洞,只能是两个或两个以上的黑洞合为一个黑洞,其结果很可能是整个宇宙变为一个大黑洞,并且早晚要坍缩到奇性。寻找黑洞的观测工作也在稳步进展。1970年底,美国和意大利联合发射了载有X射线探测装置的卫星,这颗卫星工作到1974年,共探测到161个射线源,经筛选确认,天鹅座X-1最有希望是一个黑洞。另外,圆规座X-1与天鹅座X-1数据非常相似,也很有希望被证认为黑洞。现在,关于黑洞的理论的研究正在进展,观察结果还有待进—步证实。无论如何,广义相对论竟然要求这类难以接受的奇性,无疑是一个难题。或者广义相对论本身要修改,或者物理学的其他基本概念和原理要有重大变更。
大爆炸宇宙学的研究越来越追溯到更早期的宇宙。特别是80年代以来,根据大统一理论发展起来的暴涨宇宙学,开始研究宇宙年龄约为10-36秒或更早期的情况。当宇宙年龄小于10-36秒时,宇宙间不仅没有星球,没有化学元素,甚至连任何基本粒子也没有,有的只是时间、空间和物理的真空。继续追溯这种非常单纯、非常对称的状态,便会得出时空创生于无(当然也就是说宇宙创生于无)的结论。其实,空间和时间的非永恒性,在相对论和量子论中已有强烈的暗示。按照相对论,不同的运动观测者将测得不同的时间值。最有趣的例子就是双生子佯谬,它描述的是两个观察者开始在一起,最终又在一起,但由于中间的运动情况各不相同,则二者所测得的历时是不一样的。因此,原则上讲,要精确地测量时间,就必须精确地知道测量者的运动轨迹。然而,量子论中的测不准原理告诉我们,不可能精确地了解任何一个物体在时间中的运动轨迹,从而也就原则上否认了精确测定时间的可能性。这个精度的限制是
lp~(hG/c3)1/2~10-33厘米,
tp~(hG/c3)1/2~10-43秒,
其中h是普朗克常数,G是万有引力常数,c是光速。lp和tp分别叫做普朗克长度和普朗克时间。它们的意义是:我们无法造出一种“尺”和“钟”,用来测定小于lp的长度和小于tp的时间。一个量在原则上不能测量,就不会有物理意义。这表明,在小于lp和tp的范围内,空间、时间概念就失效了。1983 年以来,霍金就致力于发展一种宇宙的自足理论。1984年初,他和他的合作者得到了第一个完整的宇宙自足解。该理论的第一个要点是建立非时间的理论,这种新的“时”空,实际上是一种欧几里得空间,其中不再含有时间坐标。该理论的第二个要点是给出上述欧氏空间的创生幅度,即宇宙创生于无的幅度。霍金只就简单的情况作了计算,还不能看作是真实宇宙的解,而不过是玩具式的模型而已,但它无疑向人们提出了一个值得深思的问题:我们关于时空和宇宙的传统观念是否一贯正确?这当然是向现代物理学和哲学的挑战。
50年代末到70年代初,广义相对论经典理论的研究也大大深化了,其中引人注目的是引力波的进展。一开始,对于广义相对论是否存在引力波的问题一直争论不休,因为人们当时搞不清广义相对论中的引力波会不会仅仅是一种坐标效应,这在很大程度上是对广义相对性原理的不恰当的理解而引起的。60年代初,人们弄清了在理论上的确存在引力波。引力波可以看作是以光速传播的力场,它和电磁波在许多方面类似,和坐标系的选择毫无关系。由于引力波与物质的相互作用十分微弱,这给探测引力波的工作带来了很大的困难,用实验方法产生引力波的困难尤为严重。美国马里兰大学韦伯(J.Weber)教授于1958年开始进行引力波的实验,经过10余年的努力,曾宣布检测到来自银河系中心的引力波,但结果不十分可靠,目前尚无定论。美国的泰勒等人测出射电脉冲双星PSRl913+ 16的公转周期变短,测得周期变率为(-3.2±0.6)×10-12,并在20%的误差范围内与广义相对论辐射阻尼理论符合,这个结果可以看作是引力波存在的第一个间接的定量证据。1982年,他们又进一步发展了减小误差后的结果。不过,人们还希望利用多普勒跟踪法或激光测距法观测两天体在引力波作用下间距的变化来直接探测引力波。现在,美国航天局和欧洲航天局正在加速这方面的研究,并使测距精度大大提高(例如地球和月亮的距差为±5厘米),其灵敏度 Δl/l已达10-13~10-16,即便如此,还需把精度提高四个数量级才有可能探测到引力波。为此,欧美曾计划在1985年发射两艘深空间飞船(伽利略号和国际太阳极任务号),届时可望将测量精度提高到10-20。一旦引力波探测工作取得成功,就可以进而研究引力波的性质,从而就会判明那种度规理论对宏观引力现象的描述更符合客观事实。
