1. 轴承密封装置起什么作用选择时考虑哪些因素
轴承密封主要分为:防尘盖、非接触式密封圈、接触式密封圈
选择是应注意以下问题回:答
温度 非接触式密封圈材料是橡胶材质,主要是丁晴橡胶 理想使用温度为70~80摄氏度,短时可以达到120摄氏度,防尘盖为钢材质,可以耐高温。
转速 防尘盖密封的轴承转速可以比较高,而接触式密封圈,由于设计结构的关系,密封圈和轴承内外径是接触的,所以转速不能太高。
防尘性能 接触式密封圈防细小灰尘的能力比防尘盖要高
希望对你有帮助!~~~
2. 轴系采用什么类型,它们的布置和安装方式有什么特点,轴承的锁紧和固定是什么结构。
这真的有很多,具体问题具体分析:首先要考虑载荷的分布和受力平衡,其次是轴承的特性和唯罩辩经济耐用性,最后才是挑选最合适的!一般都要看受力的方向,选择不同功能的轴承!
看你轴承载荷在那个闷戚位置吧,一般固定在都是内外圈,跟着轴承转的,固定在内圈,与轴承同心,其它固定外圈```
调整轴承间隙及轴承结构的位置呢,市场上部分轴承都有设计到,允许一定程度的不同心或者尺寸误差,热胀冷缩自动找正,自动调心等功能,间隙和位置,还是那句,具体轴承是用在什么机器上,充当一个什么角色,受多少个作用力等等,你这三个问题,可以写几篇博士论指缺文了!
3. 液体动压滑动轴承实验报告百分表和千分表的作用
液体动压滑动轴承实验指导书
一、实验目的
1、了解实验台的构造和工作原理,通过实验进一步了解动压润滑的形成,加深对动压原理的认识。
2、学习动压轴承油膜压力分布的测定方法,绘制油膜压力径向和轴向分布图,验证理论分布曲线。
3、物贺掌握动压轴承摩擦特征曲线的测定方法,绘制f—n曲线,加深对润滑状态与各参数间关系的理解。
二、实验原理及装置
1.概述
此项实验是径向加载的液体动压滑动轴承实验。其目的是测量念蚂尘轴承与转轴间隙中的油膜在圆周方向的压力分布值(见图1),并验证径向油膜压力最大值批PMAX不在外载荷FR的垂线位置仔禅,而是在最小油膜厚度附近,即?P?0处。该实验还可以测试下列几项内?X
容。(1)测量轴承与转轴间隙中的油膜在轴线方向的压力分布值,并验证轴向压力分布曲线呈抛物线分布,即轴向油膜最大压力值在轴承宽度的中间位置(见图2)。
4. 更换轴承作业安全分析怎么写
您好,更换轴承作业安全分析应该包括以下几个方面:
1. 对轴承更换作业的安全风险分析:首先,应该分析更换轴承作业的安全风险,包括轴承更换作业的机械危险、电气危险、化学危险、环境危险等,以及更换轴承作业的操作危险,如操作不当、操作错误等。
2. 对轴承更换作业的安全控制措施:其次,应该分析更换轴承作业的安全控制措施,包括技术控制措施、管理控制措施、人员防护措施等,以确保更换轴承作业的安全进行。
3. 对轴承更换作业的安全检查:最后,应雀桥该分析更换轴承作业的安全检查,包括更换轴承作业前的安全检查、更换轴承作业中的安全检查、更换轴承作业后的安全检查等顷樱猛,以确保更换轴承作业的安全完成颂纳。
总之,更换轴承作业的安全分析应该包括对轴承更换作业的安全风险分析、安全控制措施、安全检查等,以确保更换轴承作业的安全进行和安全完成。
5. 二级直齿展开式圆柱齿轮减速器课程设计的课程设计及实验报告书
械设计课程设计任务书
班 级 姓 名
设计题目:带式运输机传动装置设计
布置形式:设计用于带式运输机的一级直齿圆柱齿轮减速器(Ⅰ)
传动简图
原始数据:
数据编号 1 2 3 4 5 6
运输带工作拉力F/N 800 850 900 950 1100 1150
运输带工作速度v/(m/s) 1.5 1.6 1.7 1.5 1.55 1.6
卷筒直径D/mm 250 260 270 240 250 260
工作条件:一班制,连续单向运转。载荷平稳,室内工作,有粉尘。
使用期限:10 年
生产批量:10 套
动力来源:三相交流电(220V/380V )
运输带速度允许误差:±5% 。
提问者: 浪人5 - 试用期 一级 其他回答 共 1 条
这个是我好不容易才找到的,一个东东啊,你可以自己看看啊,就差不多能自己理解了。。。给我你的邮箱发给你啊!我的是[email protected]
目 录
设计任务书…………………………………………………2
第一部分 传动装置总体设计……………………………4
第二部分 V带设计………………………………………6
第三部分 各齿轮的设计计算……………………………9
第四部分 轴的设计………………………………………13
