A. 实验室废水污水处理设备的组成部件有哪些
实验室废水处理设备是一个一体化设备,主要是安装在实验室内部,用来处理实验室产生的各种废水。
实验室废水处理设备组成工艺
污水集中处理工艺大致流程为污水进入水箱——进入调节池——通过加药系统,针对不同的化学污水,添加药剂调节PH值——进入混凝反应池——进入沉淀池——进水水解酸化池——进入接触氧化池——进入二沉池——达标的水质直接排出到室外——产生的沉淀等进入污泥池——污泥池一年或二年时间使用压滤机压成泥饼——泥饼运出
实验室废水处理设备优势
1.承载物理相互碰撞能力强,接触型氧化工艺的大致存活时间较长。
2.具备高效除磷脱氮功能,而且能改变设备的整体构造,分别应对不同的生活污水,部
分工业废水,城市污水处理效果。
3.生化池内的填料多为固定床平板填料,增加生物量,提高系统稳定性,工艺应用广泛,
比表面积大,模块化框架安装,生物亲和性好,挂膜快。
4.使用专门给排水曝气充氧的专业设备进行有效曝气,使植物纤维细胞间不断浮动,曝
气平稳,微生物有序城镇,具有活性污泥法的特征。
5.出水水体质量稳定,固体沉淀物质产量减少并易于处理,污水潜水泵设置在设备之中,
减少工程投资。
6.污水处理设备可以放在地面上,也可以地埋。埋在地下时,上面可以自由分配空间,
节约占地面积。
7.无人值守,自动控制,维护操作方便。
B. 污水处理中气浮机的作用是什么,给排水
你好,气浮机是抄一种去除各种工业和市政污水中的固体悬浮物(ss)、油脂及各种胶状物的设备。该设备广泛应用于炼油、化工、酿造、植物油生产与精炼、屠宰、电镀、印染等工业废水和市政污水的处理。
一、气浮装置工艺流程及原理
1、原水进入混合反应器,在混合反应器中加入药剂(除油剂或混凝剂),以形成可分离的絮凝物;
2、经预处理后的污水进入气浮装置,在进水室污水和气水混合物中释放的微小气泡(气泡直径范围30~50um)混合。这些微小气泡粘附在污水中的絮体上,形成比重小于水的气浮体。气浮体上升至水面凝聚成浮油(或浮渣),通过刮油(渣)机刮至收油(渣)槽;
3、在进水室较重的固体颗粒在此沉淀,通过排砂阀排出,系统要求定期开启排砂阀以保持进水室清洁;
4、污水进入气浮装置布水区,快速上升的粒子将浮到水面;上升较慢的粒子在波纹斜板中分离,一旦一个粒子接触到波纹斜板,在浮力的作用下,它能够逆着水流方向上升;
5、所有重的粒子将下沉,下沉的粒子通过底部刮渣机收集,通过定期开启排泥阀排出。
二、气浮装置工艺流程图:
C. 小流量分散型污水处理生物反应器试验研究
1引言(Introction) 分散污水是指农村社区、军队驻地、高速公路服务区、机场、独立别墅区、旅游风景区等地处郊区,分布分散,无法纳入市政管网覆盖范围的特定区域产生的污水,这类污水具有水量小、排放分散、水质水量波动较大、可生化性好等特点(陈书雪等,2011;吕锡武,2012;陈吕军,2014;陈汗龙等,2015).分散污水不适宜进行集中处理,应进行就地处理,就地回用.
根据水量及收集方式的不同,分散式污水处理有不同的处理规模,如在农村污水处理中,可分为单户污水分散收集处理模式、联户污水分散收集处理模式和村落污水集中收集处理模式(Libralatoetal.,2012;王阳等,2015).由于当地居住状况和经济情况不同,对污水处理设施的选择也不相同.
当前小流量分散污水常用的生物膜法、稳定塘、氧化塘、人工湿地等处理工艺,对污和族染物的削减有一定的作用,但也面临着诸多问题.比如,稳定塘占地面积大、污泥容易淤积(刘云国等,2014);人工湿地一般不宜直接处理较高浓度的生活污水,并存在水力负荷低、占地面积大、易受气候和温度影响等问题(刘峰等,2010;孙宗建等,2007);净化槽工艺虽对污水中COD、BOD和NH4+-N等具有较好的处理效果,但设计中较少考虑TN和TP的去除(王昶等,2009);而生物接触氧化法的填料造价高,增加了投资,另外对生物接触池内布水、布气的均匀性有一定要求(赵贤慧等,2010).随着更严格的污水排放标准的出台,对总磷、总氮等污染物的处理要求也进一步提升,以往分散式污水处理设施很难满足新的要求.
