『壹』 回灌井回灌系统装置
完善配套的地面设施、合理的工艺设备可有效防止各种堵塞,确保回灌的正常操作运行。由于储层性质和流体特点,不同热储层应采取相应的地面水质处理配套设施。应根据水质的化验结果而优化制定,选择对预处理水质最有针对性的方法:既要保证回灌水质符合要求,又要防止过度处理以增加不必要的投资。为防止物理堵塞,在回灌系统中应设置三级过滤装置(一级旋流式除砂器、二级粗效过滤和三级精密过滤)、反冲洗系统、排气装置、加压装置及氮气保护装置等装备。在连接方式上,主要考虑各自的功能以串接为最佳方式,具体工艺过程见图4-31。
图4-31 典型地热回灌过滤系统工艺流程图
1.回灌井过滤系统
地热供暖系统长年运行,管道不可能经常更换,由于管路内的老化、锈蚀,会使流经的地热流体质量受到不同程度的影响,因此需对回灌水进行净化过滤处理,去除掉回灌水源中的悬浮固相物质和滋生的细菌,降低水源质量不佳对回灌效果的不良影响。
基岩储层稳定性较好,岩石致密坚硬,流体水质较好,回灌效果普遍好于孔隙型储层。基岩回灌地面工艺配套设施重点在于除砂过滤。为不增加额外投资,可根据地热流体质量的具体情况,在回灌水源经除砂处理后,在地面净化措施上可考虑增设精度不大于50μm的管道过滤或其他过滤装置,达到能将管道及系统中残留的相对直径较大的颗粒过滤掉的目的。粗过滤器一般选择采用袋式或棒式滤料,虽然过滤效果较烧结式要差,但安装方便,又可反复清洗重复使用,使用寿命长,价格也相对较低。
孔隙型热储层由于渗透率小、岩石粒径细,滤水管网容易被细微颗粒或细菌堵塞,因此要求同时安装精、粗两级过滤装置。粗效过滤器精度应在50~80μm之间,承担过滤管道及系统中残留的相对直径较大的颗粒任务,并在一定程度上减轻精密过滤器的工作负担,降低反冲洗次数,延长滤料使用寿命;精密过滤器精度应达到3~5μm,采用精度较高过滤效果更好的第三代缠绕棒式滤芯,不仅要滤掉大部分悬浮颗粒,有效防止回灌时井内的物理堵塞,还可以有效地拦截或吸附一部分微生物,防止细菌堵塞。
地热回灌系统过滤装置由单个或数个过滤罐组成,通常是多组滤棒组装在一起,能增加过滤量,以保证过滤效果。精度相同的多个过滤罐一般采用并联方式连接,并有并联备用过滤罐,便于其中某个过滤器的反冲洗或维修。单体罐过滤量大小依所需过滤的回灌水量而确定。每个过滤罐应配有精确度等级达到1.0级的差压变送器或在罐体进、出水两端分别配备精度为0.01MPa的表盘式压力监测仪表,可根据罐体两端压力的变化情况来辨别过滤器的工作状态,并决定更换或清洗滤料的时间,以保证过滤效果。如果压差增大,表明有微小颗粒滞留在滤料上,使得滤料的缝隙变小,应及时通过反冲恢复初始工作压力。选择滤芯材料应满足系统所需精度及效果,同时要考虑耐温和耐压。如地热流体经板式换热器后,回水温度在50℃左右,为保证滤料使用寿命,要求滤料耐温应在60℃左右,如果循环水温度较高,滤料耐温范围也要相应增大,要求滤芯材料耐温性能高于地热流体最高温度;其次是耐压,由于在回灌运行时系统通常要承受一定的压力,因此要求过滤器外壳承受压力应高于系统最大工作压力。
2.反冲洗系统
由于过滤系统在长时间工作中,管道及设备中的矿物沉渣、微生物等随流体经过过滤器时将会驻留在过滤袋或过滤棒中。为保证过滤质量和降低泵耗,需要定期、定时对过滤系统进行反冲洗。用于判断是否需要反冲洗的方法通常是监测过滤器两端的压力变化,通常两端压差在0.2~0.3mH2O,或当压力超出近0.5mH2O时,应该考虑启动反冲洗程序。反冲洗系统设计方案通常有两种:
其一是单独建立反冲洗系统,即需要配置反冲洗水箱、反冲泵及相关阀门和管道。优点是系统和操作简单,当配置两台过滤器时,可不影响回灌的正常运行。但是由于需要单独配置反冲洗水箱,需要增加设备投资和在机房的占地面积,定期监测和清洗储水装置同样增加了设备维护的工作量。
第二种方法是设计自循环反冲洗系统。该系统优点是可随时利用某一过滤器过滤后的清洁水为另一过滤器进行反冲洗,避免单独配置反冲洗水箱设备、对储水装置水质的监测,节约设备投资和部分设备间的空间。同时,反冲洗系统还可以采用自动控制系统,利用电磁阀常开和常闭的特点,通过监测过滤器两端的压力变化,控制电磁阀的开启和关闭,冲洗过滤装置。该方法提高过滤效果,降低能耗,节约了人工,可以保证过滤装置始终工作在过滤的最佳状态。不足之处是反冲洗系统是自循环系统,首先不适宜采用单台过滤器,当回灌量较小时,增加过滤装置的台数,反而加大设备的投资;其次,多台过滤器运行,也会增加压力损失,加大运行成本;另外,在循环系统中需要设计独立的反冲洗管路和控制阀门等。
比较以上两种设计方法,地热回灌中采用第二种方法更为普遍。主要原因是节省设备间的空间,避免对反冲洗水质的监测和水箱的定期清洗。只要在设计和施工上保证系统运行可靠,操作方便,该系统可靠性和反冲洗效果均较好。
3.地热回灌系统排气装置
地热流体本身挟带大量气泡,换热后的循环尾水流经管道并经过过滤后,流速、压力、温度、化学特性等均会发生一系列变化,可能会有一部分地热流体中的原始气体或经由某种反应(如硝化反应)新产生的气体释放出来,或者残留一部分不饱和气体如甲烷、二氧化碳等,这些释放出来的气体、气泡团会随回灌流体一同注入。当地热流体在管道内流动时,由于管径阻力和流动状态的变化,水动力流场状态会发生变化,不饱和气体会从流体中析出并生成气泡,当驻留和堆积在岩石空隙中会产生气堵。当循环尾水进入过滤器罐体,管径的变化使其流速迅速降低,压力下降,气泡内的压力和罐内压力形成压差,并使得气泡爆裂,将气体释放出来。同时在注入初期,回灌流体会将泵管、井管内或泵管与井管的环状间隙内的气体压入储层,在回灌通道转折边缘停滞,挤占流体通道形成气体堵塞造成灌量衰减。因此在采、灌系统中要增设排气装置,便于释放回灌过程中因温度、压力变化产生的气体和流体中的不凝气团,防止流体性质发生变化后生成的气泡随回灌水源进入回灌系统,产生气相阻塞,影响回灌效果。为了确保气体的有效释放,排气装置应安装在过滤器之后、加压泵和回灌井口之前,用以在回灌流体进入回灌井之前排除流体中的多余气体。
具体是否有必要安装排气罐和该设备的规模、容量,应根据该回灌流体中气体样分析检测报告中气体所含具体组分和含量的多少而确定。在考虑安装排气设施时需要注意两点,其一是应在罐体顶部要设置自动排气阀,排气点处的高度应高于系统主管道及其他设备装置的最高点,利于系统中气体浓度聚集到一定程度时,自动将气体及时释放到罐体外,降低罐体内的压力,保证安全;其二注意如果地热流体中含气体容量较高时,要采用连接排气风道方式将已释放出的气体排出设备间,以防中毒和引发火灾。
4.地热回灌加压装置
天津市多处地热回灌系统在实际运行中,均出现了回灌井内压力过高、水位迅速上升现象,尤其是孔隙型热储层中或一些成井时间较早的地热井,在回灌运行的初期这种现象比较明显,这时就有必要采用加压方式以提高回灌量。因此在地热回灌系统中应设置加压装置,以便不具备自重回灌条件或在自然回灌条件下回灌困难、效果不理想时,启动加压泵设施采用加压方式进行回灌。