由以上有关描绘也可以看出,引力问题已处于一个充满矛盾的新时期。虽然广义相对论经过一些实验检验,与其他理论相比可以看作是描述宏观引力现象的一个较成功的理论,但它在处理某些极端条件下的问题(黑洞、引力坍缩、奇点、宇观优越坐标系、10-36秒之前的早期宇宙等)时,又表现出一定的局限性。因此,广义相对论也是人们认识发展过程中的相对真理,它也面临着亟待改革的形势。人们为了解决四种作用力的统一描述和引力领域内的各种矛盾问题,正在已有的理论上发展引力规范理论和超引力理论。
关于统一场论,爱因斯坦从1923年起直到1955年去世,一直从几何学的观点出发,企图把电磁场和引力场统一起来(几何统一场论),但是没有取得具有物理意义的成果。但是,在30年代和40年代,随着弱相互作用、强相互作用以及各种基本粒子的大量发现,统一场论又中兴起来。50年代,海森伯不是从几何学角度,而是从量子场论的角度出发,提出了一种量子统一场论,想用统一的自旋场把各种基本粒子和它们的相互作用都囊括进去,也没有获得决定性的成功。 1954年,杨振宁和米尔斯为统一场论开辟了道路。他们推广了魏耳的规范不变思想,提出了扬-米尔斯场即非阿贝尔规范场理论。这种理论与拓扑学中的纤维丛概念有着密切的联系,它虽然在数学上很完美,但在描述各种相互作用时却遇到了困难。三年后,施温格建议一种可能导致弱电统一理论的矢量介子理论。到60年代,电磁场理论已由20年代的非量子化的相对论性电动力学发展成量子化的量子电动力学(QED),为统一场论的建立奠定丁理论基础。1961年,施温格的学生格拉肖发展了一种弱相互作用理论,它同电磁相互作用有惊人的相似之处,并采用四个生成元,即光子、W+、W-粒子和中性流矢量玻色子,也就是现在的 Z0粒子的SU(2)XU(1)群。1967年,温伯格和萨拉姆分别独立地采用这四个生成元发展了一种弱、电统一理论。这种统一理论解决了杨-米尔斯理论的困难,它后来被称为量子味动力学(QED)。70年代以来,不仅弱、电统一理论得到了一些实验的支持,而且描述强相互作用的量子色动力学(QCD)的出现也为统一强相互作用提供了可能性。在量子色动力学中,强相互作用也是非阿贝尔规范场,它存在于强子之间和之中,它的场源是色荷,规范变换群是SU(3) 群,其规范粒子是胶子,强相互作用是胶子同色荷相耦合而成的。这样,弱、电、强三种相互作用的表现形式是一样的,它们都是规范场。在这个基础上,美国物理学家格拉肖和乔奇等人通过选择新的规范群SU(3),建立起统一描述弱、电,强三种相互作用的大统一理论。至此,人们自然希望把引力相互作用也用规范场统一起来。爱因斯坦在世时就知道引力相互作用也是一种规范场,现在的问题在于不了解引力相互作用与其他三种相互作用如何发生联系。尽管引力场的量子化问题已经取得实质性的进展,然而广义相对论的引力论却在量子化以后可否重正的问题上遇到了难以克服的障碍。有人虽则在广义相对论的基础上加进了含场量高阶微商的新的作用量,得到了可以重整化的量子引力理论,但这又破坏了保证几率守恒的幺正性,在物理上也是不能成立的。关于四种相互作用的统一,另一类工作是超对称、超引力理论,这是近年苏联、美国和西欧一些学者致力研究的课题,并相继提出了几种理论,但在理论上还存在不少困难,在学术界争议也很大。不过,令人欣慰的是,西欧核子研究中心庞大的超同步质子加速器让正反质子对撞并湮没,在1983年1月首次报道产生了W+和W-粒子,6月又报道发现了Z0粒子,这是 20世纪物理学的最重大事件之一。这三种传播弱相互作用的粒子是温伯格-萨拉姆理论所预言的,它们的产生给弱电统一理论以决定性的支持。就在同一年,丁肇中小组三喷注事例的发现,证实了胶子的存在,从而有力地支持了量子色动力学和格拉肖、乔奇等人的大统一理论。人们可望在四种相互作用的统一方面取得突破,这将对物理学产生举足轻重的影响。