连续流间歇曝气工艺在国内外均有研究,相对于传统活性污泥工艺,间歇曝气工艺可以减少反硝化过程中对碳源的需求,适用于低C/N污水的脱氮(Haoetal.,1996;Fulazzakyetal.,2015).Insel等(2006)研究认为,曝气停曝的循环时间和其中曝气时间的占比对整个反应脱氮的过程有重要影响.国内对间歇曝气工艺的研究多集中在现有污水处理厂的提标改造及处理过程中的控制参数上,如张雯等(2013)研究了间歇曝气和连续曝气对完全混合反应器脱氮性能的影响,指出间歇曝气时,由于厌氧阶段有利于异养型兼性厌氧菌的代谢活动,故反硝化进行得较为彻底,对总氮的去除率可以维持在70%以上.金春姬等(2003)对低C/N污水进行间歇曝气工艺处理,考察了间歇曝气周期对污水脱氮的影响,认为曝气时间应根据进水氨氮负荷保持在0.5h以上,搅拌缺氧的时间应该控制在1h左右.乔海兵等斗谈(2006)通过对连续流间歇曝气氧化沟的研究,指出循环周期越小,好氧和缺氧交替频率越高,系统中的DO水平相对较高,有利于硝化,同时也有利于消除停气期的短流影响;随着曝气时间占比的降低,停气时间的增加,进水中的有机物进入沟内,作为反硝化的外加碳源,从而使反硝化速率加快.然而,对于分散式的间歇式曝气活性污泥工艺应用于分散式污水处理还鲜有报道.由于处理成本及水量水质条件的制约,研究处理量小、能耗较低的间歇曝气反应器的处理效能具有重要的现实意义.
本文通过对应用于分散型污水处理的间歇曝气生物反应器进行生产性试验研究,考察生物反应器去除COD、氮、磷的效果,以期为其在分散式污水处理过程中的应用提供建议.
2材料与方法(Materialandmethods)
2.1实验装置
连续流间歇曝气前缺氧生物反应器(以下简称“生物反应器”)根据课题组前期研究成果设计加工(Liuetal.,2017;Liuetal.,2017),具体如图1所示.生物反应器整装在一个集装箱内,总容积为27.6m3,其中,混合池为3.2m3,间歇曝气池为19m3,污泥截留池为2.2m3,终沉池为1.9m3.污水进入混合池进行混合后进入间歇曝气池.间歇曝气池运用溶氧仪在线控制装置和中控电路(PLC)控制曝气强度和曝气时间比.间歇空棚碰曝气池与混合池之间通过内回流管路相连,通过调节回流流量控制混合液回流比.污水流经间歇曝气池后,经折板或细管与污泥截留池相连,泥水混合物在截流池进行泥水分离澄清后,上清液流入终沉池进行进一步澄清并外排,截留的污泥通过污泥回流装置返回到间歇曝气池,可使间歇曝气池保持较高的污泥浓度.终沉池设置污泥排出装置,将所有沉淀的剩余污泥排出.可通过控制排泥时间,达到控制污泥停留时间的目的.
图1生物反应器示意图
生物反应器间歇曝气池通过PLC自动控制曝气和停曝时间,实现间歇式曝气.曝气阶段溶解氧浓度由溶氧仪(型号:)控制.当曝气后溶解氧的浓度达到设定上限值(如2.5mg˙L-1)时,曝气风机自动停止曝气,此时混合装置自动开启,生物反应器中生物消耗溶氧.当溶解氧浓度下降到设定下限值(如0.5mg˙L-1)时,曝气风机自动开启,进行鼓风曝气.本研究中通过调节曝气时间比、混合液回流比、HRT等组合工况条件,考察了该生物反应器去除COD、氮、磷效果.每个工况维持至少15d,其中,工况Ⅵ维持30d以上,工况Ⅶ维持3个月.工况条件如表1所示.
2.2实验用水
实验污水取自山东省日照市某市政生活污水处理厂曝气沉砂池,经提升泵进入反应装置.生物反应器接种污泥取自此污水厂氧化沟.反应器进水水质指标如表2所示.
2.3分析项目及方法
污水进出水样品混合均匀后测定其总COD、总氮(TN)、氨氮(NH4+-N)、硝酸盐氮(NO3--N)、总磷(TP),上述各指标所采用的Hach水质分析法的序号分别为8000、10072、10031、10020、8190.反应池中污泥浓度(MLSS)采用重量法测定,pH使用便携式pH计(WTWMulti3220)测定.
3结果与讨论(Resultsanddiscussion)
3.1生物反应器内溶解氧浓度变化
生物反应器间歇曝气池中溶解氧在一个间歇曝气周期随时间变化情况如图2所示.曝气阶段,池中平均溶解氧浓度由图中水平虚线标示.以工况Ⅰ为例,曝气开始时,池中溶解氧浓度上升,当达到曝气上限2.5mg˙L-1时,曝气泵停止工作;当溶解氧达到设定下限0.5mg˙L-1时,曝气泵自动开启.如此循环往复,直到曝气周期停止,池中平均溶解氧浓度为1.64mg˙L-1.当曝气阶段结束,进入停曝混合阶段,溶解氧需要被消耗10~20min才能进入缺氧阶段.传统活性污泥法要求曝气池溶解氧浓度不小2.0mg˙L-1,以保证硝化反应的完全.研究表明,降低反应器溶解氧浓度,可以减小曝气能耗,如将曝气溶解氧浓度控制在0.5mg˙L-1,据估计将节约10%的运行能耗(Liuetal.,2013).同时低溶解氧浓度可以促使反应器中菌群变化,促进同步硝化反硝化的进行,提升TN去除率(吕锡武等,2001;吴昌永等,2012;Liuetal.,2013).