第五部分 校核……………………………………………19
第六部分 主要尺寸及数据………………………………21
设 计 任 务 书
一、 课程设计题目:
设计带式运输机传动装置(简图如下)
原始数据:
数据编号 3 5 7 10
运输机工作转矩T/(N.m) 690 630 760 620
运输机带速V/(m/s) 0.8 0.9 0.75 0.9
卷筒直径D/mm 320 380 320 360
工作条件:
连续单向运转,工作时有轻微振动,使用期限为10年,小批量生产,单班制工作(8小时/天)。运输速度允许误差为 。
二、 课程设计内容
1)传动装置的总体设计。
2)传动件及支承的设计计算。
3)减速器装配图及零件工作图。
4)设计计算说明书编写。
每个学生应完成:
1) 部件装配图一张(A1)。
2) 零件工作图两张(A3)
3) 设计说明书一份(6000~8000字)。
本组设计数据:
第三组数据:运输机工作轴转矩T/(N.m) 690 。
运输机带速V/(m/s) 0.8 。
卷筒直径D/mm 320 。
已给方案:外传动机构为V带传动。
减速器为两级展开式圆柱齿轮减速器。
第一部分 传动装置总体设计
一、 传动方案(已给定)
1) 外传动为V带传动。
2) 减速器为两级展开式圆柱齿轮减速器。
3) 方案简图如下:
二、该方案的优缺点:
该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。齿轮相对于轴承不对称,要求轴具有较大的刚度。高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。原动机部分为Y系列三相交流 异步电动机。
总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。
计 算 与 说 明 结果
三、原动机选择(Y系列三相交流异步电动机)
工作机所需功率: =0.96 (见课设P9)
传动装置总效率: (见课设式2-4)
(见课设表12-8)
电动机的输出功率: (见课设式2-1)
取
选择电动机为Y132M1-6 m型 (见课设表19-1)
技术数据:额定功率( ) 4 满载转矩( ) 960
额定转矩( ) 2.0 最大转矩( ) 2.0
Y132M1-6电动机的外型尺寸(mm): (见课设表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:270 AD:210 HD:315 BB:238 L:235
四、传动装置总体传动比的确定及各级传动比的分配
1、 总传动比: (见课设式2-6)
2、 各级传动比分配: (见课设式2-7)
初定
第二部分 V带设计
外传动带选为 普通V带传动
1、 确定计算功率:
1)、由表5-9查得工作情况系数
2)、由式5-23(机设)
2、选择V带型号
查图5-12a(机设)选A型V带。
3.确定带轮直径
(1)、参考图5-12a(机设)及表5-3(机设)选取小带轮直径
(电机中心高符合要求)
(2)、验算带速 由式5-7(机设)
(3)、从动带轮直径
查表5-4(机设) 取
(4)、传动比 i
(5)、从动轮转速
4.确定中心距 和带长
(1)、按式(5-23机设)初选中心距
取
(2)、按式(5-24机设)求带的计算基础准长度L0
查图.5-7(机设)取带的基准长度Ld=2000mm
(3)、按式(5-25机设)计算中心距:a
(4)、按式(5-26机设)确定中心距调整范围
5.验算小带轮包角α1
由式(5-11机设)
6.确定V带根数Z
(1)、由表(5-7机设)查得dd1=112 n1=800r/min及n1=980r/min时,单根V带的额定功率分呷为1.00Kw和1.18Kw,用线性插值法求n1=980r/min时的额定功率P0值。
(2)、由表(5-10机设)查得△P0=0.11Kw
(3)、由表查得(5-12机设)查得包角系数
(4)、由表(5-13机设)查得长度系数KL=1.03
(5)、计算V带根数Z,由式(5-28机设)
取Z=5根
7.计算单根V带初拉力F0,由式(5-29)机设。
q由表5-5机设查得
8.计算对轴的压力FQ,由式(5-30机设)得
9.确定带轮的结构尺寸,给制带轮工作图
小带轮基准直径dd1=112mm采用实心式结构。大带轮基准直径dd2=280mm,采用孔板式结构,基准图见零件工作图。
第三部分 各齿轮的设计计算
一、高速级减速齿轮设计(直齿圆柱齿轮)
