导航:首页 > 装置知识 > 最新电力系统各种无功补偿滤波器装置选型设计制造新工艺标准手册

最新电力系统各种无功补偿滤波器装置选型设计制造新工艺标准手册

发布时间:2023-05-11 04:30:46

Ⅰ 无功补偿及补偿装置的选择

第一讲:基础知识
一、为什么要进行无功补偿?
交流电力系统需要电源供给两部分能量,一部分用于作功而被消耗掉,这部分能量将转换成机械能、光能、热能和化学能,我们称之为“有功功率”。另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,有电能转换为磁能,再有磁能转换为电能,周而复始,并没有消耗,这部分能量我们称之为“无功功率”。无功是相对于有功而言的,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。在电力系统中,除了负荷无功功率外,变压器和线路上的电抗上也需要大量的无功功率。
在电网中安装并联电容器、同步调相机等容性设备以后,可以供给感性电抗消耗的部分无功功率小电网电源向感性负荷提供无功功率。也即减少无功功率在电网中的流动,因此可以降低输电线路因输送无功功率造成的电能损耗,改善电网的运行条件。这种做法称为“无功补偿”。
无功功率的定义
国际电工委员会给出的无功功率的定义为:电压与无功电流的成积。
QC=U×IC
其物理意义为:电路中电感元件与电容元件活动所需的功率交换称为无功功率。
(插入讲解电感元件及电容元件)
电磁(电感)元件建立磁场占用的电能,电容元件建立电场所占的电能.电流在电感元件中作功时,电压超前于电流90℃.而电流在电容元件中作功时,电流超前电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的原理。
(电容元件、电感元件均为动态元件,电容元件的电流是电压与时间的导数关系,
,电感元件的电压是电流与时间的导数关系, )
矢量图:

我们将每一瞬间电感上的电压与电感电流IL相乘得到电感的功率曲线PL(图a),同样的,将电容上的电压与电容电流IC相乘得到电容的功率曲线PC(图b)。

如图(a)所示,功率在第二个和第四个1/4周期内电感在吸收功率,并把所吸收的能量转化为磁场能量;而在第一和第三个1/4周期内电感就放出功率,储存在磁场中的能量将全部放出。这时电感好象一个电源,把能量送回电网。磁场能量和外部能量的转化反复进行,电感的平均功率为零,所以电感是不消耗功率的。
如图(b)所示,在电容中,在第一个1/4周期内,电容在吸收功率进行充电,把能量储存在电场中。在第二个1/4周期内电容则放出功率,原来储存在电场中的能量将全部送回给外部电路。第三和第四个1/4周期内各重复一次。
电容的充电和放电过程,实际上就是外部电路的能量和电容的电场能量之间的交换过程。在一个周期内,其平均功率为零,所以电容也是不消耗功率的。
我们注意到:在第一个1/4周期中,当电压通过零点逐渐上升时,电容开始充电吸收功率,电感则将储存的能量放回电路。而当第二个1/4周期,电感吸收功率时,电容放出功率。第三和第四个1/4周期又重复这样的充放电循环过程。
因此,电容和电感并联接在同一电路时,当电感吸收能量时,正好电容释放能量;电感放出能量时,电容正好吸收能量。能量就在它们中间互相交换。即电感性负荷所需的无功功率,可以由电容器的无功输出得到补偿,因此我们把具有电容性的装置称为“无功补偿装置”。
二、功率因数
1、功率因数的定义:功率因数等于网络的电压比电流超前的相位差的余弦。
2、提高功率因数的意义:
(1)改善设备的利用率
因为功率因数还可以表示成如下形式:
COSφ= =
其中U―――线电压,kV
I―――线电流,A
可见,在一定的电压和电流下,提高COSφ,其输出的有功功率越大。发电机、变压器等电力设备在设计时均有一定的电压有效值U和电流有效值I,即设备需在一定的额定电压及额定电流下运行。根据P= UIcosφ,若功率因数较低,则发电机发出的有功功率或变压器通过的有功功率P较低,即设备容量得不到充分应用。
(2) 提高功率因数可以减少电压损失
电力网电压损失的公式可以求出:
△U=△UR+j△UX
=
从以上公式可以看出,影响△U的因素有四个:线路的有功功率P、无功功率Q、电阻R和电抗X。如果采用容抗为XC的电容来补偿,则电压损失为:
△ U=
功率因数低,Q就大,△U就增大,受电端的电压就要降低。在电压低于允许值时,将严重影响电动机及其它用电设备的正常运行。特别是在用电高峰时,因为功率因数低,将出现大面积地区电压降低,严重影响工农业生产的正常进行。

故采用补偿电容提高功率因数后,电压损失△U减少,改善了电压质量。
(3) 提高功率因数可以减少线路损失
据有关资料,目前全国有近20GA的高耗能变压器在运行,一些城网高耗能配变变压器占配变变压器总数的50%。许多城网无功功率不足,调节手段落后,造成电压偏低,损耗增大。1995年全国线损率高达7.8%。通过多方面的努力,1997年全国线损率才达到8.2%。与一些发达国家相比,我国线损率约高出2~3个百分点。据统计,电力网中65%以上的电能损耗在10kV以下的配电网中损耗的,因此配电网中的减少线路损失非常重要。
当线路通过电流I时,其有功损耗为:
△P=3I2R×10-3(kW)
或 △P=3( R×10-3=3 ( )×10-3(kW)
有以上公式可见,线路有功损失△P与cos2φ成反比,cosφ越高,△P越小。
(4) 提高电力网的传输能力
视在功率与有功功率成下述关系:
P=Scosφ
可见,在传送一定功率P的条件下,cosφ越高,所需视在功率越小。
综上所述,提高功率因数是必须的。但是功率因数的提高是整个网络的事,必须提高电网各个组成部分的功率因数,才能充分利用发电、变电设备的容量,减少网损,降低线路的电压损耗,以达到节约电能和提高功率因数的目的。
(插入讲解功率因数的目标及力率收费)
1、对功率因数的要求
除电网有特殊要求的用户外,用户在当地供电企业规定的电网高峰时负荷的功率因数应达到下列规定:
100KVA及以上高压供电用户的功率因数为0.9以上。
其它电力用户和大、中型电力排灌站、泵购转售电企业,功率因数为0.85以上。
农业用电,功率因数为0.80以上。
2、功率因数调整电费
我国执行得电价结构为两价结构,但实际上是包括基本电费、电量电费和按功率因数调整电费三部分。发、供电部门,除了供给用户得有功负荷之外,还要供给用户以无功负荷。鉴于电力生产得特点,用户功率因数得高低,对电力系统发、供、用电设备得充分利用,有着显者得影响。为了合理地使国家地能量资源,充分发挥发、供电设备地生产能力,我国专门制定了《力率调整电费办法》,按照功率因数调整电费。《力率调整电费办法》适用于实行两部电价制大工业用户地生产用电。按功率因数调整电费地收取办法是:
(1) 按照规定地电价计算出当月地基本电费和电量电费。
(2) 再按照功率因数调整电费表所订地百分数增减计算。如下表1和2所示。
(3) 计算用户功率因数采用加数平均值,即以用户在一个月内所消耗的有功电量W和无功电量Q进行计算,即:
cosφ=
如果用户的平均功率因数在功率因数调整电费表所列数字之间,以四舍五入计算,如0.855为0.86,0.754为0.75。
表1 减免功率因数电费表
月平均功率
因数 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
全部电费地减少( %) 0 0.5 1.0 1.5 2.0 2.2 2.5 2.7 3.0
表2 增收功率因数电费表
平均功率因数 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.73 0.72
增收( %) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
平均功率因数 0.71 0.70 0.69 0.68 0.67 0.66 0.65 0.64 0.63 0.62 0.61 0.60
增收( %) 7.0 7.5 8.0 8.5 9.0 9.5 10 11 12 13 14 15
备注 自0.59以下,每降低0.01,增收全部电费地2%
3、举例说明改善cosφ能给用户带来经济效益。
【例1】 某10kV煤矿企业电力用户原来功率因数为cosφ1=0.75,视在功率为3150kVA,年用电时间T=3000h,收费按两部电价,试确定:
(1) 该用户得年支付电费。
(2) 欲使功率因数提高到0.95,需装设得补偿容量。
(3) 按许继目前的电容器补偿装置,分情况做出方案,并计算出投资费用(投资按每年10%回收)。求安装补偿装置后,企业所获得的年效益。
解:
(1) 补偿前用户年支付电费:
1) 基本电费。按最大负荷收取,每kVA负荷收取值为180元/年,故:
FJ1=180×3150=567000(元)
2) 电量电费。每kW.h为0.209元,故
FD1=0.209×2362.5×3000=1481287.5 (元)
3) 用户的总支付电费为:
FZ2=567000+1481287.5=2048287(元)
4)当功率因数为0.75时,增收功率因数电费为全部电费的5%,则增收的电费为:
FZZ=2048287×0.05=102414 (元)
5)用户实际缴纳电费为:
FZ1总= FZ2+FZZ=2150701(元)
(2) 补偿容量计算:
已知cosφ1=0.75,cosφ2=0.95,S=3150kVA,则
P1=Scosφ1=3150×0.75=2362.5(kW)
Q=P( - )
=2362.5( - )
=1307(kvar)
需补偿1307kvar,考虑各方面因素,总补偿容量按1500kvar考虑。
(3)按许继目前的产品做出配置方案并计算补偿后年支出费用:
方案:一次性投投切方案。此方案用于整体系统负荷变化不大的情况。
主要配置元件为:(此方案仅考虑系统存在5次7次谐波情况,用6%串联电抗器抑制系统谐波)
TBB10-1500kvar配置如下:
序号 名称 型号 数量 单位 备注
1 隔离接地开关 GN24-12D1/630 1 只
2 铁心串联电抗器 CKSC-90/10-6 1 台
3 高压并联电容器 BFM11/ -250-1W
6 台
4 熔断器 BRW-12/60P 6
5 氧化锌避雷器 HY5WR-17/45 3 只
6 放电线圈 FDGE8-11/ -1. 7-1W
3 只
7 带电显示器 DXN-12T 1 只
8 放电指示灯 AD11-22/21 3 只
9 电磁锁 DSN3 3 只
10 铝母线、绝缘子等附件 1 套
11 电容器柜体骨架 1 套
按此种方案预计投入资金约为:10万元。
1) 补偿后的视在功率和基本电费为:
SB = =2487(kVA)
FJ2=180×2487=447660 (元)
2) 电量电费。每kW.h为0.209元,故
FD2=0.209×2362.5×3000=1481287.5(元)
3)支付资产折旧费用:
Ff=100000×0.1=10000(元)
4) 用户的总支付电费为:
FZ2=447660+1481287.5+10000=1938947(元)
5)当功率因数为0.95时,减免功率因数电费为全部电费的2.5%,则减免的电费为:
FZZ=1938947×0.025=48473 (元)
6)用户实际缴纳电费为:
FZ2总= FZ2-FZZ=1890474(元)
7)补偿后的经济效益分析:
△F=FZ1总-FZ2总=2150701-1890474=260227(元)
结论:有以上分析得在装设无功补偿装置后,一年少交电费约为26万元,节省的费用完全可以上购买以上方案中的补偿设备,并且大有结余。
【例2】 配电网无功补偿算例。
(1) 无功补偿的原理。在电网中,线路或变压器的可变功率损耗为:
P=3I2R×10-3= R×10-3
当负荷功率因数由1降至cosφ时,有功损耗将增加的百分数为:
δP%=( -1) ×100%
因此,提高负荷的功率因数与降低线损的关系为:
δP%=(1- )×100%
下图表示一个主变容量为15000kVA的35kV变电所,单回路供电的电力网,单回35kV供电线路至35 kV变电所,期间T接一个电力排灌站,根据有关负荷数据如下:

Ⅰ段视在功率Sjf1=9.2MVA.
Ⅱ段视在功率Sjf2=11.7MVA.
在未装补偿前,该变电所主变功率因数为0.75,此种情况:
Ⅰ段线路的全年损失电量为:
△A1= ×R1×24×365=570×103(kW.h)
Ⅱ段线路的全年损失电量为:
△A1= ×R2×24×365=1440×103(kW.h)
整条线路的全年损失电量为:
△A=△A1+△A2=570×103+1440×103=2010×103(kW.h)
若在该变电所10kV侧加装3000kvar的补偿后电容器,主变的功率因数将由0.75提高0.91,可使线损降低值为:
δP%=(1- )×100%=(1- )×100%=32%
即加装3000kvar的补偿后,可使线损下降32%,即减少损失电量为
△ A,=δP%△A=32%×2010×103=64.32(万kW.h)
(2) 经济效益分析。从前面的计算中可知,每年可减少损失电量64.32万kW.h,其效益究竟有多大,可参考现行电价估算如下:
1) 全年直接减少损失,增加纯利润
M=64.32×0.50=32.16(万元)
2) 力率调整由罚到奖,增加纯收入.补偿前该线路全年总电量
A1=1.17×106×8760×0.75×10-3=7686.9(万kW.h)
由于功率因数为0.75,低于0.85,故应罚力率调整款
0.5%×8760×0.35=13.5(万元)
补偿后
A2=1.17×106×8760×0.91×10-3=9326.7(万kW.h)
由于功率因数为0.91,大于规定的0.85,故奖励21.3万元.
实际增加纯收入A= A1+A2=34.8(万元)
合计增收:M+A=66.96(万元)
综上所述:投资20多万元,一年就能获得66.96万元的收入.不仅4个月就能收回投资,而且取得长久的明显的经济效果.所以说,无功补偿,功在电网,利在自己.
三、无功补偿方式
无功补偿原则
全面规划、合理布局、
分级补偿、就地平衡
无功补偿方法
集中补偿与分散补偿相结合
高压补偿与低压补偿相结合
调压与降损相结合
配电网中常用的无功补偿方式为:
1、分组补偿
在系统的部分变、配电所中,在各个用户中安装无功补偿装置;
2、分散补偿
在高低压配电线路中分散安装并联电容机组;
3、就地补偿
在配电变压器低压侧和车间配电屏间安装并联电容器以及在单台电动机附近安装并联电容器,进行集中或分散的就地补偿。
四、补偿容量的选择
(1)按公司计算:Qc=P )
其中:Qc-所需安装的并联电容器容量kvar;
P-最大负荷月的平均有功功率kW;
cosψ1-补偿前功率因数;
cosψ2-补偿前功率因数;
(2)在不具备计算条件时,电容器的安装容量按变压器容量的10%~30%确定。
(3)单台感应电动机的就地补偿;
在进行无功补偿时,有时采取对单台感应电动机进行个别补偿,这时不能用上面介绍的方法选择电容器,也不能简单以负荷作为计算的依据,因为如果按照电动机在负荷情况下选择电容器,则在空载时就会出现过补偿,即功率因数超前,而且当电动机停机切断电源时,电容器就会对电动机放电,使仍在旋转着的电动机变为感应发电机,感应电势可能超出电动机额定电压的好多倍,对电动机和电容器的绝缘都不利。因此单台电机个别补偿时电容器的容量应按照不超过空载电流的0.9倍进行选择,即:
QC1≤0.9 UeI0
其中:Qc-所需安装的并联电容器容量kvar;
Ue-电动机额定电压kV;
Io-电动机空载电流A ;
(4)安装容量与输出容量的关系
为保证补偿电容器安全、稳定、可靠运行,我们必须在补偿电容器前加串调谐电抗器,而补偿电容器在串接电抗器后,输出容量和安装容量的关系应依下式计算:

五、功率因数cosφ与效率η得区别:
电动机和变压器得效率η是指其输出有功功率与输入的有功功率的比值。用效率的概念来说明电动机或变压器的有功损耗。
功率因数cosφ是用来说明在电网和设备之间往复振荡的电场或磁场能量有多少,功率因数越高说明在电网和设备之间往复振荡的能量越少。
第二讲:设计基础
目录
第一节:元件的设计选型
第二节:电气接线
第三节:成套设备的保护
第四节:电容器组投切方式的选择

第一节:元件的设计选型
1 电容器
电容器做为无功补偿的重要元器件,应用于1kV以上的工频电力系统中,用来提高系统的功率因数,改善电压质量,降低线路损耗,充分发挥发电、供电设备的效率。产品以铝箔为极板,烷基苯浸膜纸(WF)、二芳基乙烷浸膜纸(FF)复合,二芳基乙烷浸全膜(FM)、苄基甲苯全膜为介质,采用卷绕式元件经串、并联后压制制成,电容器箱体内充满浸渍济。一般有单相、三相、集合式等多种分类。
单相电容器:
BAM11/ —200—1WR
内置放电电阻
户外
单相
额定容量
额定电压
苄基甲苯浸渍的聚丙烯薄膜全膜介质
并联
集合式电容器:
BAMH11/ —1200—1×3W
三相
集合式,采用内熔丝保护
(BFM表示二芳基乙烷浸渍的聚丙烯薄膜全膜介质)
了解集合式电容器及全膜电容器:
集合式电容器是将单台壳式电容器经串并联后装入大油箱内并充以绝缘油制成。1996年已占到高压并联电容器年产量的20%。其优点是结构紧凑占地面积小,接头少,安装和运行维护工作量很小。为克服容量不能调整的缺点,后来又开发了可调容量的集合式电容器,按照容量调整范围划分有50%/100%和33.3%/66.7%/100%两类产品。由于单元壳式电容器完全浸入绝缘油中,防止了单元壳式电容器的外绝缘发生故障。单元壳式电容器内部配有内熔丝,少量元件损坏后由熔丝切除,整台电容器仍可继续运行。缺点是含油量大,外壳大油箱易存在渗漏油,故障损坏后需返厂修理所用时间较长,单位容量造价较高。关于集合式电容器有两个问题需要注意:
(1)为避免大容量集合式电容器发生相间短路故障时造成严重后果,容量超过5000kvar的集合式电容器必须做成三相分体结构,即一相一台。
(2)集合式电容器的引出套管外绝缘爬电比距必须≥3.5cm/kV(相对于系统最高运行电压),以保证其绝缘强度。
箱式电容器是在集合式电容器基础上发展起来的一种电容器,与集合式电容器的不同之处是内部单元电容器没有外壳,直接浸入绝缘油中,外壳大油箱采用波纹油箱或带金属膨胀器,与外部大气完全隔离。同集合式电容器相比,外壳体积和内部含油量进一步减少,以西安电力电容器厂3000kvar产品为例,箱式电容器比集合式电容器外壳体积减少59.1%,重量减少60.6%。由于材料用量减少,价格比集合式电容器要低。缺点是内部元件发生故障由内熔丝切除后,会对大油箱内的绝缘油造成污染。
全膜电容器具有损耗低、发热量小、温升低、体积小、重量轻的优点。国产全膜电容器自1986年开始生产以来,经过不断改进完善,质量已趋于稳定,在可靠性方面已经好于部分进口产品。自1995年以来产量逐年大幅度增长,已有多家产品通过了两部鉴定。同国外先进产品相比,差距主要表现在比特性上,材料消耗是国外先进产品的两倍。既便如此,同膜纸复合介质产品相比体积、重量均大幅度下降。以桂林电容器厂100kvar产品为例:全膜产品比膜纸复合介质产品体积下降31.2%,重量下降44.4%。集合式产品以锦州电容器厂3000kvar产品为例:全膜产品比膜纸复合介质产品体积下降55%,重量下降47.9%。箱式电容器采用全膜产品后可取消散热器。最近,电容器制造业制订了关于加速发展国产高压全膜电容器的若干措施,必将进一步提高国产高压全膜电容器的质量。因此,新增电容器应全部采用全膜产品,浸渍剂优先选用苄基甲苯(M/DBT)和SAS—40。

Ⅱ 电工电子技术书籍下载

电子电工电气部分

21世纪大学新型参考教材系列(电力电子学)

