A. 空压机如何排水更方便
德瑞亚空压机本身都有自动排水电磁阀,是定时自动排水的。储气罐的排水其实后期也可以改善成自动排水;其他冷干机、过滤器之类的设备一般也都有自动排水装置。
B. 供暖系统的排水装置有哪三种
(1)机械循环双管上供下回式热水采暖系统:双管上供下回式系统的供水干管设在系统的顶部,回水干管设在系统的下部,一般设在地沟内,散热器的供水管和会水管分别设置,每组散热器都能组成一个循环环路,每组散热器的供水温度基本是一致的,各组散热气可以自行调节热媒的流量,胡不受影响。
(2)机械循环单管上供下回式热水供暖系统:单管上供下回式系统,单管系统的散热器的供回水立管公用一根管,立管上的散热器串联起来构成一个循环回余枯路。从上到下各楼层散热器进水温度不同,温度依次降低,每组散热器的宴顷热媒流量不能单独调节。为了克服单管式不能单独调节热媒流量,且下层散热器热媒入口温度底的弊病,又产生单管跨越式系统,热水在散热器前分成两部分,一部分流入散热器,一部分流入跨越管道内。
(3)机械循环下供下回式热说公布啊系统:该系统一般适用于顶层难以布设干管的场合以及有地下室的建筑。当无地下室时,供,回水干管一般敷设在底层地沟内。
(4)机械循环中供式热水采暖系统:机械循环中供式热水供暖系统水平供水干管敷设在系统中部,上不系统可用上供下回式,也可用下供下回式,下部系统则用上供下回式。中供式系统减轻了上供下回式楼层过多而易出现垂直失调的现象,同时避免顶层梁高过低导致供水干管挡住顶层窗户而妨碍其开启。中供式系统可用于加建楼层的原有建筑物。
(5)机械循环下供上回式热水采暖系统:该系统供水干管设在所有散热器的上面,回水干管设在所有散热器的下面,膨胀箱连接在回水干管上。回水经膨胀箱流回锅炉旁,在被循环水泵送入锅内。
(6)机械循环上供中回式热水采暖系统:上供中回式热水采暖系统将回水干管可以设在一层顶板下或楼梯夹层中,可省去地沟。安装时,在立管下端设泄水竖祥洞及排放管道中的杂物。回水干管末端需设置自动排水阀或其他排水装置。该系统适合不宜设置地沟的多层建筑。
(7)水平串联式热说采暖系统:一根立管水平串联多组散热器布置,称为水平串联式系统。按照供水管与散热器的连接方式可分为顺流式和跨越式两种,这两种方式在机械循环和自然循环系统中都可以使用。这种系统的优点是,系统简捷,安装简单,少穿楼板,施工方便,系统总造价相对较低;对各层有不同使用功能和不同要求的建筑物,便于分成调节和管理。
(8)异程式系统与同程式系统:在供暖系统供,回水干管布置上,通过各个立管的循环环路的总长度不相等的布置形式称为异程式系统,反之称为同程式系统。
(9)分户计量热水采暖系统:对于新建住宅热水集中采暖系统时,应设置分户热计量和室温控制装置,实行热供计收费。
C. 污水处理设备有哪些
首先单纯污水处理的设备有化粪池、地埋式污水处理设备、气浮机、mbr中水回用设备、mbbr污水处理设备、sbr污水处理设备、BAF生物曝气滤池、IC厌氧反应器、UASB厌氧塔、WD微电解反应器、氨氮吹脱塔、二氧化氯发生器、格栅、转鼓过滤机、水力筛、沉淀池、机械过滤器、微滤机、一体化净水器、无阀过滤器。另外还有污水里还有矿渣、污泥的,这些就需要真空过滤机、带式压滤机、污泥脱水机。垃圾处理设备就需要垃圾焚烧炉,像餐厨垃圾、生活垃圾、医疗垃圾、塑料垃圾、动物尸体、垃圾场等。
D. 如何看曝气管的布局和设置
曝气管的原理为利用鼓风机将空气通过输气管道输送到设在池底的曝气装置中,以气泡形式弥散逸出,在气液界面把氧气溶入水中。其型式主要包括膜片式微孔曝气器和旋混曝气器等,其中膜片式微孔曝气器又分停止供气,膜片恢复收缩并继续贴紧支撑管为管式微孔曝气器和通常都是用于污水的再处理工作。
曝气管的一般到相关管由PP聚乙烯材料制成,把在德国进口的膜片钳勾在支撑管上,两端用不锈钢卡箍锁紧固定。膜片外表的气孔在中止曝气时,主动封闭它采用供气主管与导气槽通硅橡胶膜可张孔进行微孔曝气这样就在一定程度上避免污水倒流,影响曝气膜片的运用作用。空气先通过特种型膜片能抗撕裂,用其耐老化,耐高温的特点性能来延伸运用寿命,曝气装置按其应用工艺不同,造成对消除常常替换膜盘式微孔曝气器两种片给用户带来某些不必要的麻烦。所以我们就需要特种型种型膜片成本低,对现有生要用途曝气管能满足在长期连续使用或产品更新周期较短。均不会产生微孔的堵塞和混合液的回流。特化曝气体系改造非常经济。曝气器膜片适用于各种工业废水及城市生活污水生化曝气体系,然后进入空气分配支管,最后进入曝气管导气槽,在曝气膜与支撑管间形成环形气室,使曝气膜鼓起,通过膜片上的可张微孔向水体曝气。微孔也收缩关闭,阻止水体倒流进入气槽。曝气管的主用后再投入使用,停止供气时曝气器微孔自行闭合。