粒子物理学也是当代物理学发展的前沿之一。从30年代起,人们把当时已知的电子、阳电子、质子、中子和光子统称为“基本粒子”,认为它们是构成物质世界最基本的砖块,这样就诞生了“基本粒子物理学”。从40年代起,在约20年之间,人们发现的粒子已达30种,从而认识到“基本粒子”并非基本,研究它们的学问也就被称为“粒子物理学’了。
当时,人们按自旋将粒子分为两类:凡自旋为h/2的奇数倍的粒子叫费密子,凡自旋为h/2的偶数倍的粒子叫玻色子。这样,参与电磁相互作用的光子是玻色子,参与电磁和弱相互作用的轻子是费密子,而参与电、弱、强三种相互作用的强子既有费密子(即重子),又有玻色子(即介子)。不论光子、轻子、强子,都参与引力相互作用。60年代伊始,由于高能质子加速器的建成,在短短的两年内就产生了寿命约为10-23至10-24秒的短命强子。这样一来,人们自然提出了一个问题:这些粒子是不是有更深的层次?于是,夸克(国内称层子)模型应运而生。这种模型指出,在强子之下还有一个物质结构层次,即夸克,而强子则是由夸克或反夸克组成的。与此同时,还有弱作用不守恒和电荷共轭不守恒的发现。60年代到现在,正如我们在上面所述的,关于统一场论的理论研究和相互作用粒子的实验工作也取得了长足的进步。截止目前,人们知道的夸克和反夸克共有36种(它们有不同的“色”和“味”),轻子和反轻子共有12种,而由夸克和反夸克构成的强子已达数百种之多。但是,人们花了20年时间,“上穷碧落下黄泉,两处茫茫皆不见”,至今仍未找到自由夸克的影子。于是有人认为,夸克好像永远 “禁闭”在强子中一样,只有用无限大的能量才能把它“拉”出来,这就是所谓的“夸克禁闭”问题。九年前有人利用电子计算机作非微扰计算,发展了一种格点规范理论,初步肯定了禁闭的存在,但依然不了解其具体机制。由于各种夸克和轻子多到48种,而它们的电荷和其他性质又有周期性的变化,人们又设想它们是否还有更深的层次,为此也提出了一些亚夸克模型,但这只是夸克模型的仿制品,并无质的突破。这就向人们提出:物质是否无限可分?可分性究竟应该如何理解?而且,粒子物理学的研究表明,量子化的场是比粒子更为根本、更为普遍的存在。自由粒子只不过是场在激发时的一种状态,在真空情况下,没有自由粒子,但场依然存在。这也许为最终消除爱因斯坦所不满意的二元论(粒子和场)找到了归宿。不用说,这一切还有待于深入揭示,新的突破必定会引起科学理念的革新。
磁单极子问题也是当代物理学一个饶有兴味的课题。自1931年狄喇克从理论上提出磁单极子(带正磁荷或负磁荷的粒子)可能存在的论证后,人们对这个课题开始了积极的实验探索和理论研究。目前,实验上的探测主要从三方面着手:高能加速器的实验,宇宙线的观测,古老岩石的观测。用第—种方法还未观测到磁单极子,一般认为这是能量尚不够高的缘故。从宇宙线中找磁单极子的物理根据有两方面;—种是宇宙线本身可能含有磁单极子,另一种是宇宙线粒子与高空大气原子、离子、分子等碰撞会产生磁单极子对。近年,人们曾采用超导量子干涉式磁强计在实验室中进行了151天的实验观察记录。据1982年初报道,测量到一次磁单极子事件。在排除了各种可能的于扰因素后,计算出到达地球表面的磁单极子上限为每立体角的单位面积上每秒有6.1×10-10个磁单极子,即每年用这种装置可测到1.5次磁单极事件。这一实验探索还在进一步进行中,人们不断改进实验装备,以求得到更加可靠的观察结果。另外,如果磁单极子含量很少,那么异号磁单极子复合湮没的几率就很低,因而它们就有可能保存下来,能在地球上的古岩石、陨石或其他天体的岩石中找到。可是,迄今还没有找到确凿的证据。