加压回灌管路系统是在自然回灌管路装置基础上,将井管密封,利用水泵压力进行回灌。加压回灌与自然回灌管路共同点是抽水管路不用控制阀门,排水及回扬管路完全一致。自然回灌适宜采用从泵管内进水方式,压力回灌因井管密封,既可以从泵管内进水,也可以用回流管从泵管外回灌。
压力回灌适用于回灌井内流体水位高、透水性差的热储层和滤网强度较大的地热深井,主要是针对新近系孔隙型热储层的回灌系统。加压泵应设置在过滤装置、排气装置之后,可选用变频立式管道离心泵,规格、型号依据回灌量和回灌压力确定。
压力回灌时系统有压力存在,要放气,因此在管路上应为加压泵专门配置放气阀和压力表等装置。实际回灌运行启动时待回灌水从放气阀溢出,使系统管路中的空气彻底排出后,再关紧封固放气阀。采用压力回灌时,回灌量和压力要由小到大逐步调节,避免造成井下滤层破坏,同时了解回灌系统的最大承载压力,不能盲目加压,否则将致使系统压力过大而损坏地热井井管和井口装置,造成不可估量的损失。
5.地热回灌系统管网材质要求
由于地热流体温度较高和普遍存在一定的腐蚀性,如果回灌运行管路采用普通金属管材,直供钢制管道,当地热流体流经铁制管道和终端设备后,排放口处尾水中铁离子的含量要大大高于地热生产井出口处的含铁量,并发现铁嗜菌;当工作系统处于开口状态时,系统腐蚀更为严重。表4-13是天津市DL-25孔隙型地热井回灌系统主要利用系统出水口水质监测跟踪资料,数据显示敞开式排水口比地热井出水口地热流体的铁离子要高出许多,说明采用金属管网对流体铁离子影响非常大。因此为有效防止腐蚀和物理、生物堵塞,回灌系统中所有输送管道、系统循环管网和回灌水管等应首选非金属管材(玻璃钢管材或PP-R管材)、镀锌钢管、不锈钢钢管,同时还要定期对所采用的管材进行严格的防腐处理。
表4-13 DL-25井供热系统各出口端水质测试结果
地热回灌地面工程系统采用的管材和管件,应综合考虑其工作压力和温度,地面输送管路管径由地热井井管及流体输送量确定,一般不宜小于φ150mm。具体选材时除综合考虑耐腐蚀和安装连接方便可靠外,还应根据输送流体的水温、水质确定,对温度不高于50℃、拉伸指数(LI)不大于10的地热流体,可选用玻璃钢管、碳钢管材、聚乙烯管或不锈钢钢管;对温度高于50℃、拉申指数(LI)大于10的地热流体,应选用无缝石油钢管或碳钢管材。
6.地热回灌系统密封要求
地热回灌系统应是一个完整的严格密闭系统,主要体现在以下几个方面:
1)在回灌运行时整个系统应始终保持正压,减少空气在地热流体输送中的渗入,严防空气渗入造成管材的氧化腐蚀,并且所有管材都必须具备良好的防腐性能和密封性能。
2)回灌井的井口装置部分应严格进行密闭处理,回灌水管、水位测管、阀门等所有接口的连接方式均应采用法兰式严格密封。尤其是人工动态监测的回灌系统,其出露在井口上的水位测孔不能是敞口直通形式,要设置有专用开关,且不得长时间处于开启状态。
3)在地热井井口安装隔氧保护设施,如设置具自动压力调节控制系统的氮气保护装置,将井内水位液面以上的井管部分自动充满惰性保护气体,始终保持井内压力略高于大气压力,阻止空气渗入到井内,隔绝空气与地热流体的直接接触,这样既能防止产生井管腐蚀,又能避免由于氧化反应所产生的新的氧化物沉淀。
4)回灌水管应保证始终浸入回灌井内流体液面以下。
由于井管回灌容易造成气堵而影响回灌效果,基岩裂隙型热储层地热回灌系统中,不宜采取井管回灌的方式,而且回灌井内不允许下置潜水电泵进行泵管回灌,应通过专用回灌水管将回灌流体从管内注入回灌井内,回灌水管下入回灌井内流体液面以下5~10m,这样能在一定程度上使整个管路形成某种意义的真空密封状态和密闭路径,减少空气渗入输送管路,实现自重密封回灌。新近系孔隙型热储层进行回灌时原则上应与基岩裂隙型热储层回灌系统一致,通过浸入液面以下的回灌水管实现自重回灌。鉴于目前新近系孔隙型热储层回灌时普遍出现回灌困难,需要不定期进行回扬,因此,回灌水管下入流体液位以下的深度应加大,浸入深度应不小于该井水位埋深的2倍,以备必要时的空压机气举回扬洗井之用;或在回灌井内下置潜水电机和泵管,下入深度大于最大动水位5~10m,潜水电机可进行抽水回扬洗井,泵管在作回扬管的同时也兼作回灌水管。
回灌井应设置专用的回扬输水旁管,并需配置专门流量计(表)。
『贰』 地热井,地下水位是怎样测量的
为您推荐万和最新的传感器型号WH311系列地热井专用液位温度一体式传感器带显示。WH311规格参数,请参考以下介绍:
一体化压咐羡力式水位计
如游正需了解东方万和产品的机型信息,请登陆官网输入型号查询详细资料。
『叁』 天津地热动态监测
一、天津地热基本情况
1.热储层特征
天津地区发育有两种热储类型,分别为以陆相碎屑沉积为主的新生界孔隙型热储(孔隙热储)和以海相沉积为主的古生界、中新元古界碳酸盐岩岩溶裂隙型热储(基岩热储)。孔隙热储包括新近系明化镇组(Nm)和馆陶组(Ng)、古近系东营组(Ed)热储层;基岩热储包括古生界奥陶系(O)、寒武系昌平组(∈c)和中元古界蓟县系雾迷山组(Jxw)热储层(图12-1)。
新近系明化镇组热储层顶板埋深300~600m,底板埋深589~1996m,涌水量在40~100m3/h之间,出水水温40~70℃,地热流体化学类型(舒卡列夫分类,下同)为HCO3-Na,HCO3·ClNa和SO4·Cl-Na型,溶解性总固体含量一般﹤1500mg/L,局部地区﹥3000mg/L,多为无—轻微腐蚀性热流体。该层是本区埋藏最浅的热储层,在宁河-宝坻断裂以南普遍分布。
新近系馆陶组热储层可分为馆I砂岩热储段和馆Ⅲ砂砾岩热储段。馆Ⅰ砂岩热储段厚100~200m,出水温度55~65℃。底部馆Ⅲ砂砾岩热储段出水水温60~80℃,水量80~130m3/h,流体化学类型以HCO3-Na,Cl·HCO3-Na型为主,溶解性总固体含量800~1900mg/L。
图12-1 热储层垂向分布示意图
奥陶系热储层属海相碳酸盐岩沉积建造,渗透系数高值区分布在海河断裂以南瞎燃、天津断裂以东和白塘口东、西断裂之间,单井出水量在100~200m3/h之间,井口稳定流温48~76℃,流体化学类型以HCO3·Cl-Na,SO4·Cl-Na·Ca型为主,溶解性总固体含量1000~4600mg/L。该热储层的地热井相对较少,开发利用强度不大。
寒武系昌平组热储层顶板埋深950~3734m,厚度14~103m。单井出水量60~100m3/h,井口稳定流温70~80℃,流体化学类型以HCO3-Na,HCO3·SO4-Na型为主,溶解性总固体含量1000~2000mg/L。
蓟县系雾迷山组热储层是天津地区分布最广、沉积厚度最大的地层,也是天津地区地热开发最主要的层位,具有分布稳定、厚度大(﹥2000m)、埋深适中(1500~3500m)的特点。流体化学类型以Cl·HCO3·SO4-Na,Cl·SO4·HCO3-Na和Cl·SO4-Na型为主,溶解性总固体含量1700~2100mg/L,局部出现﹥5000mg/L高值区,总硬度300mg/L,pH值7.5左右。