图2不同曝气和停曝时长曝气区溶解氧浓度的变化
3.2生物反应器内污泥浓度(MLSS)及污泥体积指数(SVI)变化情况
生物反应器在运行期间未从反应区主动进行排泥,系统内的MLSS是常规活性污泥污水厂的4倍,可以稳定达到10000mg˙L-1以上(图3).污泥经过截留池的沉降,通过污泥回流装置回到曝气池,因此,较重的污泥经过自动重力遴选保留在生物反应器中.终沉池只对出水进行澄清,产生的污泥量很少,可以通过排泥装置排出.MLSS在接种后开始迅速上升,20d左右达到10000mg˙L-1左右.工况Ⅲ由于设备重新移动,使得污泥量减少,但之后很快重新达到稳定状态.污泥体积指数逐渐上升并稳定在80~100mL˙g-1,显示出良好的污泥沉降性能.在工况Ⅴ和Ⅵ,生物反应器中平均水温降至10℃以下,没有出现污泥膨胀现象,这与前期研究的结果一致(Liuetal.,2017).工况Ⅶ进入春、夏季,温度回升,MLSS达到12000mg˙L-1以上,并随着污泥量的增多,其污泥体积指数略有下降.
图3生物反应器中污泥浓度及污泥沉降指数比较
3.3对COD的去除效果
生物反应器对COD的去除效果见图4,各工况的出水COD见表3.可以看出,进水COD波动较大,但生物反应器对COD的去除率在运行期间稳定达到90%以上.生物反应器中可以维持很高的污泥浓度,保证其面对水质波动变化时具有较好的适应能力.调整工况后对COD的去除效果影响不大,可能是因为异养菌对溶解氧的亲和力强于自养菌,因此,在溶解氧较低的状态下,异养菌将会率先利用氧气进行代谢活动,可以较好地代谢水中的COD(殷峻等,2013).
图4生物反应器进出水COD及去除率
3.4对氮的去除效果
对于NH4+-N的去除,生物反应器在接种后短时间内即达到良好的硝化效果(图5a).工况Ⅰ的曝气阶段平均溶解氧浓度为1.64mg˙L-1,时长为60min,良好的硝化效果显示其曝气量充足,使曝气阶段污水中的氨氮达到充分转化.而在停曝混合阶段(时长60min),进水的氨氮因为生物反应器的稀释作用,没有在出水中积累,使得氨氮达到较好的去除效率,在90%以上.但出水TN由于NH4+-N转化为NO3--N,并没很好地从系统中脱除,TN出水浓度在20mg˙L-1左右(表3),去除率在40%左右(图5c).随后调整停曝时间至90min(工况Ⅱ),这时曝气时间比降为0.47(表1),NH4+-N去除略有波动仍可保持在90%以上,脱氮效率略有提高.当调整至工况Ⅲ时,停曝时间增长至150min,曝气时间比进一步下降至0.33.停曝时间的加长及污泥量变化使生物反应器中硝化反应受到影响,出水的NH4+-N提高,而NO3--N进一步降低.由于生物反应器反硝化作用的加强,脱氮效率进一步提升至50%.在进水流量一定时,可通过调节曝气时间比、增加停曝时间,提高系统反硝化效率,进而提高脱氮效率.需要注意的是,曝气时间过短会造成NH4+-N氧化不充分,出水NH4+-N浓度增加,而过长会造成反硝化阶段没有足够的碳源进行反硝化.
图5生物反应器运行进出水NH4+-N(a)、NO3--N(b)、TN(c)浓度及去除率
随后工况Ⅳ减少停曝时间至90min,曝气时间比为0.53,调低混合液回流比至1.5,生物反应器维持稳定的氨氮去除效果,脱氮效率约为55%~60%.与前期工况Ⅱ相比,该工况在保证硝化效果的情况下,脱氮效率有一定的提升.这是因为减小混合液回流后,回到混合池的混合液携带的溶解氧减少,使混合池维持较好的缺氧条件,提升反硝化效果.具体联系污水宝或参见http://www.dowater.com更多相关技术文档。
考虑到曝气过大会影响脱氮效果,随后工况Ⅴ减低曝气上限设定值至1.5mg˙L-1,间歇曝气池的平均DO浓度降为0.88mg˙L-1,同时调节流量至50m3˙d-1,调长停曝时间为110min,曝气时间比为0.41.此时出水NH4+-N浓度明显升高,运行阶段平均浓度为(10.0±4.3)mg˙L-1(表3).由于池中平均DO浓度降低、HRT减小、曝气时间比减小,一方面使得NH4+-N硝化反应没有完全,另一方面使得NH4+-N在较长的缺氧时段积累.NO3--N浓度较前期工况明显降低,TN的去除率略有下降.考虑到冬季微生物的活性较低,为保持较好的硝化效果,调整为工况Ⅵ,降低了进水流量并增加了曝气时长.虽曝气时间比增长为0.48并提高了HRT,但硝化没有完全,NH4+-N的去除效果波动,出水TN仍维持在17~22mg˙L-1,去除率约为50%~70%.当水量变化时,水量的大小影响到营养物质输送的多少,在一定污泥量和呼吸强度情况下,水量会对出水效果有影响,因此,需要适当地调节间歇曝气时间比来保证处理效果.冬季脱氮效率的减小,可以通过延长曝气时间和污泥龄的方式进行一定的补偿,提高硝化效率,但总氮的脱除仍然受一定的影响,可以考虑添加一定的碳源物质进行补充.
随后工况Ⅶ将停曝时间稍降低,间歇曝气池中平均溶解氧浓度为1.0mg˙L-1,保持曝气时长,继续监测处理效果3个月.随着运行时间的加长,生物反应器中种群达到稳定,出水NH4+-N、TN都可以达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级A排放标准,NH4+-N去除率在90%以上,TN去除率在70%~80%.对比工况Ⅴ、Ⅵ、Ⅶ与前期工况Ⅰ、Ⅱ、Ⅱ,当进水流量升高时,可通过同时增加曝气时间比与循环时长来提高脱氮效率.