21世纪高等学校教材(接地)

led制造技术与应用

OHM电子爱好者读物(电子机械入门)

ups不间断电源剖析与应用

ups应用及其维修技术

ups应用及其维修技术

安装电工基本技术

安装与维修电工技术(第2版)

半导体三极管及其电路分析

常见电气故障处理

常用灯具安装

常用低压电器设备与成套装置外形安装尺寸及接线方案标准工程图集

常用低压电器原理及其控制技术

常用低压配电设备安装图集

常用电工电路280例解析

常用电工计算

常用电气设备故障排除实例

常用电气设备故障诊断技术手册

常用电器选择与计算手册清晰版

常用电子元器件简明手册

常用电子元器件手册

常用机械电器实用手册下册

常用收信电子管应用手册

常用水泵控制电路图

常用自控电器元器件说明及其工作原理

超级芯片和单片数码彩电电路分析与检修

传感技术电子教案

传感器工作原理及应用实例

传感器实际应用电路与设计

传感器应用电路

传感器原理及工程应用

从零开始学电路基础(刘建清)

大功率电子学和电机控制

大气环境与电气外绝缘

倒闸操作安全技术

等电位联结安装

低压成套开关设备和控制设备

低压电电气与电路图的知识

低压电气装置的设计安装和检验

名称时间大小下载格式权限删除操作

低压电气装置的设计安装和检验(第二版)

低压电器成套装置技术手册 [上册]

低压电器成套装置技术手册 [下册]

低压电器继电器及其控制系统

低压开关柜安装、调试、运行与维护手册

低压开关柜安装、调试、运行与维护手册

低压母线分段断路器二次接线

低压配电设计规范

低压运行维修电工基本技能图解

电磁场与机电能量转换

电磁兼容标准与认证

电磁兼容原理与设计

电磁屏蔽理论与实践

电工1000个怎么办

电工安全操作实用技术手册

电工安全技术365问

电工产品学

电工常识百问百答

电工电路(21世纪电子电气工程师系列)

电工电气线路与设备故障检修600例

电工电子电路分析(第二版)

电工工艺

电工计算手册(增订本)上、下册

电工技师手册

电工技术常用公式与数据手册

电工技术手册

电工技术问答

电工技术问答1000问

电工进网作业许可考试参考教程(高压类实操部分)

电工快速入门图解

电工上岗应试宝典

电工设备局部放电及其测试技术

电工识图入门

电工实用技能培训教材

电工实用检修技巧

电工实用口诀 [商福恭]

电工实用手册

电工实用线路300例

电工手册1768页

电工速查速算手册

名称时间大小下载格式权限删除操作

电工学重要公式实用手册

电工应用识图

电力电子技术(第4版)

电力电子技术(武汉理工)

电力电子技术(周明宝)

电力电子技术与电气传动

电力电子器件及其应用

电力电子应用技术及装置

电力拖动自动控制系统

电气安全图解指南

电气传动自动化技术手册(第二版)

电气传动自动控制原理与设计

电气典型线路

电气二次部分(289页)

电气二次回路接线及施工

电气二次接线识图

电气工程基础

电气工程基础(全美经典)

电气工程基础(上)

电气工程基础(下)

电气工程设计

电气工程设计

电气工程师手册

电气工程师手册(奥运版)

电气工程师手册(第二版)

电气工程涡流问题的分析与验证

电气工程原理

电气工程专业毕业设计指南(继电保护分册)

电气工程专业毕业设计指南(输配电分册)

电气基础培训资料

电气简图用图形符号标准汇编

电气控制及plc应用技术

电气控制技术

电气控制与plc课程课件

电气控制与plc实训教程

电气控制与plc应用(张桂香)

电气设备修理

电气设计交流论文集

电气设计禁忌500例

电气设计禁忌手册(李辛)

名称时间大小下载格式权限删除操作

电气设计中低压交流接触器的选用

电气运行操作必读

电气运行与检修1000问

电气照明技术(文字版)

电气照明节能设计

电气自动控制系统

电气自动控制原理与系统

电器电磁系统可靠性优化设计理论与应用

电梯原理�使用�维修

电源电路识图与故障分析轻松入门

电子电路大全

电子电路实用抗干扰技术

电子电路手册(572页)

电子电路与电子技术入门(日)

电子电路制作大全

电子工程师便携手册

电子管知识详解

电子技能基础

电子技术

电子技术(北京理工)

电子技术实验

电子线路设计、实验、测试

电子学入门

电子元器件应用手册

短路电流实用计算

多轴定位模板 fm357-2 使用入门

防空地下室电气设备安装

防空地下室电气设计示例

防雷与接地技术

防雷与接地装置

飞利浦照明设计师培训教材

高等学校教材(电器测试技术)

高等学校教材(电器可靠性理论及其应用)

高等学校教材(电器控制)

高等学校教材(电器制造工艺学)第2版

高等学校教材(发电厂电气工程)

高低压开关柜基本知识问答211题

高电压技术(张一尘)

高级电工实用电路500例

高压电工实用技术

名称时间大小下载格式权限删除操作

高压电工实用技术问答

高压电气原理和应用

高压断路器原理和应用

高压进网作业电工培训教材(上、下册)

工厂常用电气设备手册 [上册]

工厂常用电气设备手册 [下册]

工厂电工操作技术要领图解

工厂电工操作技术要领图解-2005

工矿企业电气工程师手册

工业企业电气调整手

工业与民用配电安装手册

工业自动化仪表手册

故障诊断学及其在电工中的应用

光纤电流差动保护与通道试验技术

哈佛经典电子学资料

火灾报警及消防控制

火灾报警及消防控制优化版

机床电气控制及plc实验

机床夹具设计手册

机床数控技术与应用

机电传动控制(第三版)

机电工程师手册 [847页]

机电一体化

机电一体化基础 [日]

机电一体化实用手册(三浦宏文)

机电一体化系统的电磁兼容技术

机电一体化系统设计手册(1390页)

基本电路分析[全美经典]

继电保护(高级工)

继电保护(中级工)

继电保护丛书(互感器与相序滤过器)

继电保护工

继电保护及自动化新原理、新技术研究及应用

继电保护及自动装置检验与调试

继电保护技术

继电保护技术(李赵丰编)

继电保护技术问答

继电保护事故处理技术与实例

继电保护整定计算

继电保护整定计算基础

名称时间大小下载格式权限删除操作

继电保护装置

继电保护装置及二次回路故障检修典型实例

继电保护自动装置及二次回路(第2版)

继电接触控制线路

继电器选型手册

继电器与接触器技术

家庭常用电子电器产品电路图集

家庭电子小制作.[方大千]

家用电器遥控系统集成电路大全

简明集成运算放大器应用手册

交流调速系统

交直流传动控制系统

接地技术

接地技术220问

接地技术与接地系统

接地技术与接地装置

进网作业电工培训教材(高压电工篇)

进网作业电工培训教材(上册)

进网作业电工培训教材(下册)

精品工具书系列+最新实用电工手册

静止型不间断电源装置的应用与维护

开关电源

开关电源变压器计算方法

开关电源的原理与设计(含目录).pdf

开关电源设计[第二版]

开关集成稳压器控制器的原理与应用

开关稳压电源

开关稳压电源原理设计与实用电路

可控硅及其应用

控制柜设计规范

埋弧焊主机控制原理

模拟电子技术基础简明教程

模拟电子线路实验

模拟与数字万用表检测及应用技术

内部过电压基础

企业安全生产技术问答

全国注册电气工程师执业资格考试复习题解__供配电专业

如何准确测量接地电阻

实用电气安装技术大全

实用电气二次回路200例

名称时间大小下载格式权限删除操作

实用双向可控硅应用500例

数值分析 [全美经典]

数字电路与系统设计

数字万用表应用技巧

图表细说电子元器件[江苏大学胡斌]

图解电工学入门

图解机电一体化入门系列[日]

图解继电器与可编程控制器

维修电工

维修电工操作手册

维修电工基本技术

维修电工技师培训教材

维修电工技术(第三版)

无线电爱好者实用电子制作精选

无线电制作diy手册

现代电子系统设计

现代工厂电气控制

现代家庭实用电工技术

新编电气工程师手册(合并版)

新编电气工程预算员必读

新编实用电工电路400例

新编实用电工手册(986页)

仪表工手册

仪表工手册(第二版)

英汉电工电子大词典

怎样查找电气故障

怎样看电气二次回路图

怎样看电气控制电路图

注册电气工程师(供配电)执业资格考试辅导教材

注册电气工程师执业资格考试习题与解答(专业基础部分)

注册电气工程师执业资格专业考试习题集(供配电专业)