2.开发利用现状
2011年度纳入动态监测的地热井共有381口,其中开采井数313口,年开采总量为2900.11万m3;回灌井数68口,年回灌总量为908.64万m3,地热资源当年整体回灌率为31.33%。各热储层开采情况见表12-1。
3.回灌系统基本情况
2011年度天津市已建成的回灌系统共有74处,目的层包括蓟县系雾迷山组和铁岭组、寒武系、奥陶系、古近系东营组、新近系馆陶组及明化镇组热储层,实际对46处回灌系统进行了回灌。回灌系统的地热流体年度开采总量为1348.45万m3,回灌总量为908.64万m3,回灌系统整体回灌率约为67.38%。
表12-1 2011年度各热储层动态监测地热井数量及采碰神丛灌量统计表
注:据天津地热勘查开发设计院,2012。
二、地热监测范围及内容
地热监测范围平面上覆盖了除蓟县山区外的整个南部平原区,面积11 919.7km2;垂向上包括各个主要热储层。
地热资源动态监测的主要内容包括:
(1)地热井使用情况调查,包括地热井开发利用现状调查,地热井井口监测设施调查;
(2)地热井动态监测,包括地热井井口坐标及测点基准高度,地热井液面埋深(被测水面距井口的距离)及对应液面温度,按月统计开采量和回灌量,水质监测笑樱等内容;
(3)监测设施维护及改造。
(4)物探测井,包括井底测压、连续井温测试,测试地热井包括开采井、回灌井;
(5)地热流体水质化学分析。
三、监测方法及设备
1.监测方法
(1)动态系统监测。天津地区地热资源动态监测项目每月对有观测条件的地热井监测1次,重点监测井每月监测2次。将每次监测到的数据与前次数据进行对照,如发现异常,分析原因,必要时检查测量工具和观测方法,进行复测,并在备注栏说明情况。
(2)回灌系统监测。对运行的对井系统建立长期监测网(包括供暖期、非供暖期),连续监测对井系统压力、水位、流量、温度等参数。对回灌井的回灌运行状况、回灌效应进行完整的分析、研究。监测频率为供暖期每月2次。监测内容包括热储水位、开采量及回灌量、开采温度和回灌温度、运行情况等。
2.监测设备
(1)水位监测——人工监测设备。采用测绳、电流表等进行水位测量(图12-2)。
(2)水位监测——水位自动化监测设备。图12-3为2011年天津地热勘查开发设计院与南开大学共同研制的地热井水位-温度自动监测系统,目前正在天津进行试点应用,测量数据精度和稳定性较好。该系统温度测量范围为-10~125℃,分辨率为0.01℃;水位测量范围为0~200m,分辨率为0.001m。
图12-2 人工测量地热井水位埋深现场照片
图12-3 地热井水位-温度自动监测系统样机
(3)水温、水量监测设备
目前地热井水温、水量监测以自动化监测为主,人工监测为辅。2011年度全市监测井中有300眼安装了“地热井智能测控终端”(图12-4),基本实现了对这些地热井流量及温度的自动化监测。
图12-4 地热井智能测控终端照片
四、数据采集和分析
1.数据采集
数据采集方式有人工采集和水位自动化监测设备采集,现阶段以人工采集为主。重点监测井采集频率每月 2次,一般监测井采集频率每月1次。
为全面了解各热储层的水位动态特征和变化规律,根据本地区地质构造特征和热储分布特点,在一些重点地区布设了重点监测井。2011年度重点监测井的水位数据采集率在70%以上。
2.数据分析
通过地热井水位监测(图12-5),获得热储水位动态数据,发现并归纳总结出其动力场特征和变化规律,预测水位变化趋势、分析热储开采潜力,为地热资源开发利用规划及决策提供科学合理依据。
由多年的动态监测数据可知,新近系明化镇组、馆陶组和蓟县系雾迷山组热储层数据相对丰富、完整和连续,监测报告对其热储压力和水位动态特征进行了详细分析。
(1)明化镇组热储层水位动态特征分析。由地热井动态监测资料经整理后所得数据绘制的20℃液面水位埋深等值线立体图(图12-6)可以看出,2011年度明化镇组热储层静水位埋深整体上呈由中心城区及新四区向周围逐渐变浅的趋势,静水位埋深较大的地区主要分布在集中开采的中心城区和西青区,形成了水位降落漏斗中心,静水位埋深最大达到97m以上;水位埋深较小的地区主要分布在天津西北部的武清区及北部宝坻地区,普遍﹤58m,宝坻区马家店BD-01井仅为33.4m左右。
图12-5 自动监测数据和人工监测数据对比图
(据天津地热勘查开发设计院,2012)
图12-6 2011年度天津地区明化镇组热储层20℃液面静水位埋深立体图
(据天津地热勘查开发设计院,2012)
(2)馆陶组热储层水位动态特征分析。由2011年度馆陶组热储层20℃液面水位埋深等值线立体图(图12-7)可以看出,开采强度较大的塘沽、大港和东丽部分地区热储层水位埋深及降幅均较大。馆陶组缺失带西侧冀中坳陷的武清区由于热储层水动力条件相对较差,静水位埋深达78m以上;缺失带东侧则由于集中开采出现了多个水位埋深较大的降落漏斗区。
图12-7 2011年度天津地区馆陶组热储层20℃液面静水位埋深立体图
(据天津地热勘查开发设计院,2012)
(3)蓟县系雾迷山组热储层水位动态特征分析。由20℃液面静水位埋深等值线立体图(图12-8)可以看出,2011年雾迷山组热储层水位埋深为64~140m。从西南部的静海县唐官屯到大邱庄,水位埋深逐渐增大;从大邱庄向北,总体上表现为沿深大导水断裂(如沧东断裂和白塘口西断裂)水位埋深相对较浅、靠近阻水断裂水位埋深相对较大的特点,越靠近阻水的天津断裂水位埋深越大,河东区HD-09井附近成为降落漏斗中心,最大水位埋深已达140m左右。
图12-8 2011年度天津地区雾迷山组热储层20℃液面静水位埋深立体图
(据天津地热勘查开发设计院,2012)
『肆』 井口装置
1.井口安装
地热井井口装置及基础设备的设计、安装除了保证质量,满足用户利用需要外,还要保证整个系统的严格密闭,杜绝空气侵入,防止井管和泵管被腐蚀。因为当密封不严时,井口瞬时产生负压吸入空气,大量氧气驻留在井口至动静水位的井筒空间内,即使被人们判定为不具有腐蚀或轻微腐蚀的地热流体,由于存在溶解氧和温度较高等原因,实际生产中也具有一定的腐蚀性。井管腐蚀后会产生上部低温水混入、井孔变形,减少地热井的使用寿命;泵管锈蚀后,在机械震动力的作用下,大量的锈片脱落聚集沉淀至井底,堵塞滤水管网和局部地层,造成开采、回灌效果不佳。金属腐蚀严重时会发生井管和泵管断裂、地热井报废等后果。
图4-26 全地下式井泵房建筑示意图(单位:mm)
考虑到地热井井口应具备防腐、防垢、密封等功能,井口装置应选用具有抗地热流体腐蚀性的材料,结构设计应考虑井管的热胀冷缩,与井管的连接应采用填料密封套接,并应具有良好的密封性能,不宜采用井管与井口装置直接连接方式。地热井成井后井管留置在地面以上的高度以500~1000mm为宜,泵室部分的倾斜度不得超过1.5°,泵室管外应设置有保护套管,护套直径依井管直径确定,与井管之间的间距以10~20mm为宜,材质宜采用无缝套管,选料总长度应不小于1200mm,留置在地面以上的高度应不小于400mm(图4-28),安装时必须保证水平、牢固、密封。开采井的输水泵管或回灌井的回灌水管宜选用直径不小于φ150mm、符合API标准的全密封无缝钢管的石油套管或不锈钢管,同时进行严格的防腐、防垢处理。
