导航:首页 > 装置知识 > 设计温度采集与显示装置

设计温度采集与显示装置

发布时间:2023-05-16 03:54:57

㈠ 基于单片机的温湿度检测系统设计

<<pic单片机复应用系统开发典型实例〉制〉有差不多的例子,不过 是数码显示,不是液晶显示。液晶程序上网上找就行啊,www.pic16.com上有很多程序,或许有现成的。

㈡ 温度采集与显示

/********************************************************
* DS18B20温度传感器 *
* C51 *
* yajou 2008-06-28 无CRC *
********************************************************/

#include "reg51.h"
#include "intrins.h"
#include "DS18B20.h"

/********************************************************
* us延时程序 *
********************************************************/
void Delayus(uchar us)
{
while(us--); //12M,一次6us,加进入退出14us(8M晶振,一次9us)
}

/********************************************************
* DS18B20初始化 *
********************************************************/
bit Ds18b20_Init(void) //存在返0,否则返1
{
bit temp = 1;
uchar outtime = ReDetectTime; //超时时间
while(outtime-- && temp)
{
Delayus(10); //(250)1514us时间可以减小吗
ReleaseDQ();
Delay2us();
PullDownDQ();
Delayus(100); //614us(480-960)
ReleaseDQ();
Delayus(10); //73us(>60)
temp = dq;
Delayus(70); //us
}
return temp;
}

/********************************************************
* 写bit2DS18B20 *
********************************************************/
void Ds18b20_WriteBit(bit bitdata)
{
if(bitdata)
{
PullDownDQ();
Delay2us(); //2us(>1us)
ReleaseDQ(); //(上述1-15)
Delayus(12); //86us(45- x,总时间>60)
}else
{
PullDownDQ();
Delayus(12); //86us(60-120)
}
ReleaseDQ();
Delay2us(); //2us(>1us)
}

/********************************************************
* 写Byte DS18B20 *
********************************************************/
void Ds18b20_WriteByte(uchar chrdata)
{
uchar ii;
for(ii = 0; ii < 8; ii++)
{
Ds18b20_WriteBit(chrdata & 0x01);
chrdata >>= 1;
}
}

/********************************************************
* 写 DS18B20 *
********************************************************/
//void Ds18b20_Write(uchar *p_readdata, uchar bytes)
//{
// while(bytes--)
// {
// Ds18b20_WriteByte(*p_readdata);
// p_readdata++;
// }
//}

/********************************************************
* 读bit From DS18B20 *
********************************************************/
bit Ds18b20_ReadBit(void)
{
bit bitdata;
PullDownDQ();
Delay2us(); //2us( >1us)
ReleaseDQ();
Delay8us(); //8us( <15us)
bitdata = dq;
Delayus(7); //86us(上述总时间要>60us)
return bitdata;
}

/********************************************************
* 读Byte DS18B20 *
********************************************************/
uchar Ds18b20_ReadByte(void)
{
uchar ii,chardata;
for(ii = 0; ii < 8; ii++)
{
chardata >>= 1;
if(Ds18b20_ReadBit()) chardata |= 0x80;
}
return chardata;
}

/********************************************************
* 读 DS18B20 ROM *
********************************************************/
bit Ds18b20_ReadRom(uchar *p_readdata) //成功返0,失败返1
{
uchar ii = 8;
if(Ds18b20_Init()) return 1;
Ds18b20_WriteByte(ReadROM);
while(ii--)
{
*p_readdata = Ds18b20_ReadByte();
p_readdata++;
}
return 0;
}

/********************************************************
* 读 DS18B20 EE *
********************************************************/
bit Ds18b20_ReadEE(uchar *p_readdata) //成功返0,失败返1
{
uchar ii = 2;

if(Ds18b20_Init()) return 1;
Ds18b20_WriteByte(SkipROM);
Ds18b20_WriteByte(ReadScr);
while(ii--)
{
*p_readdata = Ds18b20_ReadByte();
p_readdata++;
}
return 0;
}

/********************************************************
* 温度采集计算 *
********************************************************/
bit TempCal(float *p_wen) //成功返0,失败返1 (温度范围-55 --- +128)
{
uchar temp[9],ii;
uint tmp;
float tmpwen;

TR1 = 0;
TR0 = 0;

//读暂存器和CRC值-----------------------
if(Ds18b20_ReadEE(temp))
{
TR1 = 1;
TR0 = 1;
return 1;
}
//-------------------------------------

//CRC校验------------------------------
//
//此处应加入CRC校验等
//
//
//-------------------------------------