注册电气工程师自学问答

自动化设备常用集成电路(国外)数据及代换手册

自动化仪表故障处理实例讲解

自动控制原理

自控工程技术人员工作手册

最新传感器实用手册

最新低压开关柜二次线路设计安装、运行维护与配电安全性、稳定性设计标准实务全书

最新电工实用经典线路范例

最新实用电工技术与操作手册

名称时间大小下载格式权限删除操作

最新实用电工技术与操作手册

Ⅲ 电抗器的作用原理介绍,选型分类说明

电抗器或者我们更加熟知的就是电感器,它们通过导体通电产生的一定空间范围内的磁场,从而使得产品具有一般意义上的感应效果,除此之外,我们还可以发现市面上的电抗器可以进一步进行详细细致的分类,根据结构和特点,包括功能用途方面的差异分为各种各样的电抗器,有兴趣了解的朋友都可以借此深入学习,收获到不错的令人满意的一款,接下来就和小编一起来学习一下关于电抗器多方面的信息吧,包括它技术板块的作用原理介绍,以及后期购置过程中值得参考的选型建议和分类标准。
一、电抗器选型
并联电抗器:发电机满负载试验用的电抗器是并联电抗器的雏型。铁心式电抗器由于分段铁心之间存在着交变磁场的吸引力,因此噪音一般要比同容量变压器高出10dB左右。并联电抗器里面通过的交流,并联电抗器的作用是补偿系统的容抗。通常与晶闸管串联,可连续调节电抗电流。
串联电抗器:里面通过的是交流,串联电抗器的作用是与补偿电容器串联,对稳态性谐波(5、7、11、13次)构成串联谐振。通常有5~6%电抗器,属于高感值电抗器。
调谐电抗器:里面通过的是交流电,串联电抗器的作用是与电容器串联,对规定的n次谐波分量构成串联谐振,从而吸收该谐波分量,通常n=5、7、11、13、19。
输出电抗器:它的作用是限制电机连接电缆的容性充电电流及使电机绕组上的电压上升率限制在54OV/us以内,一般功率为4-90KW变频器与电机间的电缆长度超过50m时,应设置输出电抗器,它还用于钝化变频器输出电压(开关的宽芹陡度),减少对逆变器中的元件(如IGBT)的扰动和冲击。
输出电抗器的使用说明:为了增加变频器到电机之间的距离可以适当加粗电缆,增加电缆的绝缘强度,尽量选用非屏蔽电缆。
二、电抗器的作用
电力系统中所采取的电抗器常见的有串联电抗器和并联电抗器。
串联电抗器主要用来限制短路电流,也有在滤波器中与电容器串联或并联用来限制电网中的高次谐波。220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。可以通过调整并联电抗器的数量来调整运行电压。超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括:
1、轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压;
2、改善长输电线路上的电压分布;
3、使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动同时也减轻了线路上的功率损失;
4、在大机组与系统并列时降低高压母线上工频稳态电压,便于发电机同期并列;
5、防止发电机带长线路可能出现的自励磁谐振现象;
6、当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用。
电抗器的接线分串联和并联两种方式。串联电抗器通常起限流作用,并联电抗器经常用于无功补偿。
1、半芯干式并联电抗器:在超高压余巧芹远距离输电系统中,连接于变压器的三次线圈上。用于补偿线路的电容性充电电流,限制系统电压升高和操作过电压,保证线路可靠运行。
2、半芯干式串联电抗器:安装在电容器回路中,在电容器回路投入时起
电抗器的限流和滤波作用:
电网容量的扩大,使得系统短路容量的额定值迅速增大。
如在500kV变电所的低压35kV侧, 最大的三相对称短路电流有效值已经接近50kA。为了限制输电线路的短路电流,保护电力设备,必须安装电抗器,电抗器能够减小短路电流和使短路瞬间系统的电压保持不变。
在电容器回路安装阻尼电抗器(即串联电抗器),电容器回路投入时起抑制涌流的作用。同时与电容器组一起组成谐波回路,起各次谐波的滤波作用。如在500kV变电所35kV无功补偿装置的电容器回路中,为了限制投入电容器时的涌流和抑制电力系统的高次谐波,在35kV电容器回路中必须安装阻尼电抗器,抑制3次谐波时,采用额定电压35kV,额定电感量26.2mH,额定电流350A干式空心单相户外型阻尼电抗器,它与2.52Mvar电容器对3次谐波形成谐振回路,即3次谐波竖毕滤波回路。
同样,为了抑制5次及以上高次谐波,采用了额定电压35kV,额定电感量9.2mH,额定电流382A单相户外型阻尼电抗器,它与2.52Mvar电容器对5次及以上高次谐波形成谐振回路。起到了抑制高次谐波的作用,需要说明的是,在国家标准《电抗器》GB10229—88和IEC289—88国际标准中均对阻尼电抗器的使用和技术条件作了规定。但目前国内有些部门将阻尼电抗器称为串联电抗器,严格来讲是不合适的,因为上述标准中均没有串联电抗器这个名称。
电抗器,也就是电感器。它是在电力电工行业有着广泛应用的产品,能在一定程度上起到控制方面的效果,而且还减免了人工操作的麻烦,并且更为难能可贵的就是市面上电抗器可以根据尺寸规格或者需求进行详细细致的分类,有时可以照顾到不同领域的朋友,也能够结合实际情况给出对应的合适合理的功能表现,那么上文所述就是关于电抗器基础版的信息了,包括产品的工作原理以及选型方面的建议和分类方面的标准参数说明。

Ⅳ 低压系统既有有源滤波又有无功补偿应该怎么布置

城市轨道交通低压无功补偿装置及有源滤波装置的应用目前国内城市轨道交通线路供电系统低压配电系统普遍存在由于谐波问题导致电气设备损坏的现象,本文通过对谐波问题产生的原因进行分析,提出切合工程实施的解决方案。一、存在问题及现状分析(1)低压系统谐波来源低压动力照明负荷包括车站的通风空调、自动扶梯、排水、通风、消防及各车站、区间、变电所的照明负荷等能耗,其中含有大量变频负荷,且随着节能的需要,变频负荷所占的比重逐年提高。变频负荷也在逐年增加,其产生的谐波电流也在相应增加。(2)无功补偿为集中补偿地铁系统动力照明负荷的无功分量,目前地铁系统一般在变电所0.4kV母线设置电力电容器组,电容器组具有自动投切功能,且功率因数连续可调,调节范围一般在0.8~0.9之间,使补偿后的功率因数不低于0.9。(3)无功补偿装置与谐波的关系根据GB50157-2003《地铁设计规范》,地铁动力照明供电系统应采用并联电力电容器作为无功补偿装置。因此,国内地铁动力照明供电系统多采用并联电力电容器作为无功补偿装置。从理论上,该电力电容器无论在基波下还是在谐波下均表现为容性,因此,对于不论是来自于配电变压器高压侧的谐波还是来自于低压变频负荷产生的谐波均会起到放大作用。其放大作用已经被国内多个地铁系统的实测结果所验证。系统的谐波过大将会带来供电质量下降、断路器误动作、电容器谐振损坏、熔丝型保护装置意外动作以及敏感的电子通讯设备损坏等问题,进而造成电气设备的绝缘寿命和使用寿命大大降低。因此,目前国内绝大部分城市轨道交通采用的是预留电容补偿装置的做法,即便在工程中已经投入,也暂缓投入使用。二、设备发展情况结合目前现有的技术,滤波装置和无功补偿设备主要有以下几种方案:方案一、单体电容器三角形接法组成的低压无功功率补偿方案。如图1所示。该电容器虽然起到了无功补偿以提高功率因数的目的,但是它对系统所产生的5、7、11、13、23、25等次谐波起到了放大的作用。该接线形式技术简单、投资最少,但存在放大谐波的问题。
图1单体电容器三角形接法组成的低压无功功率补偿方案方案二、在低压400V母线上设有源滤波装置,如图2所示,它可以产生与来自于低压负荷的谐波大小相等,相位相反的谐波,从而有效地滤除谐波。有源滤波装置可以单独设定各次谐波的滤波目标,不存在过载及过补偿的问题。但是牵引负荷所产生的谐波会通过配电变压器传输至低压侧从而会经过该单体电容器,该方式对限制电容器放大牵引负荷产生的谐波没有效果。图2 低压400V母线上设有源滤波装置方案三、无功补偿装置采用带电抗器的无功补偿装置(即电容器串联电抗器),通过选取元件的参数使装置在谐波频率下为一低阻抗支路以吸收谐波,在基波频率下仅呈容性以提高功率因数。该方式下为避免谐波放大,需要单调谐滤波频率设定在地铁负荷产生的最低次谐波频率附近,且应在该最低次谐波频率下呈感性。但地铁供电系统中谐波频谱较宽,若采用该方式,则对其它更高次谐波的滤波效果较差。若设置多组调谐支路,由于有严格的投切次序,不易做到谐波与无功补偿共赢的效果的控制,较难满足系统运行状态的变化。同时该方式远期可扩展性及灵活性相对较差。4)带电抗器的无功补偿装置与有源滤波装置同时使用,它综合了两者的优点,有源滤波器对来自于低压系统调频负荷的谐波进行滤除,带电抗器的无功补偿装置使其在谐波下呈现感性,从而避免对谐波的放大,同时避免与系统形成谐振。只是,该方案对系统来说投资较大。综上,第4种方案既能够滤除来自低压负荷侧的谐波,又能避免对来自牵引负荷侧的谐波放大。但是,由于地铁低压谐波源种类繁多,在地铁建设初期很难对谐波进行准确计算,随着地铁建设的未来扩容和改造,很难合理地确定有源滤波装置的容量。因此建议先预留相应的安装位置和接线条件,在建设调试阶段对低压谐波进行实际测量和评估后,再根据评估结果最终确定有源滤波装置的投入容量。

5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
城市轨道交通低压无功补偿装置及有源滤波装置的应用
城市轨道交通低压无功补偿装置及有源滤波装置的应用
目前国内城市轨道交通线路供电系统低压配电系统普遍存在由于谐波问题导致电气设备损坏的现象,本文通过对谐波问题产生的原因进行分析,提出切合工程实施的解决方案。
一、存在问题及现状分析
(1)低压系统谐波来源
低压动力照明负荷包括车站的通风空调、自动扶梯、排水、通风、消防及各车站、区间、变电所的照明负荷等能耗,其中含有大量变频负荷,且随着节能的需要,变频负荷所占的比重逐年提高。变频负荷也在逐年增加,其产生的谐波电流也在相应增加。(2)无功补偿
第 1 页
为集中补偿地铁系统动力照明负荷的无功分量,目前地铁系统一般在变电所0.4kV母线设置电力电容器组,电容器组具有自动投切功能,且功率因数连续可调,调节范围一般在0.8~0.9之间,使补偿后的功率因数不低于0.9。
(3)无功补偿装置与谐波的关系
根据GB50157-2003《地铁设计规范》,地铁动力照明供电系统应采用并联电力电容器作为无功补偿装置。因此,国内地铁动力照明供电系统多采用并联电力电容器作为无功补偿装置。从理论上,该电力电容器无论在基波下还是在谐波下均表现为容性,因此,对于不论是来自于配电变压器高压侧的谐波还是来自于低压变频负荷产生的谐波均会起到放大作用。其放大作用已经被国内多个地铁系统的实测结果所验证。系统的谐波过大将会带来供电质量下降、断路器误动作、电容器谐振损坏、熔丝型保护装置意外动作以及敏感的电子通讯设备损坏等问题,进而造成电气设备的绝缘寿命和使用寿命大大降低。因此,目前国内绝大部分城市轨道交通采用的是预留电容补偿装置的做法,即便在工程中已经投入,也暂缓投入使用。