图4-27 典型地热利用系统热力站房建筑示意图
针对图4-28开采井口装置需要说明的是:
1)本构件适用于自流与泵抽公用型井口,井口闭井压力小于1.5MPa;
2)井管应为无缝标准井管,本图以井管外径377mm为例;
3)构件安装适应保证系统安装工艺要求;
4)活动盲孔为水位监测孔,水位测量后应及时封住,防止大量空气进入地热管。
2.地热井提水设备
地热井提水设备选型原则及提水设备要求:地热井主要提水设备为井用耐热潜水电泵。选型原则是根据地热水的水质、水量、水温、动水位、静水位、井口出水压力要求等确定。其中水质决定泵的材质;其他几种参数则决定泵的参数。
3.除砂器
由于绝大多数的固体悬浮物质是由抽出的流动水体携带到地表的,因此在开采井井口需设置除砂设备,抽出流体经过除砂处理,方可保证地热流体中裹携的岩屑微粒、细砂颗粒或其他细小颗粒不被传输到循环系统管路和回灌井内。而且除砂器的设置也可在一定程度上减轻回灌系统过滤器的工作负担。
除砂器的选型、精度应根据地热井所揭露热储层岩性、流体质量来设计和确定。天津市地热利用系统中多采用旋流式除砂器,其井口除砂效率见表4-12。从表中数据可以分析得出,颗粒直径越小,单纯采用除砂器的效果就越差,特别是当粒径范围小于0.08mm时,除砂效果仅为15%。这表明采用旋流式除砂器除砂能力的极限是由于采用机械设备的原因,要想达到稳定、保证粒径范围要求,还应配备高精度的过滤装置。
图4-28 地热井标准井口装置基础设施图
表4-12 不同颗粒直径的除砂率
『伍』 常用井下物理测井方法介绍
1.视电阻率测井
(1)视电阻率测井原理
在实际测井中,岩层电阻率受围岩电阻率、钻井液电阻率、钻井液冲洗带电阻率的影响,井下物探测得的电阻率不是岩层的真电阻率,这种电阻率称为视电阻率。视电阻率测井主要包括三部分:供电线路、测量线路和井下电极系,如图4-6所示。
图4-6 视电阻率测井原理图
在井下将供电电极(A,B)和测量电极(M,N)组成的电极系A,M,N或 M,A,B放入井内,而把另一个电极(B或N)放在地面泥浆池中。当电极系由井底向井口移动时,由供电电极A,B供给电流,在地层中造成人工电场。由测量电极M ,N测得电位差ΔUMN。M ,N两点的电位差直接由它所在位置的岩层电阻率所决定,岩层电阻率越高,测得的电位差就越大;岩层电阻率越低,测得的电位差就越小。电位差的变化,反映了不同地层电阻率的变化。视电阻率测井实际上就是对电位差的连续测量,经过计算就可求得视电阻率。
(2)视电阻率曲线形态
视电阻率曲线形态与电极系的分类有关。当井下测量电极系为A,M,N时,称为梯度电极系;当井下测量电极系为M,A,B时,称为电位电极系。由供电电极到电极系记录点的距离称为电极距,常用的有2.5m梯度电极系和0.5m电位电极系。梯度电极系根据成对电极系(AB或 MN)与不成对电极系(AM或MA)的位置又分为顶部梯度电极系和底部梯度电极系。
实际测井中,底部梯度电极系曲线形态如图4-7所示。顶部梯度电极系曲线形态正好相反。
电位电极系曲线形态如图4-8所示,曲线沿高阻层中心对称,A表示异常幅度,A/2称为半幅点,岩层上下界面与半幅点位置对应。
图4-7 底部梯度电极系视电阻率曲线形状
图4-8 电位电极系视电阻率测井曲线形状
(3)视电阻率测井的应用
1)确定岩性。一般纯泥岩电阻率低,砂岩稍高,碳酸盐岩相当高,岩浆岩最高。根据视电阻率曲线幅度的高低,可以判断地下岩层的岩性。但当岩层中含高矿化度的地下水时,其对应的视电阻率相应降低。由于影响视电阻率的因素很多,曲线具有多解性,要结合岩屑、岩心等其他录井资料综合判断。
2)划分地层。实际应用中,以底部梯度电极系曲线的极大值划分高阻层的底界面,以极小值划分高阻层的顶界面,单纯用视电阻率曲线划分顶界面往往有一定误差,应结合其他曲线进行划分。视电阻率曲线确定高电阻岩层的界面比较准确,而对电阻率较低的地层则准确度较差。
2.自然电位测井
(1)自然电位测井原理
地层中有3种自然电位,即扩散吸附电位、过滤电位和氧化还原电位。扩散吸附电位主要发生在地热、油气井中,是我们主要测量的对象;过滤电位很小,常忽略不计;氧化还原电位主要产生在金属矿井中,这里不做研究。
在砂岩储层地热井中,一般都含有高矿化度的地热流体。地热流体和钻井液中都含有氯化钠(NaCl)。当地热流体和钻井液两种浓度不同的溶液直接接触时,由于砂岩地层水中的正离子(Na+)和负离子(Cl-)向井液中扩散,Cl-的迁移速度(18℃时为65×105cm/s)比Na+的迁移速度(18℃时为43 ×105cm/s)大,所以随着扩散的进行,井壁的井液一侧将出现较多的Cl-而带负电,井壁的砂岩一侧则出现较多的Na+而带正电。这样,在砂岩段井壁两侧聚集的异性电荷(砂岩带正电荷,钻井液带负电荷)就形成了电位差。
与砂岩相邻的泥岩中所含的地层水的成分和浓度一般与砂岩地层水相同,泥岩中高浓度的地层水也向井内钻井液中扩散。但由于泥质颗粒对负离子有选择性的吸附作用,一部分氯离子被泥岩表面吸附在井壁侧带负电,井壁的井液一侧将出现较多的Na+而带正电。这样,在泥岩段井壁两侧聚集的异性电荷(泥岩带负电荷,钻井液带正电荷)就形成了电位差。
由于正负电荷相互吸引,这种带电离子的聚集发生因地层岩性不同,在两种不同浓度溶液的接触(井壁)附近,形成自然电位差(图4-9)。用一套仪器测量出不同段的自然电位差,就可以研究出地下岩层的性质。
(2)自然电位曲线形态
在渗透性砂岩地层中,若岩性均匀,自然电位曲线的形态与地层中点是对称的。异常幅度大小等于自然电流在井内的电位降。一般用异常幅度的半幅点确定地层顶底界面,如图4-9所示。
图4-9 井内自然电位分布与自然电位曲线形状
(3)自然电位测井的应用
A.划分渗透层
自然电位曲线异常是渗透性岩层的显著特征。当地层水矿化度大于钻井液矿化度时(地热水多为此例),渗透层自然电位曲线呈负异常,泥岩层自然电位曲线呈正异常。当地层水矿化度小于钻井液矿化度时则相反。
划分渗透层一般以泥岩自然电位为基线,砂岩中泥质含量越少,自然电位幅度值愈大,渗透性愈好;砂岩中泥质含量越多,自然电位幅度值就愈小,渗透性就变差。
划分地层界面一般用半幅点确定。但当地层厚度h小于自然电位曲线幅度Am时,自1/3幅点算起;地层厚度h≥自然电位曲线幅度5Am时,自上、下拐点算起。
B.划分地层岩性
岩石的吸附扩散作用与岩石的成分、结构、胶结物成分、含量等有密切关系,故可根据自然电位曲线的变化划分出地层岩性。如砂岩岩性颗粒变细,泥质含量越多,自然电位幅度值就降低,据此可划分出泥岩、砂岩、泥质砂岩等。
3.感应测井
(1)感应测井原理