Dey等(2011)通过模拟间歇曝气生物反应器发现,这类反应器最佳曝气时长应该占整个循环周期的50%~60%,而最佳的循环周期应该控制在2~3h范围内,在此条件下可以达到较好的脱氮效果.另外,较高的污泥浓度可以促进反应器中反硝化的进行,Sarioglu等(2009)通过对MBR同步硝化反硝化的研究,提出当反应器中污泥浓度达到较高水平时(25000~30000mg˙L-1),污泥的衰减可以支持内源反硝化;另一方面,较高浓度的污泥可以聚集形成内部的缺氧区,可以促进同步硝化反硝化的进行.本研究得到结果与以上研究结论相近,差别主要来自于实际应用中污泥浓度与菌群的不同,以及实验环境和工况条件的不同.
3.5对磷的去除效果
生物反应器在运行期间未从反应区主动排泥,沉淀剩余污泥由终沉池排出,经由产泥系数及污泥量计算,生物反应器SRT约为50d.在秋、冬运行期间(工况Ⅰ~Ⅵ),出水的总磷浓度平均约为1.65mg˙L-1(表3),对总磷的去除效果约为60%.工况Ⅶ,磷的进水浓度有较大的提升,但出水浓度却逐渐降至1mg˙L-1以下,满足国家城镇污水处理厂污染物排放标准1级B标准.随着生物反应器中污泥浓度的提升,去除率达到80%以上.根据前期研究,间歇曝气可在混合池制造厌氧和缺氧的环境,而在间歇曝气池制造出缺氧和好氧的环境有利于聚磷菌(PAOs)的生长,进而促进了处理中磷的去除(Liuetal.,2017).另外,间歇曝气降低了回流至缺氧区的硝酸盐氮的浓度,减小了硝酸盐氮对厌氧释磷的影响,进而营造出适宜聚磷菌生长的环境,使得磷的去除不仅仅是通过同化作用去除,还强化了生物除磷性能(侯红勋等,2009).为达到更理想的总磷去除效果,可以考虑增加反应区定期排泥,并同时辅以化学除磷.
图6生物反应器运行进出水总磷浓度及去除率
4结论(Conclusions)
1)连续流间歇曝气前缺氧生物反应器可以维持较高的污泥浓度,较好地去除生活污水中的COD.稳定运行后,COD去除率可达90%以上.
2)在脱氮效率方面,当水量一定时,可通过调低曝气时间比,增加停曝时间,提高脱氮效率;在曝气强度一定时,可以调低混合液回流比,提高脱氮效率;当水量升高时,可通过增加曝气时间比及循环时长,提高脱氮效率.稳定运行后,NH4+-N去除率可达90%以上,TN的去除率达到70%~80%.
3)通过间歇曝气,生物反应器可达到良好的除磷效率.稳定运行后,TP去除率可以达到80%以上.
4)在实际工程应用中,应该科学调研实地水质水量,建设调节池,平衡日间水质水量变化;调节合适的曝气停曝时间以达到设计处理效果;根据实际处理要求,增加反应区排泥。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
D. 实验废水排入城市排水系统前应如何处理
严格按照污水处理工序进行处理,确保污水处理设施各项指标及工艺参数正常,必要时可将污水处理设施交与第三方运营。
废水是指居民活动过程中排出的水及径流雨水的总称。它包括生活污水、工业废水和初雨径流入排水管渠等其它无用水,一般指经过一定技术处理后不能仿旁碧衡再循环利用或者一级污染后制纯处理难度达不到一定标准的水。
主要危害
1、工业废水直接流入渠道,江河,湖泊污染地表水,如果毒性较大会导致水生动植物的死亡甚至绝迹
2、工业废水还可能渗透到地下水,污染地下水;如果周边居民采用被污染的地表水或地下水作为生活用水,会危害身体健康,重者死亡;
3、工业废水渗入土壤,造成土壤污染。影响植物和土壤中微生物的生长。
4、有些工业废水还带有难闻的恶臭,污染空气。
5、工业废水中的有毒有害物质会被备慧橡动植物的摄食和吸收作用残留在体内,而后通过食物链到达人体内,对人体造成危害。
E. 污水处理厂的实验室都有什么仪器,哪些是必须的具体的流程是什么
污水处理复厂一般采用制二级处理,其流程包括:
粗格栅—提升—细格栅—(粉碎)—沉砂—初次沉淀—生物处理(活性污泥法、生物滤池、氧化沟等)—二次沉淀—(后曝气)—消毒—出水
当然现在有些处理厂还包括后续的深度处理和回用部分。
污水处理厂的实验室主要做国家排放标准里说的各项指标的实验,《污水综合排放标准》(GB8978-1996):pH、悬浮物SS、BOD5、COD
氨氮、总氮TN、总磷TP等。
对于污水处理厂,常规测样只监测进出水就可以了,只有在调试或者工艺有问题时才会监测各单元。
关于仪器,每种指标污染物都有自己的相关仪器(pH计、COD快速消解仪 、BOD5测试仪等),也可以采用简单的分析化学实验的方法测出,具体见国家环保总局编的《水和废水监测分析方法》,对于污水处理厂用的一般比较简单的国产设备,高校会有更好的研究设备。
你说的水质分析应该就是标准中提到的各项污染物质的监测分析方法,原子吸收只是其中某一个方法而已,一般用于测定离子含量(金属等),污水处理厂不大可能有,很贵的。
关于具体的设备,你可以看看各个设备商的网站,都有具体介绍和使用手册的。
F. 污水处理设备有哪些