E. ad402自动排水器一直漏气怎么回事
排气阀装置损坏。ad402自动排水器一直漏气是排气阀装置损坏导致的,只需要更换排气阀装置即可解决。ad402自动排水器用于自动排除管道低处、油水分离器、气罐及各种过滤器底部等处的冷凝水。
F. 什么是SRB技术
SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
特点:与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反罩培数应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
[编辑本段]优点
: 1、 理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。 2、 运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。 3、 耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。 4、 工艺过程中的各工序可根据水质、水量进行调整,运行灵活。 5、 处理设备少,构造简单,便于操作和维护管理。 6、 反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。 7、 SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。 8、 脱氮除磷,适当控制运行方式,实现好氧、缺氧、物首厌氧状态交替,具有良好的脱氮除磷效果。 9、 工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
[编辑本段]SBR系统的适用范围
由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。就近期的技术条件,SBR系统更适合以下情况: 1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。 2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。 3) 水资源紧缺的地方。SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。 4) 用地紧张的地方。 5) 对已建连续流污水处理厂的改造等。 6) 非常适合处理小水量,间歇中圆排放的工业废水与分散点源污染的治理。 SBR工艺设计与运行
[编辑本段]SBR设计需特别注意的问题
1、设施的组成
本法原则上不设初次沉淀池,本法应用于小型污水处理厂的主要原因是设施较简单和维护管理较为集中。为适应流量的变化,反应池的容积应留有余量或采用设定运行周期等方法。但是,对于游览地等流量变化很大的场合,应根据维护管理和经济条件,研究流量调节池的设置。
2、反应池
反应池的形式为完全混合型,反应池十分紧凑,占地很少。形状以矩形为准,池宽与池长之比大约为1:1~1:2,水深4~6米。 反应池水深过深,基于以下理由是不经济的:①如果反应池的水深大,排出水的深度相应增大,则固液分离所需的沉淀时间就会增加。②专用的上清液排出装置受到结构上的限制,上清液排出水的深度不能过深。 反应池水深过浅,基于以下理由是不希望的:①在排水期间,由于受到活性污泥界面以上的最小水深限制,上清液排出的深度不能过深。②与其他相同BOD—SS负荷的处理方式相比,其优点是用地面积较少。 反应池的数量,考虑清洗和检修等情况,原则上设2个以上。在规模较小或投产初期污水量较小时,也可建一个池。
3、排水装置
排水系统是SBR处理工艺设计的重要内容,也是其设计中最具特色和关系到系统运行成败的关键部分。目前,国内外报道的SBR排水装置大致可归纳为以下几种:⑴潜水泵单点或多点排水。这种方式电耗大且容易吸出沉淀污泥;⑵池端(侧)多点固定阀门排水,由上自下开启阀门。缺点操作不方便,排水容易带泥;⑶专用设备滗水器。滗水器是是一种能随水位变化而调节的出水堰,排水口淹没在水面下一定深度,可防止浮渣进入。理想的排水装置应满足以下几个条件:① 单位时间内出水量大,流速小,不会使沉淀污泥重新翻起;②集水口随水位下降,排水期间始终保持反应当中的静止沉淀状态;③排水设备坚固耐用且排水量可无级调控,自动化程度高。 在设定一个周期的排水时间时,必须注意以下项目: ①上清液排出装置的溢流负荷——确定需要的设备数量; ②活性污泥界面上的最小水深——主要是为了防止污泥上浮,由上清液排出装置和溢流负荷确定,性能方面,水深要尽可能小; ③随着上清液排出装置的溢流负荷的增加,单位时间的处理水排出量增大,可缩短排水时间,相应的后续处理构筑物容量须扩大; ④ 在排水期,沉淀的活性污泥上浮是发生在排水即将结束的时候,从沉淀工序的中期就开始排水符合SBR法的运行原理。