感应测井是研究地层电导率的测井方法。井下部分主要测井仪器有:发射线圈、接收线圈和电子线路,如图4-10所示。在下井仪器中,当振荡器向发射线圈输出固定高频电流(I)时,发射线圈就会在井场周围的地层中形成交变电磁场,在交变电磁场的作用下,地层中就会产生感应电流(I),感应电流又会在地层中形成二次电磁场(或叫次生电磁场),在次生电磁场的作用下,接收线圈会产生感应电动势,地面记录仪将感应电动势的信号记录下来,就成为感应测井曲线。
图4-10 感应测井原理图
(2)感应测井曲线形态
由于感应电流大小与地层电导率成正比,所以,地层电导率大,感应测井曲线幅度高;地层电导率小,感应测井曲线幅度低。
(3)感应测井的应用
A.确定岩性
与其他曲线配合,可区分出砂岩、泥岩、泥质砂岩、砂质泥岩等岩性。划分厚度大于2m的地层,按半幅点确定其界面;厚度小于2m的地层,因用半幅点分层较麻烦,实际中往往不用感应曲线分层。
注意的是,感应曲线上读的是电导率,其单位是毫欧姆/米(mΩ/m)。它的倒数才是视电阻率,单位是欧姆米(Ω·m)。
B.判断含水储层,划分界面
感应测井曲线对地层电阻率反应极为灵敏。由于电阻率的变化导致电导率的变化,水层电导率明显升高,分界面往往在曲线的急剧变化处。
4.侧向测井
(1)侧向测井原理
侧向测井是视电阻率方式之一,不同的是它的电极系中除有主电极系外,还有一对屏蔽电极,其作用是使主电流聚成水平层状电流(又称聚焦测井),极大地降低了钻井液、冲洗带和围岩的影响,能解决普通电极测井不能解决的问题,如在碳酸岩地层、盐水钻井液以及薄层交互剖面中提高解释效果。
侧向测井有三侧向、六侧向、七侧向、八侧向和微侧向。下面仅介绍常用的七侧向、八侧向、双侧向和微侧向。
(2)七侧向测井
1)七侧向测井是一种聚焦测井方法,其主电极两端各有一个屏蔽电极,屏蔽电极使主电流成薄层状径向地挤入地层,此时,井轴方向上无电流通过,七侧向测井曲线就是记录在不变的主电流全部被挤入地层时,所用的电压值。当地层电阻率较大时,主电流不易被挤入地层,所用的电压值就大;相反,当地层电阻率较小时,主电流容易被挤入地层,所用的电压值就小。在测井曲线上,对应高阻层,曲线有较高的视电阻率;对应低阻层,曲线有较低的视电阻率。
2)七侧向测井曲线的应用
七侧向测井曲线的特点是正对高阻层,曲线形状呈中心对称,曲线上有两个“尖子”,解释时取地层中点的视电阻率作为该高阻层的视电阻率值,取突变点作为地层的分界线,如图4-11所示。
七侧向测井可分为深、浅两种侧向。深侧向能反映地层深部的电阻率;浅侧向能反映井壁附近地层的电阻率变化。对于热储层而言,它仅反映钻井液冲洗带附近的电阻率变化。根据七侧向测井的特点,将它们组合起来,就能较好地划分地层所含流体的性质。此外,还可以求出地层的真电阻率。七侧向测井常用于孔隙型地层测井中。
图4-11 七侧向测井曲线形状图
(3)八侧向测井
八侧向测井是侧向测井的一种,原理与七侧向测井相同,实际为一探测深度很浅的七侧向测井,只是电极系尺寸大小和供电回路电极距电极系较近,因此看起来很像一个八个电极的电极系,故名八侧向。八侧向探测深度为0.35m,应用地层电阻率范围0~100Ωm,且泥浆电阻率大于0.1Ωm(魏广建,2004)。因八侧向探测深度浅,纵向分层能力较强。它是研究侵入带电阻率的方法,通常不单独使用,而是和感应测井组合应用,称为双感应-八侧向测井,是目前井下地球物理测井的主要测井项目。
(4)双侧向测井
双侧向电极系结构:由七个环状电极和两个柱状电极构成。
双侧向探测深度:双侧向的探测深度由屏蔽电极A1,A2的长度决定,双侧向采用将屏蔽电极分为两段,通过控制各段的电压,达到增加探测深度的目的。侧向测井由于屏蔽电极加长,测出的视电阻率主要反映原状地层的电阻率;浅侧向测井探测深度小于深侧向,主要反映侵入带电阻率。
双侧向纵向分层能力:与O1,O2的距离有关,可划分出h>O1,O2的地层电阻率变化。
双侧向影响因素:层厚、围岩对深、浅双侧向的影响是相同的,受井眼影响较小。
双侧向测井资料的应用:
1)划分地质剖面:双侧向的分层能力较强,视电阻率曲线在不同岩性的地层剖面上,显示清楚,一般层厚h>0.4m的低阻泥岩,高阻的致密层在曲线上都有明显显示。
2)深、浅侧向视电阻率曲线重叠,快速直观判断油(气)水层。
由于深侧向探测深度较深,深、浅测向受井眼影响程度比较接近,可利用二者视电阻率曲线的幅度差直观判断油(气)、水层。在油(气)层处,曲线出现正幅度差;在水层,曲线出现负幅度差。如果钻井液侵入时间过长,会对正、负异常差值产生影响,所以,一般在钻到目的层时,应及时测井,减小泥浆滤液侵入深度,增加双侧向曲线差异。
3)确定地层电阻率。
根据深、浅双侧向测出的视电阻率,可采用同三侧向相同的方法求出地层真电阻率Rt和侵入带直径Di。
4)计算地层含水饱和度。
5)估算裂缝参数。
(5)微侧向测井
微侧向装置是在微电极系上增加聚焦装置,使主电流被聚焦成垂直井壁的电流束,电流束垂直穿过泥饼,在泥饼厚度不大的情况下可忽略不计,测量的视电阻率接近冲洗带的真电阻率。
由于主电流束的直径很小(仅4.4cm),所以,微侧向测井的纵向分辨能力很强。因此,应用微侧向测井曲线可以划分岩性,划分厚度为5cm的薄夹层、致密层,常用于碳酸盐岩地层测井中。
5.声波时差测井
(1)声波时差测井原理
声波时差测井原理如图4-12所示,在下井仪器中有一个声波发射器和两个接收装置。当声波发射器向地层发射一定频率的声波时,由于两个接收装置与发射器之间的距离不同,因此,初至波(首波)到达两个接收器的时间也不同。第一个接收器先收到初至波,而第二个接收器在第一个接收器初至波到达Δt时间后才收到初至波。Δt的大小只与岩石的声波速度有关,而与泥浆影响无关。通常两接收器之间的距离为0.5m,测量时仪器已自动把Δt放大了一倍,故Δt相当于穿行1m所需的时间。这个时间又叫做声波时差,单位是μs/m (1s=106μs)。声波时差的倒数就是声波速度。
图4-12 声波时差测井原理图
(2)声波时差测井的应用
A.判断岩性
岩石越致密,孔隙度越小,声波时差就越小;岩石越疏松,孔隙度越大,声波时差就越大。因此,可以利用声波时差曲线判断岩性,从泥岩、砂岩到碳酸盐岩声波时差是逐渐减小的(泥岩252~948μs/m;砂岩300~440μs/m;碳酸盐岩125~141μs/m)。
B.划分油、气、水层
当岩层中含有不同的流体时,由于流体密度存在差异,声波在不同流体中传播速度不同。因此,在其他条件相同的前提下,沉积地层中的流体性质也影响声波时差,如淡水声波时差为620μs/m,盐水为608μs/m,石油为757~985μs/m,甲烷气为2260μs/m。同样,岩石中有机质含量也可影响声波的速度,一般情况下,泥页岩中有机质含量越高,所对应的声波时差值越大(操应长,2003)。
实际应用中,气层声波时差较大,曲线的特点是产生周波跳跃现象。油层与气层之间声波时差曲线的特点油层小,气层大,呈台阶式增大;水层与气层之间声波时差曲线的特点是水层小,气层大,也呈台阶式增大。但水层一般比油层小10%~20%,如图4-13所示。