1.齿轮的材料,精度和齿数选择,因传递功率不大,转速不高,材料按表7-1选取,都采用45号钢,锻选项毛坯,大齿轮、正火处理,小齿轮调质,均用软齿面。齿轮精度用8级,轮齿表面精糙度为Ra1.6,软齿面闭式传动,失效形式为占蚀,考虑传动平稳性,齿数宜取多些,取Z1=34 则Z2=Z1i=34×2.62=89
2.设计计算。
(1)设计准则,按齿面接触疲劳强度计算,再按齿根弯曲疲劳强度校核。
(2)按齿面接触疲劳强度设计,由式(7-9)
T1=9.55×106×P/n=9.55×106×5.42/384=134794 N?mm
由图(7-6)选取材料的接触疲劳,极限应力为
бHILim=580 бHILin=560
由图 7-7选取材料弯曲疲劳极限应力
бHILim=230 бHILin=210
应力循环次数N由式(7-3)计算
N1=60n, at=60×(8×360×10)=6.64×109
N2= N1/u=6.64×109/2.62=2.53×109
由图7-8查得接触疲劳寿命系数;ZN1=1.1 ZN2=1.04
由图7-9查得弯曲 ;YN1=1 YN2=1
由图7-2查得接触疲劳安全系数:SFmin=1.4 又YST=2.0 试选Kt=1.3
由式(7-1)(7-2)求许用接触应力和许用弯曲应力
将有关值代入式(7-9)得
则V1=(πd1tn1/60×1000)=1.3m/s
( Z1 V1/100)=1.3×(34/100)m/s=0.44m/s
查图7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.则KH=KAKVKβKα=1.42 ,修正
M=d1/Z1=1.96mm
由表7-6取标准模数:m=2mm
(3) 计算几何尺寸
d1=mz1=2×34=68mm
d2=mz2=2×89=178mm
a=m(z1+z2)/2=123mm
b=φddt=1×68=68mm
取b2=65mm b1=b2+10=75
3.校核齿根弯曲疲劳强度
由图7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齿轮的弯曲强度.
二、低速级减速齿轮设计(直齿圆柱齿轮)
1.齿轮的材料,精度和齿数选择,因传递功率不大,转速不高,材料按表7-1选取,都采用45号钢,锻选项毛坯,大齿轮、正火处理,小齿轮调质,均用软齿面。齿轮精度用8级,轮齿表面精糙度为Ra1.6,软齿面闭式传动,失效形式为点蚀,考虑传动平稳性,齿数宜取多些,取Z1=34
则Z2=Z1i=34×3.7=104
2.设计计算。
(1) 设计准则,按齿面接触疲劳强度计算,再按齿根弯曲疲劳强度校核。
(2)按齿面接触疲劳强度设计,由式(7-9)
T1=9.55×106×P/n=9.55×106×5.20/148=335540 N?mm
由图(7-6)选取材料的接触疲劳,极限应力为
бHILim=580 бHILin=560
由图 7-7选取材料弯曲疲劳极阴应力
бHILim=230 бHILin=210
应力循环次数N由式(7-3)计算
N1=60n at=60×148×(8×360×10)=2.55×109
N2= N1/u=2.55×109/3.07=8.33×108
由图7-8查得接触疲劳寿命系数;ZN1=1.1 ZN2=1.04
由图7-9查得弯曲 ;YN1=1 YN2=1
由图7-2查得接触疲劳安全系数:SFmin=1.4 又YST=2.0 试选Kt=1.3
由式(7-1)(7-2)求许用接触应力和许用弯曲应力
将有关值代入式(7-9)得
则V1=(πd1tn1/60×1000)=0.55m/s
( Z1 V1/100)=0.55×(34/100)m/s=0.19m/s
查图7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.则KH=KAKVKβKα=1.377 ,修正
M=d1/Z1=2.11mm
由表7-6取标准模数:m=2.5mm
(3) 计算几何尺寸
d1=mz1=2.5×34=85mm
d2=mz2=2.5×104=260mm
a=m(z1+z2)/2=172.5mm
b=φddt=1×85=85mm
取b2=85mm b1=b2+10=95
3.校核齿根弯曲疲劳强度
由图7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齿轮的弯曲强度.