与此同时,关于磁单极子的理论研究也在积极进行之中。施温格(1966年)和兹万齐格(1971年)分别克服了狄喇克理论中的若干困难和不足之处,利用两个电磁势建立了电荷与磁荷完全对称处理的理论。1976年,杨振宁等利用纤维丛的新数学方法,建立了没有无物理意义的奇点的磁单极子理论,在磁单极子理论的发展中开辟了新的途径。近年来,也出现了一些超越麦克斯韦电磁方程组框架的非传统理论,例如统一规范理论、爱因斯坦-麦克斯韦耦台场理论和超光速参考系理论。而且,有关理论还在基本粒子的微观世界和宇宙演化的宇观世界得到了应用。总而言之,在关于磁单极子实验探索和理论研究的半个多世纪中,人们进行了遍寻天上、地下的各种现代实验探测,采用了量子论、相对论和统一场论的复杂理论手段,联系到最广袤的宇观世界(宇宙论)和最细微的微观世界(粒子物理),涉及到极漫长的(古岩石)和极短暂的(宇宙演化早期)时间尺度。当前,这一探索和研究仍在继续之中,它不仅给物理学带来了活力,而且也向两极不可分离的哲学信条提出挑战。
近10多年来,关于非平衡统计物理学的研究前景也十分诱人,非平衡相变、耗散结构、协同学等就是其中比较活跃的研究领地。这几年,人们注意到,远离平衡的系统可能经过突变进入混沌(chaos)状态,而且混沌态可能并不比时空有序的状态更“无序”,混沌态和耗散结构还可能交替出现。现在,人们大体上已了解到,混沌是非常普遍的自然现象,在一定的意义上讲,混沌状态比无理数要多得多,而且混沌序(内在随机性)比自然界存在的有理序(周期性)、无理序(准周期性)更“高级”,即使在通常认为由决定论统治的牛顿力学中,也普遍地存在着内在随机性,完全确定论的描述在牛顿力学中倒是少如凤毛麟角。但是,混沌决不是简单的无序,而更像是不具备周期性和其他明显对称特征的有序态。在理想情况下,混沌状态具有无穷的内部结构,只要有足够精密的观察手段,就可以在混沌态之间发现周期和准周期运动,以及在更小的尺度上重复出现的混沌运动。正因为如此,我国学者才从古汉语中引用“混沌”一词(气似质具而未相离,谓之混沌)来描述这种奇特的现象。混沌转变和非平衡相变都是经过突变而不是渐变实现的,这说明混沌状态的出现也与对称破缺有关。现在重整化技术已经成功地用于混沌转变的研究,已有一批反映通向混沌道路的数学模型,而且新的实验报道也在不断涌现。这个成为80年代重要研究课题的进展,也许不仅会导致数理科学中基本观念的又一次革新,而且可能导致对偶然性和必然性、确定论和概率论等哲学范畴以及自然科学方法论的更深刻的认识。
此外,等离子体物理、凝聚态物理等领域,也是当代物理学的前沿,我们就不在这里一一评论了。有兴趣的读者,可参阅国内有关学者一些评述性文章和国外的有关杂志。不过,从上述材料我们可以看到,当代物理学的发展虽然存在着一些革命性的因素,暴露出相对论和量子力学的某些局限性,并诞生了某些新科学观念,但是十分明显的是,它们基本上还是在相对论和量子力学这两大理论体系的基础上发展着。这些革命性的因素尽管还未使当代物理学面临“山雨欲来风满楼”、“黑云压城城欲摧”的危机之势,但随着它们的日积月累,必将在将来的某个时候导致新的物理学革命,从而使整个物理学乃至人们的思维方式来一个大改观。
B. 厄缶实验:重的与轻的物体谁下落得快
在没有空气阻力的情况下,一样快
C. 1980年厄缶精密扭秤实验
假说的提出
这是一个“老掉牙”的故事,想必大家都听说过。16世纪末,意大利著名物理学家伽利略,在比萨斜塔上做了一次公开实验:他的两只手中,拿着两个不同重量的铁球,一个十磅重,一个一磅重,两个铁球同时脱手,而且同时着地。这个实验结果,推翻了亚里士多德保持了两千多年的理论,因而在近代物理学史上传为佳话。
可是问题并没有就此完结。现代物理学的理论可以证实,真空中两个不同重量的铁球,从相同的高度同时下落,一定会同时着地的。但是两个不同材料构成的物体,比如一根羽毛和一个铁球,是不是也具备同样的性质呢?