C.划分渗透性岩层
当声波通过破碎带或裂缝带时,声波能量被强烈吸收而大大衰减,使声波时差急剧增大。根据这个特征,可以在声波时差曲线上将渗透性岩层划分出来。
D.沉积地层孔隙度、地层不整合面研究
在正常埋藏压实条件下,沉积地层中孔隙度的对数与其深度呈线性关系,声波时差对数与其深度也呈线性关系,并且随埋深增大,孔隙度减小,声波时差也减小,若对同一口井同一岩性的连续沉积地层,表现为一条具有一定斜率的直线。但是,有的井声波时差对数与其深度的变化曲线并不是一条简单的直线,而是呈折线或错开的线段,可能就是地层不整合面或层序异常界面。
图4-13 声波时差测井曲线应用
6.自然伽马测井
(1)自然伽马测井原理
在自然界中,不同岩石含有不同的放射性。一般地,岩石的泥质含量越高放射性越强,泥质含量越低放射性越弱。其射线强度以γ射线为最。
自然γ测井中,井下仪器中有一γ闪烁计数器,计数器将接收到的岩层自然γ射线变为电脉冲,电脉冲由电缆传至地面仪器的放射性面板,变为电位差,示波仪把电位差记录成自然伽马曲线。岩层的自然伽马强度用脉冲/分表示,如图4-14所示。
图4-14 自然伽马测井装置及曲线形状图
h—岩层厚度;d0—井径
(2)自然伽马曲线形态
1)自然伽马曲线对称于地层层厚的中点;
2)当地层厚度大于3倍井径时,自然伽马曲线极大值为一常数,用半幅点确定岩层界面;
3)当地层厚度小于3倍井径时,自然伽马曲线幅度变小,小于0.5倍井径时,曲线表现为不明显弯曲,岩层越薄,分层界限越接近于峰端,如图4-14所示。
(3)自然伽马测井的应用
A.划分岩性
在砂泥岩剖面中,泥岩、页岩自然伽马曲线幅度最高,砂岩最低,而粉砂岩、泥质砂岩则介于砂岩和泥岩之间,并随着岩层泥质含量增多而曲线幅度增高(见图4-15)。
在碳酸盐岩剖面中,泥岩、页岩自然伽马曲线值最高,纯灰岩、白云岩最低;而泥质灰岩、泥质白云岩则介于二者之间,并随着泥质含量的增加而自然伽马值也增加。
图4-15 应用自然伽马和中子伽马曲线判别岩性
B.判断岩层的渗透性
根据自然伽马曲线的幅度可判断泥质胶结砂岩渗透性的好坏,也可间接判断碳酸盐岩裂缝的发育程度,划分裂缝段。
C.进行地层对比
由于自然伽马曲线不受井眼、钻井液、岩层中流体性质等因素的影响,所以,在其他测井曲线难以对比的地层中,可用自然伽马曲线进行地层对比。
D.跟踪定位射孔
由于自然伽马测井不受套管、水泥环的影响,所以,在下完套管之后的射孔作业中,将下套管的自然伽马测井曲线与裸眼测井曲线对比,确定跟踪射孔层位。
『陆』 什么是地热井地热井有哪些用途
地热能是一种新型的可再生能源,并且接下来将会不断的飞跃,它的直接性利用和地热的发电都会有很大的发展。而地热井就是地热温泉开发主体工程中最重要的阶段,将蕴藏在地下的温泉资源从可再生能源矿产,变成可利用的清洁能源。下面枣改闷我们就来了解一下什么是地热井,以及地热井有哪些用途的相关内容。
什么是地热井
1、了解地热井的人都知道,它是采取地热资源中最为重要的一项工程步骤,经过钻井的工作往地面向下几百或几千米来开采,索取能源,传输到地上,进行各种地热利用,是非常复杂的工作程序。地热井工程一般时间很长,工程投入资金也很高,但这一阶段的工程关系到地热能开发的成败,因而,地热钻井行歼亏业的提升,有着至关重要的意义。
2、一般为提高地热钻井的准确率,在准备工作之前我们都需要做好相关的勘察工作。然后都是使用一些科技的手段来探测地下热水资源的深度、储量、性质、流动、立场及生成等规律信息,为地热钻井提供第一手资料。同时了解地质状况,是否适合钻井,相应的地质状况应采用何种钻井工艺,拟定合理的钻井方案。这些“课前作业”做好,在能在地热钻井过程中事半功倍,达到良好的效果,使工程顺利进行。
3、另外我们进行开采地热资源时,我们要制定一些相关的管理方法,在地热钻井这一项工程中我们不仅仅要选择合适的工艺和技术,所选择设备和耗材的选择也至关重要。而在钻井过程中,要严格管理,依据方案按部就班进行工程的同时,也要随时进行井下检测,遇到情况及时调整。避免因地质问题带来的故障和事故,提升管理水平,是提高钻井效率,确保钻井成功率的保障。
地热井有哪些用途
一、医疗洗浴
地热井在如今很多场所都在广泛的应用,并且它的作用性很大,比如用来做医疗洗浴,那么在温度方面上最好就是在40~60℃。温度偏高需加入凉水或适当降低温度后,方可用于洗浴,这样做对地热资源是一种浪费,温度偏低,会使身体感到不适。用于医疗的地热水,除有温度要求外,对水质有相应的要求,我国目前采用下列标准作为医疗地热水,又称医疗矿泉水水质标准。
二、饮用矿泉水
其实地热井由于很多都是来自深部内的低温地热水,所以纯天然无污染,自然就会经过相关的加工处理,将它作为饮用的矿泉水。并含有一些有益于人体健康的微量元素,可作为饮用天然矿泉水开发利用,我国近年来开发的一些饮用天然矿泉水中,就有相当一部分是低温地热水。当地热水的污染物指标、微生物指标及锂、锶、锌、铜、铬、钡等组分的限量指标符合要求的条件下,水中有一项指标符合表2.5.6的规定,可作为饮用天然矿泉水开发。
三、发电
现在我们国家很多地热田都是将它作为发电地区,那么我们来了解一下目前都有哪些地方是用来发电的。比如:广东邓屋、湖南宁乡灰汤、西藏羊八井、河北后郝窑等,上述地热田所凳弯建电站除西藏羊八井投入工业利用外,其余均为试验性电站。
『柒』 菏泽中考物理实验问题
2011年山东菏泽中考物理试题及参考答案(word版)
绝密★启用前 试卷类型:A
山东省菏泽市2011 年初中学业水平测试
物 理 试 题
注意事项:
1.本试题共8页,满分为70分,考试时间为70分钟。用钢笔或圆珠笔直接答在试卷上。
2.答题前考生务必将密封线内的项目填写清楚。
一、选择题(本题包括8小题,每小题2分,共16分。每小题只有1个选项符合题意,把正确选项前面的字母填在题干后的括号内,选对的得2分,多选、错选均不得分)
1.了解社会,从了解自己开始,对于一名初中生来讲,下面的说法中错误的是( )
A.他的质量大约是50 kg
B.他的身高大约是160 cm
C.他的密度大约是0.5×103 kg/m3
D.他的正常体温大约是37 ℃
2.电视机等家用电器的开启、关闭及频道转换,可以通过遥控器实现,遥控电视机的光是( )
A.红光 B.红外线 C.紫光 D.紫外线
3.物理就在我们身边,自行车的设计者运用了很多物理知识,下列说法中错误的是( )
A.螺母下面垫一个垫圈,是为了增大压强
B.车轴上装有滚动轴承是为了减小摩擦
C.车轮的外胎做有凹凸花纹是为了增大摩擦
D.尾灯可以将从不同方向射向它的光反射,让后面的人看到
4.“珍爱生命、注意安全”是同学们日常生活中必须具有的意识,
下列有关安全的说法,错误的是 ( )
A.如果发生触电事故,应立即切断电源,然后施救
B.雷雨天,人不能在高处打伞行走,否则可能会被雷击中
C.使用验电笔时,手必须接触笔尾金属部分