Ⅳ 无功补偿有其必要性,但同时也有不好的影响,那么无功补偿的标准是什么如何进行补偿

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
一、按投切方式分类:
1. 延时投切方式
延时投切方式即人们熟称的"静态"补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。
下面就功率因数型举例说明。当这个物理量满足要求时,如cosΦ超前且>0.98,滞后且>0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到cosΦ不满足要求时,如cosΦ滞后且<0.95,那么将一组电容器投入,并继续监测cosΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如cosΦ<0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300s,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到cosΦ〈0.95,迅速将电容器组逐一投入,而在投入期间,此时电网可能已是容性负载即过补偿了,控制器则控制电容器组逐一切除,周而复始,形成震荡,导致系统崩溃。是否能形成振荡与负载的性质有密切关系,所以说这个参数需要根据现场情况整定,要在保证系统安全的情况下,再考虑补偿效果。
2. 瞬时投切方式
瞬时投切方式即人们熟称的"动态"补偿方式,应该说它是半导体电力器件与数字技术综合的技术结晶,实际就是一套快速随动系统,控制器一般能在半个周波至1个周波内完成采样、计算,在2个周期到来时,控制器已经发出控制信号了。通过脉冲信号使晶闸管导通,投切电容器组大约20-30毫秒内就完成一个全部动作,这种控制方式是机械动作的接触器类无法实现的。动态补偿方式作为新一代的补偿装置有着广泛的应用前景。现在很多开关行业厂都试图生产、制造这类装置且有的生产厂已经生产出很不错的装置。当然与国外同类产品相比从性能上、元器件的质量、产品结构上还有一定的差距。
动态补偿的线路方式
(1)LC串接法原理如图1所示
这种方式采用电感与电容的串联接法,调节电抗以达到补偿无功损耗的目的。从原理上分析,这种方式响应速度快,闭环使用时,可做到无差调节,使无功损耗降为零。从元件的选择上来说,根据补偿量选择1组电容器即可,不需要再分成多路。既然有这么多的优点,应该是非常理想的补偿装置了。但由于要求选用的电感量值大,要在很大的动态范围内调节,所以体积也相对较大,价格也要高一些,再加一些技术的原因,这项技术到目前来说还没有被广泛采用或使用者很少。
(2)采用电力半导体器件作为电容器组的投切开关,较常采用的接线方式如图2。图中BK为半导体器件,C1为电容器组。这种接线方式采用2组开关,另一相直接接电网省去一组开关,有很多优越性。

作为补偿装置所采用的半导体器件一般都采用晶闸管,其优点是选材方便,电路成熟又很经济。其不足之处是元件本身不能快速关断,在意外情况下容易烧毁,所以保护措施要完善。当解决了保护问题,作为电容器组投切开关应该是较理想的器件。动态补偿的补偿效果还要看控制器是否有较高的性能及参数。很重要的一项就是要求控制器要有良好的动态响应时间,准确的投切功率,还要有较高的自识别能力,这样才能达到最佳的补偿效果。
当控制器采集到需要补偿的信号发出一个指令(投入一组或多组电容器的指令),此时由触发脉冲去触发晶闸管导通,相应的电容器组也就并人线路运行。需要强调的是晶闸管导通的条件必须满足其所在相的电容器的端电压为零,以避免涌流造成元件的损坏,半导体器件应该是无涌流投切。当控制指令撤消时,触发脉冲随即消失,晶闸管零电流自然关断。关断后的电容器电压为线路电压交流峰值,必须由放电电阻尽快放电,以备电容器再次投入。
元器件可以选单项晶闸管反并联或是双向晶闸管,也可选适合容性负载的固态接触器,这样可以省去过零触发的脉冲电路,从而简化线路,元件的耐压及电流要合理选择,散热器及冷却方式也要考虑周全。
3.混合投切方式
实际上就是静态与动态补偿的混合,一部分电容器组使用接触器投切,而另一部分电容器组使用电力半导体器件。这种方式在一定程度上可做到优势互补,但就其控制技术,目前还见到完善的控制软件,该方式用于通常的网络如工矿、小区、域网改造,比起单一的投切方式拓宽了应用范围,节能效果更好。补偿装置选择非等容电容器组,这种方式补偿效果更加细致,更为理想。还可采用分相补偿方式,可以解决由于线路三相不平行造成的损失。
4. 在无功功率补偿装置的应用方面,选择那一种补偿方式,还要依电网的状况而定,首先对所补偿的线路要有所了解,对于负荷较大且变化较快的工况,电焊机、电动机的线路采用动态补偿,节能效果明显。对于负荷相对平稳的线路应采用静态补偿方式,也可使用动态补偿装置。一般电焊工作时间均在几秒钟以上,电动机启动也在几秒钟以上,而动态补偿的响应时间在几十毫秒,按40毫秒考虑则从40毫秒到5秒钟之内是一个相对的稳态过程,动态补偿装置能完成这个过程。
二、无功功率补偿控制器
无功功率补偿控制器有三种采样方式,功率因数型、无功功率型、无功电流型。选择那一种物理控制方式实际上就是对无功功率补偿控制器的选择。控制器是无功补偿装置的指挥系统,采样、运算、发出投切信号,参数设定、测量、元件保护等功能均由补偿控制器完成。十几年来经历了由分立元件--集成线路--单片机--DSP芯片一个快速发展的过程,其功能也愈加完善。就国内的总体状况,由于市场的需求量很大,生产厂家也愈来愈多,其性能及内在质量差异很大,很多产品名不符实,在选用时需认真对待。在选用时需要注意的另一个问题就是国内生产的控制器其名称均为"XXX无功功率补偿控制器",名称里出现的"无功功率"的含义不是这台控制器的采样物理量。采样物理量取决于产品的型号,而不是产品的名称。
1.功率因数型控制器
功率因数用cosΦ表示,它表示有功功率在线路中所占的比例。当cosΦ=1时,线路中没有无功损耗。提高功率因数以减少无功损耗是这类控制器的最终目标。这种控制方式也是很传统的方式,采样、控制也都较容易实现。
* "延时"整定,投切的延时时间,应在10s-120s范围内调节 "灵敏度"整定,电流灵敏度,不大于0-2A 。
* 投入及切除门限整定,其功率因数应能在0.85(滞后)-0.95(超前)范围内整定。
* 过压保护设量
* 显示设置、循环投切等功能
这种采样方式在运行中既要保证线路系统稳定、无振荡现象出现,又要兼顾补偿效果,这是一对矛盾,只能在现场视具体情况将参数整定在较好的状态下工作。即使调整的较好,也无法祢补这种方式本身的缺陷,尤其是在线路重负荷时。举例说明:设定投入门限;cosΦ=0.95(滞后)此时线路重载荷,即使此时的无功损耗已很大,再投电容器组也不会出现过补偿,但cosΦ只要不小于0.95,控制器就不会再有补偿指令,也就不会有电容器组投入,所以这种控制方式建议不做为推荐的方式。
2. 无功功率(无功电流)型控制器
无功功率(无功电流)型的控制器较完善的解决了功率因数型的缺陷。一个设计良好的无功型控制器是智能化的,有很强的适应能力,能兼顾线路的稳定性及检测及补偿效果,并能对补偿装置进行完善的保护及检测,这类控制器一般都具有以下功能:
* 四象限操作、自动、手动切换、自识别各路电容器组的功率、根据负载自动调节切换时间、谐波过压报警及保护、线路谐振报警、过电压保护、线路低电流报警、电压、电流畸变率测量、显示电容器功率、显示cosΦ、U、I、S、P、Q及频率。
由以上功能就可以看出其控制功能的完备,由于是无功型的控制器,也就将补偿装置的效果发挥得淋漓尽致。如线路在重负荷时,那怕cosΦ已达到0.99(滞后),只要再投一组电容器不发生过补,也还会再投入一组电容器,使补偿效果达到最佳的状态。采用DSP芯片的控制器,运算速度大幅度提高,使得富里叶变换得到实现。当然,不是所有的无功型控制器都有这么完备的功能。国内的产品相对于国外的产品还存在一定的差距。
3. 用于动态补偿的控制器
对于这种控制器要求就更高了,一般是与触发脉冲形成电路一并考虑的,要求控制器抗干扰能力强,运算速度快,更重要的是有很好的完成动态补偿功能。由于这类控制器也都基于无功型,所以它具备静态无功型的特点。
目前,国内用于动态补偿的控制器,与国外同类产品相比有较大的差距,一是在动态响应时间上较慢,动态响应时间重复性不好;二是补偿功率不能一步到位,冲击电流过大,系统特性容易漂移,维护成本高、造成设备整体投资费用高。另外,相应的国家标准也尚未见到,这方面落后于发展。
三、滤波补偿系统
由于现代半导体器件应用愈来愈普遍,功率也更大,但它的负面影响就是产生很大的非正弦电流。使电网的谐波电压升高,畸变率增大,电网供电质量变坏。
如果供电线路上有较大的谐波电压,尤其5次以上,这些谐波将被补偿装置放大。电容器组与线路串联谐振,使线路上的电压、电流畸变率增大,还有可能造成设备损坏,再这种情况下补偿装置是不可使用的。最好的解决方法就是在电容器组串接电抗器来组成谐波滤波器。滤波器的设计要使在工频情况下呈容性,以对线路进行无功补偿,对于谐波则为感性负载,以吸收部分谐波电流,改善线路的畸变率。增加电抗器后,要考虑电容端电压升高的问题。
滤波补偿装置即补偿了无功损耗又改善了线路质量,虽然成本提高较多,但对于谐波成分较大的线路还是应尽量考虑采用,不能认为装置一时不出问题就认为没有问题存在。很多情况下,采用五次、七次、十一次或高通滤波器可以在补偿无功功率的同时,对系统中的谐波进行消除。