总结:高速级 z1=34 z2=89 m=2
低速级 z1=34 z2=104 m=2.5
第四部分 轴的设计
高速轴的设计
1.选择轴的材料及热处理
由于减速器传递的功率不大,对其重量和尺寸也无特殊要求故选择常用材料45钢,调质处理.
2.初估轴径
按扭矩初估轴的直径,查表10-2,得c=106至117,考虑到安装联轴器的轴段仅受扭矩作用.取c=110则:
D1min=
D2min=
D3min=
3.初选轴承
1轴选轴承为6008
2轴选轴承为6009
3轴选轴承为6012
根据轴承确定各轴安装轴承的直径为:
D1=40mm
D2=45mm
D3=60mm
4.结构设计(现只对高速轴作设计,其它两轴设计略,结构详见图)为了拆装方便,减速器壳体用剖分式,轴的结构形状如图所示.
(1).各轴直径的确定
初估轴径后,即可按轴上零件的安装顺序,从左端开始确定直径.该轴轴段1安装轴承6008,故该段直径为40mm。2段装齿轮,为了便于安装,取2段为44mm。齿轮右端用轴肩固定,计算得轴肩的高度为4.5mm,取3段为53mm。5段装轴承,直径和1段一样为40mm。4段不装任何零件,但考虑到轴承的轴向定位,及轴承的安装,取4段为42mm。6段应与密封毛毡的尺寸同时确定,查机械设计手册,选用JB/ZQ4606-1986中d=36mm的毛毡圈,故取6段36mm。7段装大带轮,取为32mm>dmin 。
(2)各轴段长度的确定
轴段1的长度为轴承6008的宽度和轴承到箱体内壁的距离加上箱体内壁到齿轮端面的距离加上2mm,l1=32mm。2段应比齿轮宽略小2mm,为l2=73mm。3段的长度按轴肩宽度公式计算l3=1.4h;去l3=6mm,4段:l4=109mm。l5和轴承6008同宽取l5=15mm。l6=55mm,7段同大带轮同宽,取l7=90mm。其中l4,l6是在确定其它段长度和箱体内壁宽后确定的。
于是,可得轴的支点上受力点间的跨距L1=52.5mm,L2=159mm,L3=107.5mm。
(3).轴上零件的周向固定
为了保证良好的对中性,齿轮与轴选用过盈配合H7/r6。与轴承内圈配合轴劲选用k6,齿轮与大带轮均采用A型普通平键联接,分别为16*63 GB1096-1979及键10*80 GB1096-1979。
(4).轴上倒角与圆角
为保证6008轴承内圈端面紧靠定位轴肩的端面,根据轴承手册的推荐,取轴肩圆角半径为1mm。其他轴肩圆角半径均为2mm。根据标准GB6403.4-1986,轴的左右端倒角均为1*45。。
5.轴的受力分析
(1) 画轴的受力简图。
(2) 计算支座反力。
Ft=2T1/d1=
Fr=Fttg20。=3784
FQ=1588N
在水平面上
FR1H=
FR2H=Fr-FR1H=1377-966=411N
在垂直面上
FR1V=
Fr2V=Ft- FR1V=1377-352=1025N
(3) 画弯矩图
在水平面上,a-a剖面左侧
MAh=FR1Hl3=966 52.5=50.715N?m
a-a剖面右侧
M’Ah=FR2Hl2=411 153=62.88 N?m
在垂直面上
MAv=M’AV=FR1Vl2=352×153=53.856 N?m
合成弯矩,a-a剖面左侧
a-a剖面右侧
画转矩图
转矩 3784×(68/2)=128.7N?m
6.判断危险截面
显然,如图所示,a-a剖面左侧合成弯矩最大、扭矩为T,该截面左侧可能是危险截面;b-b截面处合成湾矩虽不是最大,但该截面左侧也可能是危险截面。若从疲劳强度考虑,a-a,b-b截面右侧均有应力集中,且b-b截面处应力集中更严重,故a-a截面左侧和b-b截面左、右侧又均有可能是疲劳破坏危险截面。
7.轴的弯扭合成强度校核
由表10-1查得
(1)a-a剖面左侧
3=0.1×443=8.5184m3
=14.57
(2)b-b截面左侧
3=0.1×423=7.41m3
b-b截面处合成弯矩Mb:
=174 N?m
=27
8.轴的安全系数校核:由表10-1查得 (1)在a-a截面左侧
WT=0.2d3=0.2×443=17036.8mm3
由附表10-1查得 由附表10-4查得绝对尺寸系数 ;轴经磨削加工, 由附表10-5查得质量系数 .则
弯曲应力
应力幅
平均应力
切应力
安全系数
查表10-6得许用安全系数 =1.3~1.5,显然S> ,故a-a剖面安全.