D.洗衣机、电冰箱、电脑等许多家用电器均使用三脚插头 与三孔插座连接,如图2所示,在没有三孔插座的情况下,可以把三脚插头上最长的插头去掉,插入二孔插座中使用用电器
5.量筒做得细而高,不做成粗而矮的形状,如图3所示,主要原因是 ( )
A.细高的量筒便于操作
B.细高的量筒可以做出相对较大的底座,增加稳度
C.细高的量筒与粗矮的相比,相应的刻度间隔较大,能较准确地读数
D.粗矮量筒中的液体较多,筒壁所受压强较大,需用较厚的玻璃,因而不便读数
6.2009年3月1日,“嫦娥一号”卫星准确落向月球预定撞击点,为中国探月一期工程画上了圆满的句号。下列关于“嫦娥一号”的说法错误的是 ( )
A.“嫦娥一号”在围绕月球转动时,运动状态不变
B.地面对卫星的指令是通过电磁波传递的
C.“嫦娥一号”在月球表面受到的重力比在地球表面小
D.由于月球表面没有空气,所以听不到撞击声
7.测绘人员绘制地图时,需从高空向地面照相,若使用的相机镜头焦距为50 mm,则胶片到镜头的距离 ( )
A. 大于100 mm B. 等于50 mm
C.小于50 mm D. 介于50 mm和100 mm之间
8.小明居住的帝都花园中有很多路灯,晚上没有行人时,灯仍然亮着。他想:能不能在晚上没有行人通过时,路灯能自动熄灭呢?通过查资料知道有一种“光控开关(天黑时自动闭合,天亮时自动断开);还有一种“声控开关”(有声音时自动闭合,一分钟后,若再无声音就自动断开)。小明利用这两种开关设计了一个“聪明”的电路:
(1)白天路灯不亮
(2)晚上有人走动发出声音时,路灯自动亮起来,一分钟后,若再无声音就自动断开
请判断小明设计的电路图是图4中的 ( )
二.填空题:(本大题包括6小题,每小题2分,共12分)
9.高压锅密封性能良好,用它煮食物时,水蒸汽不易外泄,从而 了锅内的压强(填“增大”或“减小”),使锅内水的沸点 (填“升高”或“降低”)。
10.牲畜自动饮水器的示意图,如图5所示,饮水杯A、B、C的水位可以保持一定,便于牲畜饮用,设计者运用了 原理和 原理。
11.李军同学在实验室模拟“云和雨的形成”,如图6所示,请写出整个过程主要的物态变化的名称: 、
12. 如图7所示电路,闭合开关时,发现灯泡L1、L2均不亮,电流表指针几乎没有偏转。某同学用一根导线去查找电路故障:他将开关闭合,然后将导线并联在L1两端,发现L2亮,电流表指针发生偏转,由此可知电路故障可能是(电流表的量程较大)
13.鄄城温泉度假村利用地热水供房间洗浴用水,请计算质量为100kg的地热水,温度从70℃降低到20℃,放出的热量是 J
(c水=4.2×103J/(kg?℃)。
14.小聪一家去北京旅游,在北京市郊公路的十字路口,他看到图所示的交通标志牌,标志牌上的数字“40”表示的意思是 ,汽车在遵守交通规则的前提下,从此标志牌处匀速到达北京,最快需要 h。
三.作图与实验探究:(本题包括5个小题,共18分。按题目要求作答)
15.(2分)请在图9中标出通电螺线管的N、S极。
16.(2分)如图10所示,考古人员需要对一口古井进行清理,为了解决照明问题,请你帮他们把太阳光反射到井里,并能垂直照亮井底。
17.(4分)探究“物体不受外力时的运动规律”,写出三个必需的实验器材: 、 ,这个实验用到一个很重要的研究方法,是
18.(3分)利用如图11(甲)所示实验电路,探究“通过导体的电流跟电压的关系”时:
(1)需要 个定值电阻。
(2)滑动变阻器的作用是
(3)利用实验数据作出的I- U关系图线,与图11(乙)中的 最接近
19(6分).很多同学有过疑问“声音具有能量吗?它具有的能量与声音的响度和频率是不是有关呢?”某同学对其中两个问题进行探究,实验装置如图12所示(图丢失:八上40页,图3-1-12):A为一个圆筒,它的一端用剪成圆片的挺直的纸(纸的中间剪一圆孔)粘牢,另一端用塑料薄膜包住并绷紧,用橡皮筋扎牢。B为一只点燃的蜡烛。完成表中的内容
探 究 内 容“声音是否具有能量”“声能与响度是否有关”
小孔距烛焰的距离3cm
做 法
观 察 内 容
为保证每次实验声音的频率相同,你的做法是
四.计算题:(本题分2小题,共12分。解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分。有数值计算的,答案中必须明确写出数值和单位)
20.(6分)体积为2 m3、密度为2.6 ×103 kg/m3的古代石像沉在河底,考古工作者用动滑轮将石像缓慢提升,如图13所示,在没有将石像提出水面前,若不计摩擦和滑轮重力,求:
(1)石像的重力
(2)石像在水中受到的浮力
(3)作用于绳端的拉力F
(4)若缓慢将石像提升3 m,拉力做的功是多少?
(g=10 N/kg)
21(6分).浴霸是安装在浴室内供取暖和照明的家用电器,某品牌浴霸的铭牌和简化电路如图14所示,L为照明灯,L1和L2是两个功率均为275 W的红外线取暖灯
额定电压额定频率额定功率
照明取暖
220V50HZ40W 550w
(1)浴霸工作时,为了使取暖功率达到最大值,应闭合的开关是
(2)照明灯工作时,它的电阻是多大?
(3)三灯同时正常工作半小时,消耗多少电能?
五.拓展应用:(本题包括3个小题,共13分,按题目要求作答)
22.(3分)示教板上面安装两个完全相同的灯泡,都能发光。在不看示教板背面电路连接,不用其他任何仪器的情况下,判断它们是串联还是并联
方法现象结论
串联
并联
23.(4分)过去的100年里,由于阿拉斯加和南极冰川的融化,全球海平面上升了20 cm,国际气象组织认为:人类二氧化碳排放,是造成温室效应最主要的罪魁祸首,如果二氧化碳排放不加以控制,到2100年,海平面将上升1 m;如果南极冰盖全部融化,海平面要上升60 m左右,许多沿海地区将变成汪洋大海。据卫星观测证实,近来已有3座巨型冰山先后脱离南极大陆漂流,其中最大一座面积相当于10个香港。
火力发电和汽车尾气排放出大量二氧化碳,请你从以减少温室效应的角度,就“发电业”和“汽车业”的未来发展,提出自己简短的建议
(1)发电业
(2)汽车业
24.(6分)你可以把轮船改装成“水下飞机”吗?参照你对飞机的理解,完成下列问题:
(1).为保证船员的生命安全,必须让这个水下飞机在失去动力时自动浮上水面,舱体设计必须满足的基本条件是:
(2)若没有潜艇的“吸水和排水”装置,如何让水下飞机下沉呢?(要求:用简短文字和简图说明你的设计)
(3)按照你的设计,水下飞机下潜时,会停留在需要的深度做水平前进吗?要能控制水下飞机的下沉速度,并能让它保持一定深度水平前进,你又将怎么改变你的设计呢?(2分难)
『捌』 地热井,地下水位是怎样测量的
简单的就是用导电测绳侍闹告和万用表测。直接,简单,但不能老明自动记录,测绳深度精度差。还可用超声测深仪,还算方便,井口操作要认真点。再就是用JSW-2自动水位仪,是连续记录水位变化的仪弯晌器,把仪器下到水面下几十米,固定仪器.监测时间内一直连续记录水位变化,这期间水位下降和上升的全过程都被记录下来.