Ⅵ 电力工程电气设计手册电气二次部分的作品目录

目录前言第二十章 强电控制信号和测量系统第20-1节 控制方式一 发电厂与变电所的控制方式二 强电控制方式的主要类型第20-2节 控制室及其屏(屏台或台)的布置一 总的要求二 主控制室及网络控制室的布置三 单元控制室的布置四 控制屏(屏台或台)与继电器屏的布置五 常用屏(屏台或台)的型式及安装第20-3节 控制信号和测量一 总的要求二 三相操作断路器控制、信号回路三 分相操作断路器控制回路四 空气断路器的控制、信号回路五 一个半断路器的二次接线六 发电机变压器线路组的二次接线七 隔离开关的控制 信号和闭锁回路第20-4节 中央信号及其他信号装置一 中央信号装置二 发电机指挥信号三 全厂事故信号四 锅炉房联系信号五 隔离开关的位置指示信号六 采用闪光报警器的中央信号第20-5节 交流电流电压回路及互感器的选择一 交流电流回路及电流互感器的选择二 交流电压回路及电压互感器的选择第20-6节 电气专业应用计算机的设计一 监控计算机在发电厂电气部分的应用二 微处理机监控装置在超高压变电所及电厂开关站的应用第20-7节 二次回路设备的选择及配置一 二次回路的保护设备二 熔断器或自动开关的配置三 熔断器自动开关的选择四 控制、信号回路的设备选择五 跳合闸回路中的中间继电器及合闸接触器的选择六 控制回路中“防跳”继电器的选择七 串接信号继电器及附加电阻的选择八 端子排九 控制电缆与信号电缆十 小母线配置及二次回路标号第20-8节 变压器的冷却和调压方式的二次接线一 主变压器的冷却方式及二次接线二 变压器有载调压分接开关二次接线三 变压器无载调压分接开关的位置指示四 变压器测温装置附录20-1 控制屏(屏台)的模拟母线和小母线色别及二次回路编号附录20-2 LWX2型强电小开关选择参考资料附录20-3 控制屏台的外形及尺寸第二十一章 弱电控制信号和测量系统第21-1节 总则一 弱电技术的要求及采用条件二 弱电参数的选择第212节 弱电控制方式和接线一 弱电控制回路的要求及分类二 弱电控制接线三 发电机调速 调压的控制方式及要求第21-3节 弱电信号方式和接线一 弱电信号回路的要求及分类二 弱电中央信号装置的要求与接线三 新型弱电事故信号设备第2-14节 弱电测量方式和接线一 弱电测量方式和要求二 弱电常测回路接线三 常用变送器的选型第21-5节 弱电电源系统一 弱电电源的分类及要求二 弱电电源系统的接线及供电方式三 弱电电源设备的选择及二次回路接线第21-6节 弱电装置屏(屏台)的型式与布置一 弱电控制室的要求和布置方式二 弱电控制屏(屏台)的结构和布置三 新型弱电屏(屏台)的选用四 弱电控制屏(屏台)和返回屏的屏面布置和要求第21-7节 提高弱电回路可靠性的要求与措施一 提高可靠性的主要措施二 提高弱电控制回路的可靠性措施三 降低弱电二次回路干扰电压的措施四 弱电装置的端子排设计五 晶体管装置的抗干扰试验标准第二十二章 发电厂和变电所的自动装置第22-1节 发电厂和变电所备用电源自动投入装置(BZT)一 备用电源的一次接线二 备用电源自动投入装置的接线要求三 主变压器或线路的自动投入装置四 厂(所)用电源切换第22-2节 自动按频率减负荷装置(ZPJH)一 概述二 保持频率恒定的措施三 自动按频率减负荷(ZPJH)装置接线四 防止电动机反馈时ZPJH误动作的措施附录22-1 JPJH-4型晶体管按频率减负荷装置第二十三章 厂用电动机二次接线第23-1节 厂用电动机的测量仪表第23-2节 厂用电动机保护一 3~10kV厂用电动机保护二 380V厂用电动机保护三 保护的整定计算第23-3节 厂用电动机控制信号接线一 厂用电动机控制回路的基本接线二 汽机辅机的联锁及自动装置三 给水系统电动机的联锁及自动装置四 锅炉辅机的联锁及自动装置五 除灰系统电动机的联锁及自动装置六 供水系统电动机的联锁及自动装置七 公用设备电动机的联锁及自动装置八 输煤系统电动机的联锁及自动装置第23-4节 多台电动机拖动和调速电机的控制接线一 一台辅机用两台电动机拖动的控制接线二 双速电动机的控制接线三 可控硅串级调速装置四 电磁调速电动机五 电磁振动给料机控制接线第二十四章 操作电源系统第24-1节 综述一 蓄电池直流系统二 电容储能直流系统三 复式整流直流系统第24-2节 直流系统的分类及设计要求一 发电厂的直流系统和直流屏二 变电所的直流系统和直流屏第24-3节 蓄电池直流系统的设备选择一 直流系统的负荷统计二 蓄电池容量选择三 蓄电池的分类四 充电设备的选择五 直流系统的馈线熔断器和自动空气开关的选择六 直流馈线刀开关和转换开关的选择七 蓄电池回路设备的选择八 充电回路设备的选择九 蓄电池组端电池调整器的选择十 载流导体的选择十- 直流系统短路电流计算第24―4节 直流馈线回路一 环形供电回路二 辐射形供电回路第24-5节 直流设备的布置及安装一 蓄电池室的布置二 端电池电动调整器的安装三 充电设备的布置四 蓄电池室的土建要求第24-6节 直流系统的保护和信号回路一 充电设备的控制和信号回路二 端电池调整器的接线三 绝缘监察装置和电压监视装置四 闪光装置五 事故照明切换装置接线第24-7节 电容储能直流系统一 储能电容器的容量和电压选择二 电容储能直流系统第24-8节 变电所复式整流直流系统一 复式整流系统接线二 复式整流装置的计算三 电流互感器输出功率计算四 铁磁谐振稳压器第24-9节 交流操作系统一 保护回路二 二次接线第24-10节 镉镍电池及其充电设备一 镉镍电池的基本特性二 镉镍电池直流屏接线三 镉镍电池直流系统设备选择和布置第二十五章 励磁系统第2-51节 概述一 励磁系统的分类二 对励磁系统的要求第25-2节 直流励磁机励磁系统一 系统接线及设备配套二 自动灭磁开关及控制接线三 自动调整励磁装置四 继电强行励磁装置五 设备参数的选择计算第25-3节 交流励磁机-静止整流器励磁系统一 设备配套二 励磁整流柜 灭磁柜和过电压保护装置三 自动和手动调整励磁装置的控制接线四 测量仪表五 中频试验电源六 设备布置第25-4节 其他励磁系统一 交流励磁机――静止可控整流器励磁系统二 交流励磁机――旋转整流器励磁系统(无刷励磁系统)三 静止励磁系统第25-5节 备用励磁系统一 备用励磁系统的要求二 备用励磁系统的设计条件三 备用励磁系统接线四 备用励磁系统设备的选择和安装附录25-1 励磁系统的名词术语附录25-2 SWTA型自动和手动调整励磁装置附录25-3 自动调整励磁全控整流桥电力电缆的选择计算第二十六章 同步系统第26-1节 概述第26-2节 同步点和同步电压取得方式一 对同步电压的要求二 同步点及同步方式三 同步闭锁措施第26-3节 手动准同步一 集中同步二 分散同步三 组合式同步表第26-4节 自动准同步装置一 ZZQ-3B型自动准同步装置二 ZZQ-5型自动准同步装置三 自动准同步装置二次回路设计配合的问题第26-5节 自同步方式第26-6节 变电所的同步装置和线路的同步接线一 半自动导前相角准同步装置二 捕捉同步装置第二十七章 补偿装置二次接线第27-1节 串联电容补偿装置一 概述二 串联补偿装置的保护方式三 信号传递和台上操作电源四 控制 信号和测量回路第27-2节 同步调相机二次回路一 同步调相机保护二 控制 信号和测量回路三 调相机励磁系统第27-3节 并联电抗器一 超高压并联电抗器二 低压并联电抗器第27-4节 并联电容器组- 概述二 并联电容器组保护三 串联电抗器保护四 并联电容器组的控制和信号五 测量仪表第27-5节 静态无功补偿装置(SVS)第二十八章 电网继电保护及安全自动装置第28-1节 设计原则和一般规定一 概述二 设计范围与深度要求三 确定电网继电保护配置方案的主要问题四 电网继电保护对电源的基本要求五 保护要求的最小灵敏系数第28-2节 35kV及以上中性点非直接接地电网中的线路保护配置原则一 概述二 相间保护三 单相接地保护第28-3节 110~220kV中性点直接接地电网的线路保护一 概述二 110~220kV线路继电保护配置的具体要求三 