[编辑本段]SBR工艺的需氧与供氧
规律
SBR工艺有机物的降解规律与推流式曝气池类似,推流式曝气池是空间(长度)上的推流,而SBR反应池是时间意义上的推流。由于SBR工艺有机物浓度是逐渐变化的,在反应初期,池内有机物浓度较高,如果供氧速率小于耗氧速率,则混合液中的溶解氧为零,对单一的微生物而言,氧气的得到可能是间断的,供氧速率决定了有机物的降解速率。随着好氧进程的深入,有机物浓度降低,供氧速率开始大于耗氧速率,溶解氧开始出现,微生物开始可以得到充足的氧气供应,有机物浓度的高低成为影响有机物降解速率的一个重要因素。从耗氧与供氧的关系来看,在反应初期SBR反应池保持充足的供氧,可以提高有机物的降解速度,随着溶解氧的出现,逐渐减少供氧量,可以节约运行费用,缩短反应时间。 SBR反应池通过曝气系统的设计,采用渐减曝气更经济、合理一些。
SBR工艺排出比(1/m)的选择
SBR工艺排出比(1/m)的大小决定了SBR工艺反应初期有机物浓度的高低。排出比小,初始有机物浓度低,反之则高。根据微生物降解有机物的规律,当有机物浓度高时,有机物降解速率大,曝气时间可以减少。但是,当有机物浓度高时,耗氧速率也大,供氧与耗氧的矛盾可能更大。此外,不同的废水活性污泥的沉降性能也不同。污泥沉降性能好,沉淀后上清液就多,宜选用较小的排出比,反之则宜采用较大的排出比。排出比的选择还与设计选用的污泥负荷率、混合液污泥浓度等有关。
SBR反应池混合液污泥浓度
根据活性污泥法的基本原理,混合液污泥浓度的大小决定了生化反应器容积的大小。SBR工艺也同样如此,当混合液污泥浓度高时,所需曝气反应时间就短,SBR反应池池容就小,反之SBR反应池池容则大。但是,当混合液污泥浓度高时,生化反应初期耗氧速率增大,供氧与耗氧的矛盾更大。此外,池内混合液污泥浓度的大小还决定了沉淀时间。污泥浓度高需要的沉淀时间长,反之则短。当污泥的沉降性能好,排出比小,有机物浓度低,供氧速率高,可以选用较大的数值,反之则宜选用较小的数值。SBR工艺混合液污泥浓度的选择应综合多方面的因素来考虑。
关于污泥负荷率的选择
污泥负荷率是影响曝气反应时间的主要参数,污泥负荷率的大小关系到SBR反应池最终出水有机物浓度的高低。当要求的出水有机物浓度低时,污泥负荷率宜选用低值;当废水易于生物降解时,污泥负荷率随着增大。污泥负荷率的选择应根据废水的可生化性以及要求的出水水质来确定。
SBR工艺与调节、水解酸化工艺的结合
SBR工艺采用间歇进水、间歇排水,SBR反应池有一定的调节功能,可以在一定程度上起到均衡水质、水量的作用。通过供气系统、搅拌系统的设计,自动控制方式的设计,闲置期时间的选择,可以将SBR工艺与调节、水解酸化工艺结合起来,使三者合建在一起,从而节约投资与运行管理费用。 在进水期采用水下搅拌器进行搅拌,进水电动阀的关闭采用液位控制,根据水解酸化需要的时间确定开始曝气时刻,将调节、水解酸化工艺与SBR工艺有机的结合在一起。反应池进水开始作为闲置期的结束则可以使整个系统能正常运行。具体操作方式如下所述: 进水开始既为闲置结束,通过上一组SBR池进水结束时间来控制; 进水结束通过液位控制,整个进水时间可能是变化的。 水解酸化时间由进水开始至曝气反应开始,包括进水期,这段时间可以根据水量的变化情况与需要的水解酸化时间来确定,不小于在最小流量下充满SBR反应池所需的时间。 曝气反应开始既为水解酸化搅拌结束,曝气反应时间可根据计算得出。 沉淀时间根据污泥沉降性能及混合液污泥浓度决定,它的开始即为曝气反应的结束。 排水时间由滗水器的性能决定,滗水结束可以通过液位控制。 闲置期的时间选择是调节、水解酸化及SBR工艺结合好坏的关键。闲置时间的长短应根据废水的变化情况来确定,实际运行中,闲置时间经常变动。通过闲置期间的调整,将SBR反应池的进水合理安排,使整个系统能正常运转,避免整个运行过程的紊乱。活性污泥SBR
G. 地下室自动排水工作原理
集水坑+水泵+浮球+液位电节点开关。很容易实现的。随便一个设计单位都能帮你搞好了,