//使温度值写入相应的wen[i]数组中-----
for(ii = i; ii > 0; ii--)
{
p_wen++;
}
i++;
if(i > 4) i = 0;
//-------------------------------------

//温度正负数处理-----------------------
//

//-------------------------------------

//温度计算-----------------------------
tmp = temp[1]; //
tmp <<= 8; //
tmp |= temp[0]; //组成温度的两字节合并
tmpwen = tmp;
*p_wen = tmpwen / 16;
//-------------------------------------

//开始温度转换-------------------------
if(Ds18b20_Init())
{
TR1 = 1;
TR0 = 1;
return 1;
}
Ds18b20_WriteByte(SkipROM);
Ds18b20_WriteByte(Convert);
ReleaseDQ(); //寄生电源时要拉高DQ
//------------------------------------

TR1 = 1;
TR0 = 1;
return 0;
}

//////////DS18B20.h/////////////////////////

/********************************************************
* I/O口定义 *
********************************************************/
sbit dq = P1^3;
sbit dv = P1^4; //DS18B20强上拉电源

/********************************************************
* 命令字定义 *
********************************************************/
#define uchar unsigned char
#define uint unsigned int

#define ReleaseDQ() dq = 1; //上拉/释放总线
#define PullDownDQ() dq = 0; //下拉总线

#define Delay2us() _nop_();_nop_(); //延时2us,每nop 1us
#define Delay8us() _nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();

//设置重复检测次次数,超出次数则超时
#define ReDetectTime 20

//ds18b20命令
#define SkipROM 0xCC
#define MatchROM 0x55
#define ReadROM 0x33
#define SearchROM 0xF0
#define AlarmSearch 0xEC

#define Convert 0x44
#define WriteScr 0x4E
#define ReadScr 0xBE
#define CopyScr 0x48
#define RecallEE 0xB8
#define ReadPower 0xB4

/********************************************************
* 函数 *
********************************************************/
void Delayus(uchar us);
//void Dog(void);
bit Ds18b20_Init(void); //DS18B20初始化,存在返0,否则返1
void Ds18b20_WriteBit(bit bitdata); //写bit2DS18B20
void Ds18b20_WriteByte(uchar chrdata); //写Byte DS18B20
void Ds18b20_Write(uchar *p_readdata, uchar bytes); //写 DS18B20
bit Ds18b20_ReadBit(void); //读bit From DS18B20
uchar Ds18b20_ReadByte(void); //读Byte DS18B20
bit Ds18b20_ReadRom(uchar *p_readdata); //读 DS18B20 ROM:成功返0,失败返1
bit Ds18b20_ReadEE(uchar *p_readdata); //读 DS18B20 EE :成功返0,失败返1
bit TempCal(float *p_wen); //成功返0,失败返1 (温度范围-55 --- +128)

㈢ 基于单片机的温度数据采集系统设计

单片机课程设计任务书

题目:基于单片机的温度数据采集系统设计
一.设计要求
1.被测量温度范围:0~500℃,温度分辨率为0.5℃。
2.被测温度点:4个,每2秒测量一次。
3.显示器要求:通道号1位,温度4位(精度到小数点后一位)。
显示方式为定点显示和轮流显示。
4.键盘要求:
(1)定点显示设定;(2)轮流显示设定;(3)其他功能键。
二.设计内容
1.单片机及电源管理模块设计。
单片机可选用AT89S51及其兼容系列,电源管理模块要实
现高精密稳压输出,为单片机及A/D转换器供电。
2.传感器及放大器设计。
传感器可以选用镍铬—镍硅热电偶(分度号K),放大器要实现热电偶输出的mV级信号到A/D输入V级信号放大。
3.多路转换开关及A/D转换器设计。
多路开关可以选用CD4052,A/D可选用MC14433等。
4.显示器设计。
可以选用LED显示或LCD显示。
5.键盘电路设计。
实现定点显示按键;轮流显示按键;其他功能键。
6.系统软件设计。
系统初始化模块,键盘扫描模块,显示模块,数据采集模块,标度变换模块等。