110~220kV线路接地保护四 110~220kV线路相间距离保护五 110~220kV线路纵差保护六 110~220kV线路“四统一”定型保护屏的组成与使用第28-4节 330~500kV中性点直接接地电网的线路保护一 超高压电网特点及对继电保护的特殊要求二 主保护与后备保护配置原则三 330~500kV线路保护配置方案四 双断路器主接线方式的线路继电保护的若干问题五 工频过电压保护第28-5节 母线保护和断路器失灵保护一 母线保护的配置原则二 母线保护构成原理及其适应性三 各种母线接线及其保护方式四 断路器失灵保护第28-6节 自动重合闸一 自动重合闸装置的应用与配置原则二 三相一次自动重合闸三 综合自动重合闸装置四 自动重合闸与保护的配合五 综合自动重合闸的整定计算第28-7节 电网安全自动装置及故障录波装置一 概述二 电网安全稳定装置的功能与分类三 电网稳定控制装置四 电网解列装置五 低频减载六 故障录波装置第28-8节 电网继电保护的整定计算一 整定计算的主要问题二 相间距离保护整定计算三 中性点直接接地电网的零序电流保护整定计算四 中性点直接接地电网的接地距离保护整定计算五 高频相差保护整定计算六 母线保护整定计算第二十九章 主设备继电保护第29-1节 主设备继电保护设计原则一 设计原则及范围二 设备选型三 保护出口四 保护电源第29-2节 发电机保护一 100MW以下发电机保护配置二 定子绕组相间短路保护构成三 与母线直接连接的发电机定子绕组接地保护四 反应定子绕组匝间短路的保护五 发电机外部相间短路保护六 定子绕组过负荷保护七 励磁回路接地保护第29-3节 发电机保护整定计算一 纵联差动保护整定计算二 横联差动保护整定计算三 定子单相接地保护的整定计算四 反应外部相间短路的后备保护的整定计算五 定子绕组过负荷保护的整定计算第29-4节 变压器保护一 变压器保护的配置原则二 变压器瓦斯保护装置及整定三 变压器电流速断保护四 变压器纵联差动保护五 变压器相间后备保护配置原则及接线六 中性点直接接地电网的零序后备保护配置及接线七 变压器的过激磁八 变压器过负荷保护九 自耦变压器保护十 三相三柱式全星形接线变压器保护特点第29-5节 变压器保护整定计算一 电流速断保护的整定计算二 纵联差动保护的整定计算三 相间后备保护的整定计算四 中性点直接接地电网的零序后备保护整定计算五 变压器过负荷保护整定计算六 自耦变压器零序差动保护整定计算七 500/220kv联络自耦变压器零序保护改进方案(图29-25)的整定计算第29-6节 发电机变压器组保护一 大型发电机组的特点及其对继电保护的要求二 大型发电机变压器组单元接线继电保护配置三 保护及其接线四 其它几种保护简介第29-7节 发电机-变压器组保护整定计算一 复合电流速断保护整定计算二 失磁保护整定计算三 过电压保护整定计算四 阻抗保护整定计算五 逆功率保护动作值的整定六 定子接地保护灵敏系数计算七 发电机匝间短路保护整定计算八 发电机过负荷保护整定计算第29-8节 厂用电源保护一 厂用工作及备用电抗器保护二 高压厂用工作 备用(起动)变压器的保护三 低压厂用工作及备用变压器保护四 保护的整定计算第29-9节 6~10kV母线保护及其整定计算一 发电机电压母线保护二 变电所6~10kV母线保护三 保护的整定计算第29-10节 6~10kV线路保护及其整定计算一 6~10kV线路保护装设原则二 保护整定计算第29-11节 中性点不接地系统的接地信号检测装置一 接地信号装置的分类及要求二 反应工频电容电流值的接地保护三 反应电容电流方向的接地保护四 反应零序电流有功分量的接地保护五 反应5次谐波分量的接地保护六 反应暂态分量首半波的接地保护七 其他接地检测信号装置附录29-1 三绕组变压器制动线圈的接法一 单侧电源的三绕组变压器二 双侧电源的三绕组变压器三 三侧电源的三绕组变压器附录29-2 短线路纵联差动继电器附录29-3 非直接接地信号装置一 反应接地电容电流方向的非直接接地信号装置二 反应接地电容电流5次谐波分量的ZD-5型接地信号装置三 反应接地电容电流暂态分量首半波的ZD-3C型接地信号装置第三十章 电网调度自动化系统第30-1节 概述一 调度自动化的作用二 调度自动化的发展趋势第30-2节 调度自动化的功能范围一 电网调度的职责范围二 地区电网的厂、所三 调度自动化的基本内容四 调度自动化的功能与范围第30-3节 调度自动化系统一 系统的概念及配置原则二 系统配置的基本方式第30-4节 调度自动化的主要设备一 在线实时监控计算机二 人机联系设备三 远动终端(RTU)及通道四 电量变送器五 发电机组频率与有功功率自动调节装置第30-5节 规划与设计一 规划与设计的内容二 设计的技术要求第30-6节 电网调度中心设计一 电网调度中心设计阶段和主要内容二 建筑物型式及布置三 机房设计第三十一章 电力系统通信第31-1节 系统通信的要求和方式一 系统通信的重要性和特点二 电力系统通信的主要内容三 电力系统通信网的结构四 电力系统的通信方式第31-2节 电力线载波通信一 传输信息内容二 基本原理和构成三 电力线载波通信的特点四 电力线载波终端机五 结合设备六 加工设备第31-3节 电力线载波通道的设计与计算一 通道设计的任务二 设计依据和条件三 通道的组织四 通道设计与计算五 电力线载波通道的频率分配第31-4节 微波通信一 微波通信简介二 微波接力通信线路的选择三 微波通信电路设计的质量标准四 微波传播及其计算五 微波站的平面布置和建筑设计要求六 微波铁塔七 微波站的接地和防雷八 微波通信站的仪表配置第31-5节 光纤通信- -光纤通信的基本原理二 数字光纤通信系统的设计第三十二章 厂(所)内通信第32-1节 概述一 厂(所)内通信的分类和要求二 厂(所)内通信组织措施和要求第32-2节 生产管理通信一 设计要求二 设备选择三 设计注意事项第32-3节 生产调度通信一 设计要求二 设备选择第32-4节 其它辅助通信方式一 生产扩音通信二 无线电移动通信三 电钟系统的设计第32-5节 通信电源一 常用通信设备供电电压及耗电量二 直流系统及设备选择第32-6节 音频通道的中继组合方式一 设计要求二 中继方式三 中继线通信方式的选择四 去水源地的通信线路五 去火车站的通信线路第32-7节 通信线路一 设计要求二 电缆线路的选择三 敷设方式四 主干电缆与配线电缆的设计五 架空杆路设计六 沿墙敷设电缆七 直埋电缆八 音频线路网络的传输设计第32-8节 通信房屋建筑的要求与布置一 通信建筑物的形式及内容二 通信建筑物的设计要求三 通信室的平面布置四 通信设备集中布置方案第三十三章 电气试验与检修设备的配置第33-1节 试验设备的配置一 试验设备的配置原则二 电气试验设备三 电测量仪表 继电保护及自动装置的调试四 电气和热机部分精密机件的修理设备第33-2节 检修设备的配置一 发电厂的电气检修设施二 变电所的电气检修设施三 超高压配电装置的检修设施四 油务设施第33-3节 电气试验室与检修间的布置一 电气试验室布置的一般原则与参考方案二 电气检修间布置的一般原则与参考方案附录33-1 设备参考表第三十四章 小型机组电气部分第34―1节 概述第34-2节 电气主接线一 电气主接线的重要性二 确定电气主接线所需的资料三 对电气主接线的要求四 发电机电压的选择五 发电厂与系统的连接六 发电机电压侧的接线七 升高电压侧的接线八 发电机电压系统及升高电压系统的中性点接地方式九 电气主接线举例第34-3节 厂用电系统一 厂用电电压二 厂用电接线三 厂用电源的引接四 孤立电厂的起动电源第34-4节 二次接线一 操作方式二 中央信号三 同步装置- 励磁装置发电机的二次回路第34-5节 继电保护和自动装置一 发电机的继电保护二 变压器的继电保护三 自动装置第34-6节 直流系统一 概述二 直流系统的设计原则三 直流系统接线举例第34-7节 电气设施布置一 概述二 发电机电压配电装置的布置三 主控制室的布置四 升压配电装置的布置五 发电机出线小室的布置六 厂用电气设备的布置