通常说的污水处理来设备是指污水处理系源统中的机械设备,但是单有这些设备又无法构成一个系统。
因此准确的来说,污水处理系统应该包含:构筑物、机械设备、监控设备、管路阀门等。其中:
构筑物,主要是构成工艺系统的各种建筑如:集水池、沉淀池、调节池、厌氧池、好氧池、污泥池等
机械设备,主要是在安装在构筑物上的各种实现工艺目的的设备如:格栅、刮渣机、曝气设备、污泥脱水设备、加药设备、各种水泵等。还有一些将设备与构筑物合建成的一体化设备。如:箱式气浮池、斜管沉淀池、一体化膜生物反应器、甚至有的厌氧系统都是钢制的一体设备。
监控设备,包括pH计、流量计、液位计等其他监测和控制设备。
管路阀门,包含各种污水管路、沼气管路、污泥管路以及阀门。
笼统的说,上述这些都应属于污水处理设备。
划分的仔细点说,除了砖砌或水泥浇灌的各种构筑物外,其他机械设备(含机械加工的一体化设备)、电控设备、管路阀门等都是污水处理设备。
G. 化验室的污水废水处理系统如何安装
化验室污水处理可以使用使用实验室一体化污水处理进行处理,具体安装方法如下所示:
1.在进行大学科研实验室污水处理设备安装前需要根据安装平面图,做好混凝土底板工作,使地面平均的承压可以达到5t/m2,在地面混凝土基础浇注的保养期完成之后才可进行安装;便可进行大学科研实验室污水处理设备的安装。
2.设计好设备管道连接走位方式,大学科研实验室污水处理设备必须按说明书设备自重,安装的顺序对照安装图纸进行,设备的位置不能放错,水箱与设备的间距必须合理。
3.连接管道使用橡皮垫进行禁锢,水管接口之间使用工具拧紧,使连接处不会产生液体渗漏。
4.大学科研实验室污水处理设备在安装完毕后,设备与地板之间必须使用螺丝或其他物品紧固,保证设备不会产生移动。
5.设备正式使用前需要进行测试,设备运行参数边测试边调整局纳判。
污水处理设备使用方法
1. 污水处理设备是一个自动化程度很高的设备,操作人员不需要在每一个环节都进行操作。一般污水处理设备的设计系统分桐改为反应池主体、加药系统、过滤系统、消毒系统、电控系统等组成。
2. 污水处理设备安装有自动LPC控制器和手动控制器。设备管理人员可以根据自己的需要自行选择相应的操作系统。
3. 在所有的系统中,需要设备管理人员进行操作的是加药系统,加药系统主要分为PAC加药系统、PAM加药系统、酸加药系统、碱加药系统。
设备管理人员需要茄镇根据污水情况来选择药剂进行配置。配比浓度一般为PAC(3%-5%),PAM(0.1%-0.2%),通过计量泵来投加,如果污水情况发生变化,那么配置比可以相应进行变化。
4. 加药操作方法:连接加药装置,然后检查每个法兰接口,加以固紧,以免流体泄漏。再连接计量泵的电源,打开电控柜接线盒,将计量泵电源线接入对应的接线端子。关闭排污阀,药液倒入将药液容器。开启加药系统阀门,启动计量泵。
5. 除了加药,另外一个要经常做的就是设备的维护,设备的维护是一个持久且稳定的工作,需要定期定量完成。具体维护保养方法可以参考蓝膜水处理官网其他文章。
H. 生活污水处理设备有哪些
生活污水包括住宅小区、医院、疗养院、办公楼、商场、宾馆、饭店等,污水处理设备有一体化污水处理设备、钢筋混凝土污水处理站等。
I. 常用的污水处理设备有哪些
污水处理设备分类有:
1、离心机
离心机主要用于将悬浮液中的固体颗粒与液体分开;或将乳浊液中两种密度不同,又互不相溶的液体分开(例如从牛奶中分离出奶油);它也可用于排除湿固体中的液体,例如用洗衣机甩干湿衣服;特殊的超速管式分离机还可分离不同密度的气体混合物;利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点,有的沉降离心机还可对固体颗粒按密度或粒度进行分级。
2、污泥脱水机
污泥脱水机特点是可自动控制运行,连续生产,无级调速,对多种污泥适用,适用于给水排水,造纸,铸造,皮革,纺织,化工,食品等多种行业的污泥脱水。
3、曝气机
曝气机是通过散气叶轮,将“微气泡”直接注入未经处理的污水中,在混凝剂和絮凝剂的共同作用下,悬浮物发生物理絮凝和化学絮凝,从而形成大的悬浮物絮团,在气泡群的浮升作用下“絮团”浮上液面形成浮渣,利用刮渣机从水中分离;不需要清理喷嘴,不会发生阻塞现象。本设备整体性好,安装方便,节省运行费用与占地面。
4、微滤机
微滤机是一种转鼓式筛网过滤装置。被处理的废水沿轴向进入鼓内,以径向辐射状经筛网流出,水中杂质(细小的悬浮物、纤维、纸浆等)即被截留于鼓筒上滤网内面。当截留在滤网上的杂质被转鼓带到上部时,被压力冲洗水反冲到排渣槽内流出。运行时,转鼓2/5的直径部分露出水面,转数为1-4r/min,滤网过滤速度可采用30-120m/h,冲洗水压力0.5-1.5kg/cm2,冲洗水量为生产水量的0.5-1.0%,用于水库水处理时,除藻效率达40-70%,除浮游生物效率达97-100%。微滤机占地面积小,生产能力大(250-36000m3/d),操作管理方便,已成功地应用于给水及废水处理。