(2)b-b截面右侧
抗弯截面系数 3=0.1×533=14.887m3
抗扭截面系数WT=0.2d3=0.2×533=29.775 m3
又Mb=174 N?m,故弯曲应力
切应力
由附表10-1查得过盈配合引起的有效应力集中系数 。 则
显然S> ,故b-b截面右侧安全。
(3)b-b截面左侧
WT=0.2d3=0.2×423=14.82 m3
b-b截面左右侧的弯矩、扭矩相同。
弯曲应力
切应力
(D-d)/r=1 r/d=0.05,由附表10-2查得圆角引起的有效应力集中系数 。由附表10-4查得绝对尺寸系数 。又 。则
显然S> ,故b-b截面左侧安全。
第五部分 校 核
高速轴轴承
FR2H=Fr-FR1H=1377-966=411N
Fr2V=Ft- FR1V=1377-352=1025N
轴承的型号为6008,Cr=16.2 kN
1) FA/COr=0
2) 计算当量动载荷
查表得fP=1.2径向载荷系数X和轴向载荷系数Y为X=1,Y=0
=1.2×(1×352)=422.4 N
3) 验算6008的寿命
验算右边轴承
键的校核
键1 10×8 L=80 GB1096-79
则强度条件为
查表许用挤压应力
所以键的强度足够
键2 12×8 L=63 GB1096-79
则强度条件为
查表许用挤压应力
所以键的强度足够
联轴器的选择
联轴器选择为TL8型弹性联轴器 GB4323-84
减速器的润滑
1.齿轮的润滑
因齿轮的圆周速度<12 m/s,所以才用浸油润滑的润滑方式。
高速齿轮浸入油里约0.7个齿高,但不小于10mm,低速级齿轮浸入油高度约为1个齿高(不小于10mm),1/6齿轮。
2.滚动轴承的润滑
因润滑油中的传动零件(齿轮)的圆周速度V≥1.5~2m/s所以采用飞溅润滑,
第六部分 主要尺寸及数据
箱体尺寸:
箱体壁厚
箱盖壁厚
箱座凸缘厚度b=15mm
箱盖凸缘厚度b1=15mm
箱座底凸缘厚度b2=25mm
地脚螺栓直径df=M16
地脚螺栓数目n=4
轴承旁联接螺栓直径d1=M12
联接螺栓d2的间距l=150mm
轴承端盖螺钉直径d3=M8
定位销直径d=6mm
df 、d1 、d2至外箱壁的距离C1=18mm、18 mm、13 mm
df、d2至凸缘边缘的距离C2=16mm、11 mm
轴承旁凸台半径R1=11mm
凸台高度根据低速轴承座外半径确定
外箱壁至轴承座端面距离L1=40mm
大齿轮顶圆与内箱壁距离△1=10mm
齿轮端面与内箱壁距离△2=10mm
箱盖,箱座肋厚m1=m=7mm
轴承端盖外径D2 :凸缘式端盖:D+(5~5.5)d3
以上尺寸参考机械设计课程设计P17~P21
传动比
原始分配传动比为:i1=2.62 i2=3.07 i3=2.5
修正后 :i1=2.5 i2=2.62 i3=3.07
各轴新的转速为 :n1=960/2.5=3.84
n2=384/2.61=147
n3=147/3.07=48
各轴的输入功率
P1=pdη8η7 =5.5×0.95×0.99=5.42
P2=p1η6η5=5.42×0.97×0.99=5.20
P3=p2η4η3=5.20×0.97×0.99=5.00
P4=p3η2η1=5.00×0.99×0.99=4.90
各轴的输入转矩
T1=9550Pdi1η8η7/nm=9550×5.5×2.5×0.95×0.99=128.65
T2= T1 i2η6η5=128.65×2.62×0.97×0.99=323.68
T3= T2 i3η4η3=323.68×3.07×0.97×0.99=954.25
T4= T3 η2η1=954.23×0.99×0.99=935.26
轴号 功率p 转矩T 转速n 传动比i 效率η
电机轴 5.5 2.0 960 1 1
1 5.42 128.65 384 2.5 0.94
2 5.20 323.68 148 2.62 0.96
3 5.00 954.25 48 3.07 0.96
工作机轴 4.90 935.26 48 1 0.98
齿轮的结构尺寸
两小齿轮采用实心结构
两大齿轮采用复板式结构
齿轮z1尺寸
z=34 d1=68 m=2 d=44 b=75
d1=68
ha=ha*m=1×2=2mm
hf=( ha*+c*)m=(1+0.25)×2=2.5mm
h=ha+hf=2+2.5=4.5mm
da=d1+2ha=68+2×2=72mm
df=d1-2hf=68-2×2.5=63