我们知道,在生活中,羽毛的下落速度,明显比铁球慢得多。据说这也是当初亚里士多德理论的来源之一。伽利略认为,这是由于羽毛的重量太轻,因此在下落的过程中,会受到较大的空气阻力。如果在真空中,羽毛和铁球从相同的高度同时下落,一定也会同时着地的。
由于实验条件的局限,伽利略没能在有生之年完成这个实验。随着科技的发展,人类在自然界中制造出了高真空,伽利略的遗愿终于可以实现了。在真空中,人们看到羽毛和铁球从相同的高度同时下落,果然是同时着地的。
本来,这个悬案应该到此为止了。可是进入20世纪以后,人们又发现了新的问题。1922年,匈牙利科学家富佛斯在一次真空实验中发现,不同重量、不同材料的物体,从相同的高度同时下落,并不是完全同时着地的,而是存在微小的时间差距。但是富佛斯的发现并没有引起当时物理界的关注。
富佛斯的发现被搁置了60多年。直到1986年,世界物理学界才开始认真研究富佛斯的真空下落实验,结果得到了令人更为吃惊的结论: 在真空中,羽毛竟然比铁球先着地!400年前伽利略的猜想,又被推翻了。
经过大量细致的研究,现代的物理学家们总结出了如下结论:正在下落的物体,不仅受到重力的作用,而且还有一个较小的“排斥力”在捣乱。这种“排斥力”的方向刚好与重力相反,因此影响了物体下落的速度。现代物理学中,把这种“排斥力”称为“超负载力”(也称为“超电荷力”)。由不同材料构成的物体,所受到的“超负载力”也不同。这就是“真空中羽毛比铁球下落快”的原因。
在“超负载力”被发现之前,人类所知道的“力”总共可以归结为四大类,即万有引力、电磁力、强相互作用和弱相互作用。而这种“超负载力”不能归于四类中的任何一类,只能独立成“第五种力”。
当然,这“第五种力”是不是存在,物理学界尚有争论,因为大量实验的结果并不是完全一致的。因此,人类对这种“超负载力”的认识,还处在初级阶段。亚里士多德和伽利略这两位伟人留给后人的悬案,何时能够完全了结呢?让我们拭目以待吧。
在现实生活中,鸡毛和铁块,哪个落得快,答案是清楚的。至于鸡毛为何比铁块下落得慢呢?人们解释说,这是由于地球周围存在着大气圈,鸡毛所受的浮力大于铁块。
如果在真空管中,鸡毛和铁块,哪个落得快,情况就不同了。当然,答案也是清楚的:鸡毛和铁块将同时落到底部。
至此,不同重量的两个物体究竟谁先落地似乎已明白无误了。
然而在1992年,匈牙利的劳伦特·冯·富佛斯等在一次实验中发现:不同重量物体的下落时间略有不同。可当时这一发现却未引起人们的重视。
近二十余年来,美国的朗格等对富佛斯的实验重新进行分析,他们发现:鸡毛和铁块的下落速度确实不同,而且鸡毛的下落速度要略大于铁块。请注意,现在是轻物要比重物下落得快,这又是什么原因呢?