5、气浮机
气浮机是一种去除各种工业和市政污水中的悬浮物、油脂及各种胶状物的设备。该设备广泛应用于炼油、化工、酿造、屠宰、电镀、印染等工业废水和市政污水的处理。
J. 【污水处理实验室设备和标准】实验室污水处理工艺
污水处理厂化验室仪器设备
污水处理厂化验室仪器设备浊度计、余氯比色计、PH计、色度比色仪细菌培养用;电热恒温培养箱、
电热干燥箱、生物显微镜、手提高压灭菌锅、小电炉天平。3、玻璃器材;酒精灯、50毫升纳氏比色管、
配套比色架、15×150和18×180试管、配套试管架、配套硅胶塞、小倒管、各种三角烧瓶、1和10毫升吸管、烧杯、量筒,纱布、脱脂棉。
污水处理厂化验室仪器设备冰箱实验台器皿柜药品柜天平台无菌单人单面操作台(5万-10万)
污水处理厂化验室仪器设备
(2009-09-2208:25:10)转载标签:污水处理厂化验室仪器设备杂谈
分类:技术文章
污水处理厂化验室仪器设备
污水处理厂化验室仪器设备浊度计、余氯比色计、PH计、色度比色仪细菌培养用;电热恒温培养箱、
电热干燥箱、生物显微镜、手提高压灭菌锅、小电炉天平。3、玻璃器材;酒精灯、50毫升纳氏比色管、
配套比色架、15×150和18×180试管、配套试管架、配套硅胶塞、小倒管搏帆轮、各种三角烧瓶、1和10毫升吸管、烧杯、量筒,纱布、脱脂棉。
污水处理厂化验室仪器设备冰箱实验台器皿柜药品柜天平台无菌单人单面操作台(5万-10万)
一、合理设置厂级化验室的检验任务
一方面依据水源水质变化的情况,除常规项目外,重点监测变化大的、对水处理影响大的分析项目,另一方面根据生产的需要.
设置必要的分析项目:如滤砂含泥量分析、水处理剂投加沉降试验等。另外,根据上级的要求设置分析项目,如节日验毒等。
二、依据厂级化验室的检验任务,合理配备化验仪器、设备
实验室所配置的仪器设备能够满足所设置项目的检验需要和技术等级的需要,确保检验结果的准确度、精密度;同时,避免设备闲置造成资源浪费。
三、做到实验室内布局合理、操作安全和方便,并避免污染
1.实验室内功能区设置分明,轿衫操作安全、方便,能够满足工作需要,避免交叉污染,保证检验结果不受干扰。如理化实验室与理化仪器室靠近,细菌室与其所使用的仪器设备靠近,设置独立的蒸馏水室(避免所制作的蒸馏水受污染)、更衣室、储藏室。
2.实验室所有实验台、边台、器皿柜、药品柜、通风柜由专业的实验室规划设计研究所外加工、成套制作、现场安装,符合各种技术指标的要求,更加规范,使用更安全、方便,给人感觉更加整洁、美观。
3.实验室应设立单独的给水、排水系统,避免受到污染或者污染周围环境。实验室的排气尽可能集中后向高空或者向下水道(适当处理后)排放,减少对周围环境的污染。
四、实验室的环境、使用的装修材料应符合环保和实验室的环境要求,确保不影响人体健康和实验结果
1.实验室内通风、采光、温度、湿度、清洁度等均应达到实验室的环境要求,实验室应给人留下整洁、美观、舒畅的观感。
2.实验室使用的装修材料,应使用环保材料(根据具体情况进行必要的检测),避免可能由于材料选择不当带来环境污染而干扰了实验结果。
3.所有实验用的台面采用先进材料制作,保证耐酸、耐碱、耐其他液体腐蚀,同时做到防火、防水、易于清洁。
总的来说,在水处理厂化验室的建设上,我们应坚持以下几个原则:
1.严格按照实验室条件的要求,对可能影响实验结果的各种因素进行综合考虑,确保分析结果不受环境的干扰,并做到安全实用、操作方便。
2.实验室内做到布设合理,功能区分明,给人一种简洁、美观、舒畅的感觉。
3.实验室所配置的仪器设备能够满足项目需要,保证结果的准确度,同时,避免设备闲置造成资源浪费。
4.在新实验室的设计、装修上应多考虑先进、环保型材料,减少对实验结果的影想。
污水处理厂化验室仪器设备验室仪器设备编号设备
1实验台2通风柜3实验水嘴水盆4样品柜5器皿柜6天平台7更衣柜8实验椅9超净台污水处理厂化验室仪器设备附表:常规检验项目见表1
可以参考
污水处理,首先要有基本的PH,氮磷,COD,BOD等检测设备。包括灭菌设备,分光光度计等。玻璃试管,试剂,烘干设备污水处理厂化验室仪器设备编号仪器名称1pH测定仪pH测定
2电导率测定仪电导率测定
3紫外可见分光光度计化学指标测定
4溶解氧测基信定仪溶解氧测定
5COD快速测定仪化学需氧量测定
6恒温生化培养箱生化学氧量测定
7高压蒸汽灭菌锅灭菌、恒温恒压加热
8电烘箱烘干,悬浮物浓度测定
9流量计流量测定
10移液器液体移取
11电子天平药品量取
12离心机固液分离
13过滤器固液分离
14马福炉污泥浓度测定
15空气压缩机提供压缩空气,充氧
16生物发酵罐微生物培养
17废水采样器水样采集18恒温培养摇床恒温培养19通风柜有毒有害溶液配置
污水处理厂化验室仪器设备编号设备
1试验台2通风柜3实验水嘴水盆4仪器柜5器皿柜6天平台
7更衣柜8实验椅污水处理厂化验室仪器设备先行设计通风上下水布局
污水处理厂实验室水污染物污水处理厂化验室需要仪器设备