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
齿轮z2的尺寸
由轴可 得d2=178 z2=89 m=2 b=65 d4=49
ha=ha*m=1×2=2mm
h=ha+hf=2+2.5=4.5mm
hf=(1+0.5)×2=2.5mm
da=d2+2ha=178+2×2=182
df=d1-2hf=178-2×2.5=173
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
DT≈
D3≈1.6D4=1.6×49=78.4
D0≈da-10mn=182-10×2=162
D2≈0.25(D0-D3)=0.25(162-78.4)=20
R=5 c=0.2b=0.2×65=13
齿轮3尺寸
由轴可得, d=49 d3=85 z3=34 m=2.5 b=95
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.125=5.625
hf=(ha*+c*)m=(1+0.25)×2.5=3.125
da=d3+2ha=85+2×2.5=90
df=d1-2hf=85-2×3.125=78.75
p=πm=3.14×2.5=7.85
s=πm/2=3.14×2.5/2=3.925
e=s c=c*m=0.25×2.5=0.625
齿轮4寸
由轴可得 d=64 d4=260 z4=104 m=2.5 b=85
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.25=5.625
hf=(ha*+c*)m=(1+0.25)×0.25=3.125
da=d4+2ha=260+2×2.5=265
df=d1-2hf=260-2×3.125=253.75
p=πm=3.14×2.5=7.85
s=e=πm/2=3.14×2.5/2=3.925
c=c*m=0.25×2.5=0.625
D0≈da-10m=260-10×2.5=235
D3≈1.6×64=102.4
D2=0.25(D0-D3)=0.25×(235-102.4)=33.15
r=5 c=0.2b=0.2×85=17
参考文献:
《机械设计》徐锦康 主编 机械工业出版社
《机械设计课程设计》陆玉 何在洲 佟延伟 主编
第3版 机械工业出版社
《机械设计手册》
设计心得
机械设计课程设计是机械课程当中一个重要环节通过了3周的课程设计使我从各个方面都受到了机械设计的训练,对机械的有关各个零部件有机的结合在一起得到了深刻的认识。
由于在设计方面我们没有经验,理论知识学的不牢固,在设计中难免会出现这样那样的问题,如:在选择计算标准件是可能会出现误差,如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准
在设计的过程中,培养了我综合应用机械设计课程及其他课程的理论知识和应用生产实际知识解决工程实际问题的能力,在设计的过程中还培养出了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。
由于本次设计是分组的,自己独立设计的东西不多,但在通过这次设计之后,我想会对以后自己独立设计打下一个良好的基础。
参考资料:机械设计基础
6. 轴承DFMEA都分析什么啊
GBC Engineering采用采用采用采用Romax技术进行轴承分析技术进行轴承分析技术进行轴承分析技术进行轴承分析
GBC产品设计和开发工程师们使用Romax轴承分析科技来进行所有的原始设备供
应商(OEM)以及一级客户应用的领域的设计.Romax轴承设计技术是GBC公司设
计失效模式以及作用分析(DFMEA)中第一阶段轴承设计阶段的重要工具,在此阶段
每个轴承应用都进行了详细的检验,以得到可以接受的轴承寿命和返弊,接触应力,速度
水平,内外圈和滚动体的几何尺寸.GBC还对自己公司的产品模拟采用了一种类
似Romax轴承分析方法的手段,作为自身设计验证计划和报告(DVP+R)的一部
分,以完善客户的自身产品验证测试,达到最终工程批准世梁和产品发放的阶段.在大
多数情况下,为得到加速的测试结果,GBC内部的测试所施加的载荷和轴承应力
水平要高于客户的实际应用.这些可以在产品的可靠性水平上帮助作出工程上的预
测结论,甚至早于客户长时间的验证处理阶段.通过两个相互独立的详细Romax
轴承分析,GBC工程师可以非常自信地展示自己的轴承设计,以表明自身的产品
验证阶段优化了时间和开发成本.