朗格根据自己的实验及1891年以来有相当可靠程度的七组实验结果认为,在实验室尺度上,牛顿的引力平方反比定律和实验相比有一系统的偏差。这个偏差,可以表示为引力常数随距离的变化。
以后,对大量地球物理实验结果的分析证实了它的存在,并把它归结为存在一种不同于牛顿引力的新力,称之为第五种力。正是由于这种新力的暗中作梗,才使得鸡毛捷足先登。当然,第五种力的提出,毕竟还只是一种假说而已。
为了弄清这种新力的起源,以弗许贝克博士为首的一组美国物理学家,还重新分析了历史上著名的厄缶的质量等价实验。
我们知道,质量有两个定义,一个反映惯性的大小,叫惯性质量,以符号m惯表示,根据的是牛顿第二定律:F=m惯·a式中,a为力F作用下的物体的加速度。
另一个反映引力的大小,叫引力质量,以符号M引表示,根据的是万有引力定律:
式中,G为引力常数,m与R分别为地球的质量与半径,F为物体所受地球的引力。
对于地面上的自由落体运动,应有
这两个定义不同的质量,是否有一定的比例关系。通过实验证明,它们之间有严格的比例关系。
最早的证明就是伽利略的自由落体实验,可得:
其次,牛顿提出三大运动定律和万有引力定律,也必然碰到两种质量的关系问题。他用不同材料充当单摆的摆锤,进行比较它们的摆动周期的实验,亦可得:
但是,从实验方法来说,不论是自由落体实验,还是单摆实验,测量精度都不高。因为这两种实验都是动态的,涉及位置和状态的变化,还会受其它因素,例如,空气阻力的干扰。
于是,匈牙利的厄缶设计了更为精确的质量等价实验。他采用扭秤方法,把动态实验改为静态实验,直接比较两个物体的惯性质量和引力质量,从而大大地提高了实验精度。
一根横杆悬挂在细线下,横杆两端对称地固定着材料不同、但质量相同的重物A和B。这两种重物都会受到重力m引·g和地球自转造成的离心力
性质量与引力质量等价,则两重物所受离心力相等,力矩互相抵消,扭秤维持平衡。如果惯性质量与引力质量不成正比,则扭秤失去平衡,而使悬丝扭转。
那么,如何测定悬丝扭转呢?厄缶用望远镜对准悬丝上挂着的小反射镜,观察望远镜上方的短刻度标尺,从而测量偏转角。为了避免系统误差,厄缶还将横杆转180°,换一个方向测量。
如此精确系统的测量,1889年厄缶得到的第一次结果,实验精度达η≤5×10-8。1980年得到第二次结果,η=3×10-9,后一结果直到厄缶死后三年才正式发表。
细心的弗许贝克认为,厄缶当年列出不同材料引力加速度的极微小差别也许不是实验误差,有可能是真实效应。也就是说,对于真空的自由落体,轻物下落快、重物下落慢,过去把它归咎于实验中偶然出现的一种干扰,可是弗许贝克等却不轻易放过这一反常现象。
他们认为,在真空中,轻物(比如鸡毛)之所以比重物(比如铁块)下落快,正是因为对物体起作用的不仅是重力,另外还有一个较小的排斥力,弗许贝克等称其为“超电荷力”,也就是第五种力,它与两个物体之间的引力方向相反,并使不同结构和质量的物体产生稍微不同的加速度。
[编辑本段]已知的四种力
本质上讲,自然界所存在的多种类型的力,都可归结为四种基本相互作用。那就是引力作用、电磁作用、强相互作用、弱相互作用。
我们现在所观察到的宇宙,其尺度约为150~200亿光年。宇宙中的一切物体都是由一种看不到的力量在主宰着,那就是引力作用。但是它在强度上是四种基本相互作用中最弱的一种。
电磁作用是带电粒子与电磁场的相互作用以及带电粒子之间通过电磁场传递的相互作用。在强度上它次于强相互作用而居于四种基本相互作用的第二位。电磁力和万有引力一样是宇宙中普遍存在的一种长程力。
主宰着微观世界的是强相互作用和弱相互作用。强相互作用是使核子结合成原子核的作用。在强度上它是四种基本相互作用中最强的一种。它不像万有引力和电磁力那样是长程力而是短程力。但是它的力程比弱相互作用的力程长,约为10-13cm。大约等于原子核中核子间的距离。