PH氢离子浓度指数,即pH值。这个概念是1909年由丹麦生物化学家SørenPeterLauritzSørensen提出。p代表德语Potenz,意思是力量或浓度,H代表氢离子。
pH实际上是水溶液中酸碱度的一种表示方法。平时我们经常习惯于用百分浓度来表示水溶液的酸碱度,如1%的硫酸溶液或1%的碱溶液,但是当水溶液的酸碱度很小很小时,如果再用百分浓度来表示则太麻烦了,这时可用pH来表示。pH的应用范围在0-14之间,当pH=7时水呈中性;pH<7时水呈酸性,pH愈小,水的酸性愈大;当pH>7时水呈碱性,pH愈大,水的碱性愈大。pH值的计算公式如下:C(H)为H离子浓度
-lg(C(H)),例如HCL溶液,-lg(10^-2)=2碱性溶液中14-lg(C(OH))
世界上所有的生物是离不开水的,但是适宜于生物生存的pH值的范围往往是非常狭小的,因此国家环保局将处理出水的pH值严格地规定在6-9之间。
水中pH值的检测经常使用pH试纸,也有用仪器测定的,如pH测定仪。
生化需氧量和化学需氧量的比值能说明水中的有机污染物有多少是微生物所难以分解的。微生物难以分解的有机污染物对环境造成的危害更大。
COD(化学需氧量,ChemicalOxygenDemand)区别:COD,化学需氧量是以化学方法测量水样中需要被氧化的还原性物质的量。水样在一定条件下,以氧化1升水样中还原性物质所消耗的氧化剂的量为指标,折算成每升水样全部被氧化后,需要的氧的毫克数,以mg/L表示。它反映了水中受还原性物质污染的程度。该指标也作为有机物相对含量的综合指标之一。
BOD(BiochemicalOxygenDemand的简写):生化需氧量或生化耗氧量。
BOD,生化需氧量(BOD)是一种环境监测指标,主要用于监测水体中有机物的污染状况。一般有机物都可以被微生物所分解,但微生物分解水中的有机化合物时需要消耗氧,如果水中的溶解氧不足以供给微生物的需要,水体就处于污染状态。BOD才是有关环保的指标!
表示水中有机物等需氧污染物质含量的一个综合指示。
它说明水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量。其单位ppm成毫克/升表示。其值越高说明水中有机污染物质越多,污染也就越严重。为了使检测资料有可比性,一般规定一个时间周期,在这段时间内,在一定温度下用水样培养微生物,并测定水中溶解氧消耗情况,一般采用五天时间,称为五日生化需氧量,记做BOD5。数值越大证明水中含有的有机物越多,因此污染也越严重。生化需氧量的计算方式如下:BOD(mg/L)=(D1-D2)/PD1:稀释后水样之初始溶氧(mg/L)
D2:稀释后水样经20℃恒温培养箱培养5天之溶氧(mg/L)P=【水样体积(mL)】/【稀释后水样之最终体积(mL)】
悬浮物
指悬浮在水中的固体物质,包括不溶于水中的无机物、有机物及泥砂、黏土、微生物等。水中悬浮物含量是衡量水污染程度的指标之一。悬浮物是造成水浑浊的主要原因。水体中的有机悬浮物沉积后易厌氧发酵,使水质恶化。中国污水综合排放标准分3级,规定了污水和废水中悬浮物的最高允许排放浓度,中国地下水质量标准和生活饮用水卫生标准对水中悬浮物以浑浊度为指标作了规定。总磷是水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。正磷酸盐的常用测定方法有3种:①钒钼磷酸比色法。此法灵敏度较低,但干扰物质较少。②钼-锑-钪比色法。灵敏度高,颜色稳定,重复性好。③氯化亚锡法。虽灵敏但稳定性差,受氯离子、硫酸盐等干扰。水中磷可以元素磷、正磷酸盐、缩合硫酸盐、焦磷酸盐、偏磷酸盐和有机团结合的磷酸盐等形式存在。其主要来源为生活污水、化肥、有机磷农药及近代洗涤剂所用的磷酸盐增洁剂等。磷酸盐会干扰水厂中的混凝过程。水体中的磷是藻类生长需要的一种关键元素,过量磷是造成水体污秽异臭,使湖泊发生富营养化和海湾出现赤潮的主要原因。我国地面水环境质量标准规定总磷容许值如下。
氨氮:动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氨。氨氮主要来源于人和动物的排泄物,生活污水中平均含氮量每人每年可达2.5~4.5公斤。雨水径流以及农用化肥的流失也是氮的重要来源。
另外,氨氮还来自化工、冶金、石油化工、油漆颜料、煤气、炼焦、鞣革、化肥等工业废水中。
当氨溶于水时,其中一部分氨与水反应生成铵离子,一部分形成水合氨,也称非离子氨。非离子氨是引起水生生物毒害的主要因子,而氨离子相对基本无毒。国家标准Ⅲ类地面水,非离子氨的浓度≤0.02毫克/升。
氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。。
测试方法
纳氏试剂比色法
1原理
碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量.