引言:
在生产和日常生活中,温度的测量及控制十分重要,实时温度检测系统在各个方面应用十分广泛。消防电气的非破坏性温度检测,大型电力、通讯设备过热故障预知检测,各类机械组件的过热预警,医疗相关设备的温度测试等等都离不开温度数据采集控制系统。
随着科学技术的发展,电子学技术也随之迅猛发展,同时带动了大批相关产业的发展,其应用范围也越来越广泛。近年来单片机发展也同样十分迅速,单片机已经渗透到工业、农业、国防等各个领域,单片机以其体积小,可靠性高,造价低,开发周期短的特点被广泛推广与应用。传统的温度采集不仅耗时而且精度低,远不能满足各行业对温度数据高精度,高可靠性的要求。温度的控制及测量对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到重要作用。在单片机温度测量系统中关键是测量温度,控制温度和保持温度。温度测量是工业对象的主要被控参数之一。本此题目的总体功能就是利用单片机和热敏原件实现温度的采集与读数,利用五位LED显示温度读数和所选通道号,实现热电转化,实现温度的精确测量。本设计是以Atmel公司的AT89S51单片机为控制核心,通过MC14433模数转换对所测的温度进行数字量变化,且通过数码管进行相应的温度显示。采用微机进行温度检测,数字显示,信息存储及实时控制,对于提高生产效率和产品质量、节约能源等都有重要作用。
目录:
一、系统总体功能及技术指标的描述........................................ 5
二、各模块电路原理描述............................................................. 5
2.1单片机及电源模块设计...................................................... 5
2.2、AT89S51引脚说明.......................................................... 7
2.3、数据采集模块设计........................................................ 11
2.4、多路开关......................................................................... 12
2.5、放大器............................................................................. 15
2.6、A/D转换器..................................................................... 16
2.7、显示器设计..................................................................... 21
2.8、键盘电路设计................................................................. 22
2.9、电路总体设计图........................................................... 22
三、软件流程图 ...................................................................... 24
四、程序清单.............................................................................. 25
五、设计总结及体会.................................................................... 31
六、参考资料................................................................................ 32

一、系统总体功能及技术指标的描述
1. 系统的总体功能:
温度数据采集系统,实现温度的采集与读书,利用五位LED显示温度读数和所选通道号,实现热电转化的原理过程。
被测量温度范围:0~500℃,温度分辨率为0.5℃。被测温度点4个,每2秒测量一次。显示器要求:通道号1位,温度4位(精度到小数点后一位)。显示方式为定点显示和轮流显示,可以通过按键改变显示方式。
2. 技术指标要求:
1.被测量温度范围:0~500℃,温度分辨率为0.5℃。
2.被测温度点:4个,每2秒测量一次。
3.显示器要求:通道号1位,温度4位(精度到小数点后一位)。
显示方式为定点显示和轮流显示。
4.键盘要求:
(1)定点显示设定;(2)轮流显示设定;(3)其他功能键。
二、各模块电路原理描述
2.1单片机及电源模块设计
如图所示为AT89S51芯片的引脚图。兼容标准MCS-51指令系统的AT89S51单片机是一个低功耗、高性能CHMOS的单片机,片内含4KB在线可编程Flash存储器的单片机。它与通用80C51系列单片机的指令系统和引脚兼容。
AT89S51单片机片内的Flash可允许在线重新编程,也可用通用非易失性存储编程器编程;片内数据存储器内含128字节的RAM;有40个引脚,32个外部双向输入/输出(I/O)端口;具有两个16位可编程定时器;中断系统是具有6个中断源、5个中断矢量、2级中断优先级的中断结构;震荡器频率0到33MHZ,因此我们在此选用12MHZ的晶振是比较合理的;具有片内看门狗定时器;具有断电标志POF等等。AT89S51具有PDIP、TQFP和PLCC三种封装形式[8]。

图5.1-1 AT89S51引脚图

上图就是PDIP封装的引脚排列,下面介绍各引脚的功能。
2.2、AT89S51引脚说明
P0口:8位、开漏级、双向I/O口。P0口可作为通用I/O口,但须外接上拉电阻;作为输出口,每各引脚可吸收8各TTL的灌电流。作为输入时,首先应将引脚置1。P0也可用做访问外部程序存储器和数据存储器时的低8位地址/数据总线的复用线。在该模式下,P0口含有内部上拉电阻。在FLASH编程时,P0口接收代码字节数据;在编程效验时,P0口输出代码字节数据(需要外接上拉电阻)。
P1口:8位、双向I/0口,内部含有上拉电阻。P1口可作普通I/O口。输出缓冲器可驱动四个TTL负载;用作输入时,先将引脚置1,由片内上拉电阻将其抬到高电平。P1口的引脚可由外部负载拉到低电平,通过上拉电阻提供电流。在FLASH并行编程和校验时,P1口可输入低字节地址。在串行编程和效验时,P1.5/MO-SI,P1.6/MISO和P1.7/SCK分别是串行数据输入、输出和移位脉冲引脚。
P2口:具有内部上拉电阻的8位双向I/O口。P2口用做输出口时,可驱动4各TTL负载;用做输入口时,先将引脚置1,由内部上拉电阻将其提高到高电平。若负载为低电平,则通过内部上拉电阻向外部输出电流。CPU访问外部16位地址的存储器时,P2口提供高8位地址。当CPU用8位地址寻址外部存储时,P2口为P2特殊功能寄存器的内容。在FLASH并行编程和校验时,P2口可输入高字节地址和某些控制信号。
P3口:具有内部上拉电阻的8位双向口。P3口用做输出口时,输出缓冲器可吸收4各TTL的灌电流;用做输入口时,首先将引脚置1,由内部上拉电阻抬位高电平。若外部的负载是低电平,则通过内部上拉电阻向输出电流。在与FLASH并行编程和校验时,P3口可输入某些控制信号。P3口除了通用I/O口功能外,还有替代功能,如表5.3-1所示。