数据可以回放到计算机里,有软件可出资料。我也是刚在上海地学仪器那里现贩卖的性息,哈哈,www.gi200.com/
『玖』 地下水自动化监测技术
一、内容概述
中国地质调查局水文地质环境地质调查中心在国土资源部环境司、中国地质调查局、科学技术部、中国地质环境监测院的项目支持下,针对国内在地下水监测仪器方面的不足,综合考虑野外环境和人为破坏等各种因素,自主研发了地下水动态自动化监测技术。研发工作可分为三个阶段。
1.2002~2004年
研究解决的主要核心技术:
(1)应用国外先进的传感器技术研制出水位/水温复合式探头,为克服大气压变化的影响,研制了独特的气压平衡装置,使传感器与大气连通,有效地克服了大气压变化对测量值的影响,使探头稳定性得到了充分对保证。
(2)设计了全密封圆筒式结构,便于野外安装及保管,密封、防潮问题的解决,使仪器系统可靠性得到了保证。
(3)研制了低功耗、高稳定的主机电路。为了解决野外长期自动监测设备,既要求连续工作,又要求直流(电池)供电问题,仪器系统全部采用低功耗的元器件,对功耗较大的传感器、放大器、A/D转换器以及单片机等采用了间断供电方式。
(4)研制了单片机控制和数据处理软件,并针对仪器在推广使用中出现的各种问题,对软件进行了修改,针对几种由于用户操作不当等人为因素造成的影响,增加了防范措施。
上述成果于2004年获国土资源科学技术奖二等奖,2007年荣获中国仪器仪表学会2007年度优秀产品奖。2008年获得了“地下水动态自动监测仪”(专利号:ZL200820108674.3)、“水位监测气压平衡装置”(专利号:ZL200820108673.9)两项实用新型专利。
2.2009年
“WS-1040地下水动态监测仪”被列入科技部“国家重点新产品计划”,依托国家重点新产品项目,对地下水动态监测仪器进行了升级改造。通过核心器件的升级换代、信号调理电路的改进,进一步降低了整机功耗,提高系统的集成性、稳定性和可靠性。其功能已达同类产品水平。
3.2010年至今
依托地质调查项目,开展了实用地下水监测技术研究,完成了地下水动态远程监测系统的研制。取得了如下成果:
(1)与国际知名品牌联合,研发了地下水动态远程监测实用产品,实现地下水动态监测数据的自动采集、传输、远程监控。
(2)开发了多级多源设备远程管理系统,实现了基于多源、多方式、多级别的监测数据接收和同步更新。与地下水远程监测设备联合,实现了监测设备的远程管理。
(3)地下水动态远程监测系统通过了国内外相关部门的检测,得到了国内外同行的好评。特别是在美国地下水监测展会上,引起了业内人士的广泛关注。
(4)工程化是保证产品质量的关键环节,通过产品的工程化工作,提高了质量,降低了成本,实现了科研样机向产品化的真正转变。同时,通过工程化工作,积累了经验,锻炼了人才,规范了产品的研发,提高了技术人员的工程化能力。为今后科技成果的转化奠定了基础。
(5)依托地调项目,开展项目延伸,地下水远程监测系统在南水北调沿线地下水监测工作中发挥了作用。
地下水动态远程监测系统主要由现场监测仪器、商用公共服务网络和监测中心站组成。在系统中,中心站通过公共服务网络与各监测仪器进行信息交换,完成监测数据回收和监测设备管理。现场监测设备包括水位水温传感器、数传仪器、井口保护装置。各监测仪器通过传感器实现了地下水水位和水温长期自动监测,测量数据自动保存在存储单元。通过数传仪器将数据定时发送到控制中心。数传仪器采用不锈钢圆筒结构,通过电缆配接传感器,传感器及数传仪器均可放入监测井中,因此便于保护,并克服了气候及天气的影响。整套仪器通过井口保护装置,实现了野外监测设备的安全管理。监测中心站包括数据接收系统、终端服务器和控制软件。可定期通过公共网将监测数据传入中心站并完成仪器的参数设置。该系统具有自动存储、远程传输、接收、解译、入库、管理和监测井信息、监测设备信息、通讯设备信息管理以及异常报警等功能,数据可对国家级、省级、地市级三级机构同步传输和更新。此外,该监测仪器还具有高精度、高分辨率、抗干扰、微功耗等优点,可全天候无人值守工作。内置大气压传感器,除独立测量气压、气温外,可以在无通气管条件下进行就地大气压力补偿。
二、应用范围及应用实例
该系统能对地下水水位和水温动态变化进行长期自动监测,可广泛应用于水文地质、环境地质、地质灾害预测预报、环境保护、水资源管理、地热井的监测、水利、矿区水文等领域。
1.地下水动态远程监测系统在南水北调工程地下水监测中发挥作用
南水北调作为国家重大战略工程,掌握其沿线区域地下水基础资料,将为今后的调蓄、工程管理等后续工作提供重要依据。由中国地质调查局水文地质环境地质调查中心自主研发、具有国际先进水平的10套S-GRT-1型地下水远程动态监测仪安装在了南水北调工程河南、河北段,分别在河南鹤壁、安阳和河北邯郸、邢台、石家庄等地区,监测区域全长350km,可以对地下水的水位、水温、气压、气温等数据进行动态采集。该批仪器自2012年9月1日安装完毕并启动以来,已经成功运行两个多月,传回的数据精准可靠。
未来,我国自主研发的相关地下水远程动态监测系列仪器将陆续安装在南水北调工程的沿线,为监测区域内地下水的安全提供持续有力保障。
2.黑河流域地下水监测
黑河流域地下水动态监测始于20世纪80年代,监测区域主要有张掖、高台、临泽、酒泉4个县市,主要对地下水水位、水质、水温、泉水流量等进行监测,监测手段以人工监测为主。水环地调中心结合自然科学基金重点项目“黑河流域地表水与地下水相互转化的观测与机制研究”,将自主研发的地下水动态远程监测系统应用于黑河平原区,其目的一是为该项目的科学研究提供监测数据支撑,二为黑河流域的地下水科学管理提供决策依据。该系统可对地下水水位和水温的动态变化进行长期自动监测。测量数据自动保存在仪器内部的存储单元内,可定期通过公共服务网,将监测数据传入终端管理平台并完成监测数据、监测设备的动态管理。实现了地下水动态数据自动采集、存储、传输、远程管理。极大方便了监测部门的相关工作。为黑河流域地表水与地下水相互转化的观测与机制研究提供了基础数据。
三、推广转化方式
地下水监测技术成果的推广转化可通过宣传报道、会议交流、人员培训、技术咨询等方式向用户推荐并引入市场。成果将通过局部试点示范,并逐步在全国范围内推广应用,可广泛应用于地下水长期观测、水资源调查、地表水监测、抽水井水位监测、工业用水管理等多种场合。
技术依托单位:中国地质调查局水文地质环境地质调查中心
联系人:魏玉梅
通讯地址:河北省保定市七一中路1305号
邮政编码:071051
联系电话:0312-5908510
电子邮件:[email protected]
『拾』 如何选择深井水位显示装置
深井水位不好量,容易卡段线,千万不能用贵重仪器,所以必须用普通细线。
因为深井内部电缆、法兰盘障碍太多了,弄不好设备就卡死进去了,更不敢用自动探头,所以必须采用电回路测绳测量,网上好像有卖的,搜名字:测量井水位一下就出来了,这种设备非常好用,真断到井里也不心疼,因为价很低啦。