本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为
0.02mg/L.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定.2仪器
2.1带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管.2.2分光光度计2.3pH计3试剂
配制试剂用水均应为无氨水
3.1无氨水可选用下列方法之一进行制备:
3.1.1蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存.
3.1.2离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱.3.21mol/L盐酸溶液.3.31mol/L氢氧化纳溶液.
3.4轻质氧化镁(MgO):将氧化镁在500℃下加热,以出去碳酸盐.3.50.05%溴百里酚蓝指示
液:pH60.~7.6.3.6防沫剂,如石蜡碎片.3.7吸收液:
3.7.1硼酸溶液:称取20g硼酸溶于水,稀释至1L.3.7.20.01mol/L硫酸溶液.
3.8纳氏试剂:可选择下列方法之一制备:
3.8.1称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱
红色沉淀不易溶解时,改写滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液.
另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存.3.8.2称取16g氢氧化纳,溶于50mL水中,充分冷却至室温.
另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化纳溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存.
3.9酒石酸钾纳溶液:称取50g酒石酸钾纳KNaC4H4O6•4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100Ml.
3.10铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含1.00mg氨氮.
3.11铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮.
4测定步骤
4.1水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,家数滴溴百里酚蓝指示液,用氢氧化纳溶液或演算溶液调节至pH7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导
管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL.采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液.
4.2标准曲线的绘制:吸取0,0.50,1.00,3.00,7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,家1.0mL酒石酸钾溶液,混匀.加1.5mL纳氏试剂,混匀.放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度.由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线.
4.3水样的测定:
4.3.1分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,家0.1mL酒石酸钾纳溶液.以下同标准曲线的绘制.
4.3.2分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol/L氢氧化纳溶液,以中和硼酸,稀释至标线.加1.5mL纳氏试剂,混匀.放置10min后,同标准曲线步骤测量吸光度.
4.4空白实验:以无氨水代替水样,做全程序空白测定.5计算
由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮量(mg)后,按下式计算:氨氮(N,mg/L)=m/V×1000
式中:m——由标准曲线查得的氨氮量,mg;V——水样体积,mL.
6注意事项:
6.1纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响.静置后生成的沉淀应除去.
6.2滤纸中常含痕量铵盐,使用时注意用无氨水洗涤.所用玻璃皿应避免实验室空气中氨的玷污.
污水处理厂的实验室一般都做的是很基本的生化实验,比如测BOD5、COD、SS、氨氮等,要针对你所测试的项目来定需要什么仪器,上面哪些项目都是最基本的,可以查查用什么方法测定,比如COD你可以选择在线监测这样很方便,当然仪器比较贵,也可以选择普通的消解滴定的方法(回流冷凝管,电炉,铁架台,瓶瓶罐罐什么的,酸碱滴定管,电子天平,必备的药剂,等等)。这主要是需要一些化学用的玻璃器皿和设备。显微镜也是必要的,做污泥镜检常常需要。原子吸收分光光度计如果做金属离子分析也是需要的。电子天平、数字式酸度计、电热鼓风干燥箱、电加热板、封闭式可调电炉、分光光度计、BOD测定仪.....等
全世界都在高速发展的今天,人类对水的需求量正逐渐地增加,而与此同时,水资源的浪费,水土的流失,水体的污染,也正威胁着人类的生存与发展。这其中,尤以水体污染最为严重。
水体除了水本身外,还包括水生生物和底泥等。天然水体本身所具有的净化污染物的能力,称为水体的自净作用。按净化的机制,水体自净可分为物理净化、化学净化和生物净化。水体的自净作用过程进行得相当缓慢,自净能力也是有限的。当污染物进入水体后,其含量超过水体的自净能力,引起水质恶化,破坏了水体的原有用途时称为水体污染。
究其原因,很大程度上是因为19世纪英国工业革命后,一方面工业化和城市化的迅猛发展,工业废水和生活污水排出的污染物数量大大超过水体的自净能力,而使地球上的江河湖海受到日益严重的污染;另一方面,随着科技和生产力水平的发展,各种人工合成的化学新物质日益增多,许多新物质具有突变、致畸、致癌作用,一旦污染水体,将长时间滞留在水中,水体的自净作用无法分解这些人工合成的化学新物质。
水体中的主要污染物按其存在状态可分为悬浮物质、胶体物质和溶解物质三类。
悬浮物质主要是泥砂和粘土,大部分来源于土壤和城镇街道径流,少量来自洗涤废水。
胶体物质主要是各种有机物,水体中有机物的生物部分,总大肠菌群是检验致病微生物是否存在和水体污染状况的指标之一;水中溶解氧浓度是衡量水中有机物的非生物部分污染程度的重要指标之一,溶解氧浓度DO越低,有机物污染越严重,当DO≤4时,鱼类生存就会受到影响,甚至死亡。有机物污染的另两种更常用的指标是化学需(耗)氧量COD和生化需(耗)氧量BOD。COD表示利用化学氧化剂氧化水样中的有机物所需(耗)的氧量,单位是mg/L。BOD表示利用微生物氧化水样中全部的有机物过程所消耗的溶解氧的量,单位是mg/L。这两种指标越高,表示水体污染程度越深。
溶解物质主要是一些完全溶于水的盐类(氯化物、硫酸盐、氟化物等)和溶解气体(二氧化碳、硫化氢等)。