表5.3-1 P3口的替代功能

引脚

符号

说明

P3.0

RXD

串行口输入

P3.1

TXD

串行口输出

P3.2

/INT0

外部中断0

P3.3

/INT1

外部中断1

P3.4

T0

T0定时器的外部的计数输入

P3.5

T1

T1定时器的外部的计数输入

P3.6

/WR

外部数据存储器的写选通

P3.7

/RD

外部数据存储器的读选通

RST:复位端。当振荡器工作时,此引脚上出现两个机器周期的高电平将系统复位。
ALE/ :当访问外部存储器时,ALE(允许地址锁存)是一个用于锁存地址的低8位字节的书粗脉冲。在Flash 编程期间,此引脚也可用于输入编程脉冲()。在正常操作情况下,ALE以振荡器频率的1/6的固定速率发出脉冲,它是用作对外输出的时钟,需要注意的是,每当访问外部数据存储器时,将跳过一个ALE脉冲。如果希望禁止ALE操作,可通过将特殊功能寄存器中位地址为8EH那位置的“0”来实现。该位置的“1”后。ALE仅在MOVE或MOVC指令期间激活,否则ALE引脚将被略微拉高。若微控制器在外部执行方式,ALE禁止位无效。
:外部程序存储器读选取通信号。当AT89S51在读取外部程序时, 每个机器周期 将PSEN激活两次。在此期间内,每当访问外部数据存储器时,将跳过两个信号。
/Vpp:访问外部程序存储器允许端。为了能够从外部程序存储器的0000H至FFFFH单元中取指令,必须接地,然而要注意的是,若对加密位1进行编程,则在复位时,的状态在内部被锁存。
执行内部程序应接VCC。不当选择12V编程电源时,在Flash编程期间,这个引脚可接12V编程电压。
XTAL1:振荡器反向放大器输入端和内部时钟发生器的输入端。
XTAL2:振荡器反相放大器输出端[9]。

电源模块设计
在影响单片机系统可靠性的诸多因素中,电源干扰可谓首屈一指,据统计,计算机应用系统的运行故障有90%以上是由电源噪声引起的。为了提高系统供电可靠性,交流供电应采用交流稳压器,防止电源的过压和欠压,直流电源抗干扰措施有采用高质量集成稳压电路单独供电,采用直流开关电源,采用DC-DC变换器。本次设计决定采用MAXim公司的高电压低功耗线性变换器MAX 1616作为电压变换,采用该器件将输入的24V电压变换为5V电压,给外围5V的器件供电。MAX1616具有如下特点:
1.4~28V电压输入范围。
2.最大80uA的静态工作电流。
3.3V/5V电压可选输出。
4.30mA输出电流。
5.2%的电压输出精度。
电源管理模块电路图如下:

本电路采用该器件将输入的24V电压变成5V电压,给外围5V的器件供电,其中二极管D1是保护二极管,防止输入电压接反可能带来的对电路的影响和破坏。

㈣ 51单片机的温度采集系统设计

第一章 确定系统功能与性能

本系统的功能主要有数据采集、数据处理、输出控制。能对0~1000 �0�2c范围内的各种电加热炉的温度进行精密测量,同时,四位LED显示器直接跟踪显示被控对象的温度值,准确度高,显示清晰,稳定可靠,使用方便(在具体设计编程、调试过程中,为了调试方便,编程把温度范围设在0~100 �0�2c)。