弱相互作用是存在于原子核内部的一种相互作用。在强度上它次于强相互作用和电磁作用之后居于四种基本相互作用的第三位。它也是一种短程力,力程约为10-15cm,比原子核的半径还小两个数量级。因此,这种力在极短距离内起作用,尽管如此,它在自然界中却扮演着相当重要的角色。没有它,太阳和许多恒星就会熄灭,无法产生由氢形成氦的持续聚变。
这样,四种强度悬殊、性质各异的基本力,完全控制了我们的宇宙。不过,物理学家们早就怀疑这四种力在宇宙混沌初开的某一阶段可能原来是一种作用力,后来随着宇宙的演化而各自成家了。
长期以来,不少物理学家就致力于这四种基本力的统一工作,以还其庐山真面目。1967年温伯格和萨拉姆成功地把电磁作用和弱相互作用统一起来,建立弱电统一理论。
目前,物理学家们正乘胜出击,致力于建立所谓大统一理论,把电磁作用、弱相互作用和强相互作用三种基本力统一在一起,以及更进一步地建立起大统一理论,把所有四种基本力统一起来。
由于自然界的四种基本力是决定所有物质运动及其运动状态的依据。现在有可能存在第五种基本力,自然引起物理学界的极大兴趣。
[编辑本段]实验证明
然而,第五种力是否真正存在,首先是一个实验问题。所以近二十余年来,人们在实验室里、矿井中、电视塔上、悬崖旁、海底下做了大量实验,设计了许多精密仪器,以便证实或否定它的存在。探测第五种力的实验大致可以分成下列三类。第一类实验是把地球作为引力源,测量离地心不同距离处重力加速度的变化,以此和按牛顿平方反比定律算得的理论值相比较。例如,墨西哥湾1100平方公里范围内海底海面的703个重力数据;澳大利亚西北昆士兰14000个钻孔提供的地层及重力数据等。
第二类实验是测量同一引力源(如大崖岩石)对质量相同而成分不同的物体的引力作用差别。例如美国布鲁海文国家实验室的新型加速度仪,实验中浸在水中的悬浮铜球壳(内充满水),在高出哈得逊河161米的崖壁的作用下,测其加速度,分析铜与水所受到的作用力大小。
第三类实验测量反物质——目前用的是反质子和正电子——在地球引力作用下的加速度,如果存在与重子数和轻子数相关的第五种力,则其加速度将和质子、电子的不同。实验计划已获得批准,但还未取得结果。
显然,理论认识是否正确,最后要经过实验的检验。尽管目前第五种力的存在的探索实验多种多样,但要真正证实第五种力的存在,尚需做更多、更精密的实验才能做出最终结论。
D. 宇宙间最快速度的物质是什么
质量越小的速度越快。光子质量为零,所以速度最快(?)
有质量的越接近版光速,要求的能量越大权。相比质量大的 质量越小的速度越大 要求能量越小所以只有质量为零的速度达到的那个值就是无法超越的。光(还有电磁波)质量都为0 所以 它们最快了!!
不过我个人认为,空间弯曲了你从地球到太阳一步就到了,光走现在的空间到地球还要七八分钟呢。(本人也对老爱的相对论一知半解~此属个人看法)就看你相对谁的时间了。
不过这个问题解答了之后 出现下一个问题的速度 绝对比光快,而那就是上楼老兄说的人的思维。
没有人在宇宙中领跑 什么都是最慢的。哪个答案喜欢自己挑一个
E. 厄缶实验
证明比例对任何物质都相同,这就足够了!因为这个比例只要是普适的,就可以专人为规定属这个比例为1.
就像1卡=4.2焦耳,这里的比例是4.2,原因只是最开始采用的单位各不相同.只要不再用卡,热和功的单位就都可以用焦耳.
两种质量是按两种方式引入的,开始的单位也不同,只要认为舍弃一种,就能令其相等.
F. 厄缶实验证明惯性质量等于引力质量的细节
1,与物体的种类关系不大。总之不能用铁磁材料,否则试验过程中会受到地磁影响。
2,实验精度是靠扭秤臂长、物体质量、悬丝的弹性物理性质确定的。
G. 厄缶实验的介绍
精确检验物体的引力质量与惯性质量相等的著名实验。引力质量取决于物体的引力性质,出现在牛顿万有引力定律中;惯性质量描述物体的惯性,出现在牛顿第二定律中