Romax模型四轮驱动传动实例(深沟球轴承)
Romax轴承分析工作的原理是把轴,齿轮,壳体和轴承系统的各个元件作为弹性
体来处理,其具有三维上的径向和旋转刚度性能.很多工程师没有意识到滚动轴承
为弹性体,但Romax把轴承唤族视为具有高度旋转性能的弹性体
7. 球面滚子轴承受力分析以及受到轴向力计算
球面滚子轴承受力分析以及受到轴向力计算
目前,国内的轧钢厂的轧辊轴承消耗都宽圆雀比较大(大于3元/吨材),实际生产过程中轧机轴承很难达到腔镇设计寿命,望各位坛友发表高见!谢谢!
轧机轴承,特殊在哪里?主要点不在于应用端,而是生产端。----意思是说,制造需要特殊的控制和加工工艺。而对于应用端来讲,与其他轴承并无特别差异。对用户来说,尺寸大,并不是什么特殊之处。
绝大多数轧机轴承的失效型式,不是疲劳破坏,意思是说,不是因为疲劳寿命达到极限。
想必大家也见过有关轴承失效原因分析的文章,里面有很清楚的分析,各类造成轴承未能达到疲劳寿命的因素。
以我的经验,主要原因有:
1。润滑不当,包括粘度选择、添加量。
2。相关件失效,包括密封唇口老化、端面封未起到作用、止推轴承键槽干涉。
3。装配不当,包括滚道磕碰、未安技术要求安装(游隙调整、部件次序)、保养(清洗)。
我见过用了5年的热轧四列轴承,1米外看不出是用过的轴承,滚道面只有轻微浅层凹坑。
我也见过用了半年的冷轧慎早四列轴承,滚道上到处是剥落,大的长约100mm、宽约5mm、深约1mm。
以上仅供参考,轧机轴承损伤分析,更多的是基于现场查看和分析;以上的诸点,大家可以加以注意,不可对号入座。
以上。
8. 轴承密封装置起什么作用选择时考虑哪些因素
轴承密封装置是指在旋转的轴上或箱体孔上装有密封元
件,如毛毡圈、橡胶密封圈、挡盖、迷官式轴挡等,它的作
用是:保护轴承,防止外界灰尘、污垢、金属颗粒、水分、酸
气等杂物侵入轴承内部。如果轴承密封不良,外部杂物侵入,
使轴承工作状况显著变坏,轴承的使用寿命便会显著降低。
轴承密封装置的另一作用是防止润滑脂从轴承部件中泄
漏。如果漏油,便会很快的破坏轴承的正常润滑,使轴承由
于发热而烧坏。另外密封装置不良不仅漏油造成浪费,而且
也会污染机械设备和加工的产品。因此,要使机器正常运
转,轴承必须有良好的密封装置。
选择轴承密封装置的型式时应考虑下列因素:
1.轴承的工作环瑰;
2.轴承部件的结构特点;
3.轴承的转速(轴承的圆周速度);
4.轴承的润滑剂的种类(润滑油或润滑脂),
5.轴承的工作温度。