本系统的原理框图如下图所示。

数据采集部分能完成对被测信号的采样,显示分辨率0.1�0�2c,测量精度0.1�0�2c,控制精度0.1�0�2c,可以实现采集信号的放大及A/D转换,并自动进行零漂校正,同时按设定值、所测温度值、温度变化速率,自动进行FID参数自整定和运算,并输出0~10mA控制电流,配以主回路实现温度的控制。数据处理分为预处理、功能性处理、抗干扰等子功能。输出控制部分主要是数码管显示控制。

第二章 确定系统基本结构及硬件设计

本单片机应用系统结构是以单片机为核心外部扩展相关电路的形式。确定了系统中的单片机、存储器分配及输入/输出方式就可大体确定出单片机应用系统的基本组成。

1)单片机选用MCS-51系统的8031

8031是INTEL公司MCS-51系列单片机中最基本的产品,它采用INTEL公司可靠的CHMOS工艺技术制造的高性能8位单片机,属于标准的MCS-51的HCMOS产品。它结合了HMOS的高速和高密度技术及CHMOS的低功耗特征,标准MCS-51单片机的体系结构和指令系统。

8031内置中央处理单元、128字节内部数据存储器RAM、32个双向输入/输出(I/O)口、2个16位定时/计数器和5个两级中断结构,一个全双工串行通信口,片内时钟振荡电路。但80C31片内并无程序存储器,需外接ROM。

此外,8031还可工作于低功耗模式,可通过两种软件选择空闲和掉电模式。在空闲模式下冻结CPU而RAM定时器、串行口和中断系统维持其功能。掉电模式下,保存RAM数据,时钟振荡停止,同时停止芯片内其它功能。8031有PDIP(40pin)和PLCC(44pin)两种封装形式。

主要功能特性:

· 标准MCS-51内核和指令系统

· 外部程序存储器ROM地址空间64kB

· 32个可编程双向I/O口

· 128x8bit内部RAM(可扩充64kB外部存储器)

· 2个16位可编程定时/计数器

· 时钟频率3.5-16MHz

· 5个中断源

· 5.0V工作电压

· 全双工串行通信口

· 布尔处理器

· 2层优先级中断结构

· 兼容TTL和CMOS逻辑电平

· PDIP(40)和PLCC(44)封装形式

㈤ 温度采集电路设计设计并制作一个温度测量与显示系统,基本原理:

温度传感器——LM45/35
放大器——OP07/NE5532/TL082
A/D转换器——ADC0809
ROM—— AT28C16
译码电路——CD451
显示电路——共阳数码管
要求:( 1)被测温度范围 0∼99°C;
工作原理:
温度传感器——LM45/35产生温度的模拟信号电压
放大器——OP07/NE5532/TL082:将代表温度的模拟电压放大到适合于ADC转换的幅度。

A/D转换器——ADC0809:将放大后的电压进行转换,变成适合显示的数字信号,存入ROM中。
这个信号,可以直接显示,也可以由单片机进行处理后再进行显示。
译码电路——CD451:将ROM保存的或单片机送出的待显示的数据翻译成适合于7段显示数码管的电平信号,去驱动数码管实现对测量出来的温度进行显示。

㈥ 做一个温度采集电路的课程设计 帮我理一理思路,谢谢

这个是数电的课程设计,很简单其实就是adc测一个模拟输出传感器然后按地址读取rom值然后显示,只是rom需要写入内容

1、直接用lm35比较好,max6675需要前端接热电偶

2、三个运放都可以,只是一般都要双电源,接起来烦
3、tm7707精度太高了没有必要,adc0809就好了

阅读全文

与设计温度采集与显示装置相关的资料

热点内容
阀门井有什么 浏览:360
物业应急救援器材有哪些 浏览:303
掺碱的检验器材有哪些 浏览:386
助力装置机械 浏览:579
欧曼搅拌车的仪表台怎么拆 浏览:851
室外管道阀门井图集 浏览:527
电池用什么仪器检查最准确 浏览:630
制冷剂R18是什么 浏览:80
密室逃脱如何机械海狸 浏览:867
full是什么阀门 浏览:152
男机械一觉任务多少级 浏览:123
接地极埋深检测装置 浏览:977
仪表盘什么样显示打火了 浏览:267
德州哪里有卖监控器材 浏览:326
自动机械表时间误差多少正常 浏览:383
高原上的路灯式的仪器叫什么 浏览:972
法兰视镜玻璃管道阀门 浏览:575
轴承一村房子怎么样 浏览:141
阀门螺丝锈死断在里面怎么办 浏览:851
天然气什么是机械式 浏览:58