Ⅶ 谐波抑制和无功功率补偿的书籍目录

《电气自动化新技术丛书》序言第6届《电气自动化新技术丛书》编辑委员会的话第3版前言第2版前言第1版前言第1章绪论1.1谐波问题及研究现状1.2谐波抑制1.3无功补偿1.4本书内容概述第2章谐波和无功功率2.1谐波和谐波分析2.1.1谐波的基本概念2.1.2谐波分析2.1.3公用电网谐波电压和谐波电流限值2.2无功功率和功率因数2.2.1正弦电路的无功功率和功率因数2.2.2非正弦电路的无功功率和功率因数2.2.3无功功率的时域分析2.2.4三相电路的功率因数2.2.5无功功率的物理意义2.2.6无功功率理论的研究及进展2.3谐波和无功功率的产生2.4无功功率的影响和谐波的危害2.4.1无功功率的影响2.4.2谐波的危害2.4.3谐波引起的谐振和谐波电流放大2.4.4谐波对电网的影响2.4.5谐波对旋转电机和变压器的危害2.4.6谐波对继电或物保护和电力测量的影响2.4.7谐波对通信系统的干扰第3章电力电子装置的功率因数和谐波分析3.1阻感负载整流电路的功率因数和谐波分析3.1.1忽略换相过程和直流侧电流脉动时的情况3.1.2计及换相过程但忽略直流侧电流脉动时的情况3.1.3计及直流侧电流脉动时的情况3.1.4阻感负载整流电路的非特征谐波3.2整流电路带滤波电容时的功率因数和谐波分析3.2.1电容滤波型桥式整流电路的功率因数和谐波分析3.2.2感容滤波型桥式整流电路的功率因数和谐波分析3.3交流调压电路的功率因数和谐波分析3.3.1移相控制单相交流调压电路的功率因数和谐波分析3.3.2移相控制三相交流调压电路的功率因数和谐波分析3.3.3通断控制交流调压电路的功率因数和谐波分析3.4周波变流电路的功率因数和谐波分析3.4.1用开关函数法对输入电流进行谐波分析3.4.2输入电流中的谐波频率和谐波含量3.4.3输入电流中的基波分量和输入端功率因数第4章无衫衫液功补偿电容器和LC滤波器4.1无功补偿电容器4.1.1并联电容器补偿无功功率的原理4.1.2并联电容器补偿无功功率的方式4.1.3并联电容器补偿容量的计算4.1.4并联电容器的放电回路和自动投切4.1.5并联电容器和谐波的相互影响4.2LC滤波器4.2.1LC滤波器的结构和基本原理4.2.2LC滤波器的设计准则4.2.3单调谐滤波器的设计4.2.4高通滤波器的设计第5章静止无功补偿装置5.1无功功率动态补偿的原理5.2晶闸管控制电抗器(TCR)5.2.1基本原理5.2.2主塌磨要联结方式和配置类型5.2.3控制系统5.2.4动态性能和动态过程分析5.3晶闸管投切电容器(TSC)5.3.1基本原理5.3.2投入时刻的选取5.3.3控制系统5.3.4动态过程分析1455.4采用全控型器件的静止无功发生器(SVG)5.4.1基本原理5.4.2控制方法5.4.3应用实例5.4.4发展趋势第6章谐波和无功电流的检测方法6.1基于瞬时无功功率理论的谐波和无功电流检测方法6.1.1三相电路瞬时无功功率理论6.1.2基于瞬时无功功率理论的谐波和无功电流的实时检测6.1.3瞬时无功功率理论的其他应用6.2基于时域变换的谐波与无功电流检测方法6.2.1基于时域变换的电流检测算法的基本原理6.2.2在三相四线制系统中的电流检测方法6.2.3在单相系统中的电流检测方法6.2.4电流检测中低通滤波器的设计6.2.5仿真及实验研究6.3其他谐波和无功电流检测方法6.3.1基于傅里叶分析的电流检测方法6.3.2采用人工神经网络的电流检测方法第7章有源电力滤波器7.1有源电力滤波器的基本原理7.2有源电力滤波器的系统构成和主电路形式7.2.1单独使用的有源电力滤波器的系统构成7.2.2有源电力滤波器的主电路形式7.3并联型有源电力滤波器7.3.1指令电流运算电路7.3.2电流跟踪控制电路7.3.3主电路设计7.3.4直流侧电压的控制7.3.5并联型有源电力滤波器的控制方式7.3.6并联型有源电力滤波器的稳定性分析7.4串联型有源电力滤波器7.4.1串联型有源电力滤波器的结构和基本原理7.4.2检测负载谐波电压控制方式7.4.3复合控制方式7.4.4串联型和并联型有源电力滤波器的简要对比7.5串并联型有源电力滤波器7.5.1UPQC的结构和基本工作原理7.5.2UPQC的补偿电压和电流指令生成方法7.5.3UPQC的补偿结果第8章混合型电力滤波器8.1混合型电力滤波器的系统构成8.1.1并联混合型电力滤波器的系统构成8.1.2串联混合型电力滤波器的系统构成8.2并联混合型电力滤波器8.2.1直流并联混合型电力滤波器8.2.2APF与PF串联后与电网并联的交流混合型电力滤波器8.2.3一种新型交流并联混合型电力滤波器8.2.4并联注入式混合型电力滤波器8.3串联混合型电力滤波器8.3.1串联混合型电力滤波器的系统构成及工作原理8.3.2有源装置的容量估算8.3.3串联混合型电力滤波器的控制方法8.3.4串联混合型电力滤波器的补偿特性第9章基于多电平变流器的无功补偿和有源电力滤波装置9.1多电平无功补偿和有源电力滤波器拓扑结构9.2串联H桥静止无功发生器9.2.1工作原理和数字模型9.2.2直流侧电压控制方法9.2.3实验结果及分析9.3混合型串联H桥多电平有源电力滤波器9.3.1高低压模块直流侧电压及门槛电压选取原则9.3.2直流侧电压均衡控制9.3.3实验结果及分析9.4中点钳位型三电平有源电力滤波器9.4.1工作原理和数学模型9.4.2SVPWM工作原理9.4.3中点电位分析9.4.4直流母线电压控制9.4.5实验结果及分析参考文献

Ⅷ 【配网无功补偿方案实施中的问题及对策】电容无功补偿的原理

【摘 要】本文针对配电网无功补偿遇到的问题进行分析,并提出对策。如何采用最佳方案在尺竖进行配电网无功补偿、提高功率因数和搞好无功平衡,是一项建设性的降损技术措施。【关键词】配电网;无功补偿;问题;对策
低压配电网无功补偿技术在配电系统中也开始普及和发展起来,从静态补偿到动态补偿,从有触点补偿到无触点补偿,都取得了丰富的经验。但是在实践中也遇到一些问题,必须引起重视。
1.无功补偿方案实施中遇到的问题
1.1 无功补偿装置安装地点
通过计算全网的无功潮流,确定配电网的补偿方式、选择最优补偿容量和补偿装置安装地点,才能使其发挥最大的经济效益。要使补偿后的运行费用以及相应的安装成本同时达到最小化,需要大量的数据累计和各部昌困门的紧密配合,同时计算过程相当复杂。
1.2 无功功率因数补偿度问题
一般资料中都比较笼统地提出将功率因数补偿到0.95以上或最低,目标是达到规定的功率因数,然后是越高越好,尽量使其接近1,这是一种片面追求高功率因数的做法。
1.3 谐波的问题
电容器本身除了具备一定的抗谐波能力,但同时也有放大谐波的副作用。谐波含量过大时会对电容器的寿命产生影响,甚至造成电容器的过早损坏。并且由于电容器对谐波的放大作用,将使系统的谐波干扰更严重。因而做无功补偿时必须考虑谐波治理,在有较大谐波干扰,又需要补偿无功的地点,应考虑增加滤波装置。
1.4 无功倒送的问题
无功倒送会增加配电网的损耗,加重配电线路的负担,是电力系统所不允许的。尤其是采用固定电容器补偿方式的用户,则可能在负荷低谷时造成无功倒送,这引起充分考虑。
1.5 产品选型及工程应注意的问题
(1)要注意运行及产品可靠性问题。与配电变压器相比,低压补偿装置的维护量无疑要高很多;控制系统越复杂、功能越多,维护工作量越大。低压补偿装置的可靠性在开关和电容器,电容器寿命与工作条件有关,因此装置的投切开关是关键。大量工程实践表明,户外配变无功补偿因工作条件差,晶闸管或接触器补偿装置难满足可靠性要求,机电一体开关是最佳选择。(2)要注意产品类型和功能选择。对配电台变的补偿控制,有多种类型和不同功能的产品可供选择。城网台变多以无功补偿为主,很多要求有综合监测功能。
2.无功补偿方案实施的对策
2.1 无功补偿装置地点的选择
怎样选择装设地点和容量才能实现效益最大化?通过公式,已知电容器容量,取在不同安装容量时最佳安装地点。
式中,K为线路无功补偿度;n为电容器组数;Qc为电容器容量(kvar);Q为线路无功功率(kvar)。
在10kV配电中装置并联电容器最佳补偿问题,经过数学模型进行计算的结果如表1所示。
表1电容器的安装组数、容量与无功线损下降率
电容器安装组数 离线路末端安装距离 电容器安装容量 无功线损下降率
第一组 第二组 第三组
1 1/3L 2/3Q 88.9
2 1/5L 3/5L 4/5Q 96.0
3 1/7L 3/7L 5/7L 6/7Q 98.0
注:L为线路全长。
一般对于均匀分布负荷的配电线路,以安装一组电容器为宜,最多两组就足够了,实际配电除有干线外,还有许多分支线,配电线上无功补偿装置可按以下原则进行配置:
(1)在负荷较大的分支线上,各配置一组电容器,安装地点在距支耐困念线T接点2/3处,补偿容量为支线载功负荷平均值的2/3。
(2)在干线距首端2/3处配置一组电容器,容量为经支线补偿后全线剩下无功负荷的2/3。
(3)电容器组安装应尽量靠近配电变压器,停电后电容器组可以通过变压器绕组放电,遇有线路停电检修,还应断开电容器组。
2.2 无功功率因数的计算
用户的功率因数偏低就会从系统中吸收无功。补偿无功功率后,让无功功率基本就地平衡,线损可以大为降低,这是降低网损的主要措施之一。用户提高功率因数不外乎2种方法:(1)提高自然功率因数,让设备运行于最佳状态;(2)自然功率因数达不到要求时采取无功补偿的方法,但将功率因数提高到多大才算较合理呢?首先分析一下无功功率因数提高到多少才合理。
在负荷的有功功率P保持不变的条件下,提高负荷的功率因数,就意味着减小负荷的无功功率Q,因而可以减少无功功率通过线路及变压器的无功功率,所以也将减少线路和变压器中的有功功率损耗的电能损耗。
设电网的元件电阻为R。功率因数为cosφ,则元件电阻上的功率损耗△P=P2R/U2cos2φ,所以△P与功率因数的平方成反比。提高功率因数cosφ就意味着减少功率损耗△P。同时提高负荷功率因数与降低线损百分数的关系可以用下面简单的近似关系式表示:
△P(%)=[(1-cos2φ1)/cos2φ2]×100%
式中,cosφ1为负荷原来的均方根功率因数;cosφ2为提高后的均方根功率因数。
按上述公式可得出提高功率因数对降低负载损耗的影响,计算结果如表2所示。
表2 负荷功率因数与降低线损的关系表
负荷原有功率因数值 0.6 0.65 0.7 0.75 0.8 0.85 0.9
降低线损百分数/% 60 53 46 38 29 20 10
提高负荷的功率因数,使无功功率基本就地平衡,线损就可以大为降低,而且还可以改善电压质量和提高变压器的输送能力。电力用户的功率因数应提高到以下规定值:
(1)一般工业用户的功率因数要求从0.85提高到0.9;(2)对大量用电的工业用户的功率因数要求从0.90提高到0.95;(3)对普通居民用户功率因数要求达到0.85以上。
2.3 无功补偿装置运行中的几点建议
(1)无触点静态无功补偿装置采用优质可控硅模块作电子投切开关,使用寿命长,采用电压过零投切时能限制涌流在规定范围内自动投切,动态响应技术,投切时间≤20ms,同时采用电抗器电容器组,真正做到电容器投切时无涌流、无震荡、无谐波、无电压冲击噪声运行,同时相应地延长了电容器的使用寿命。
(2)无功补偿容量根据配变容量、负荷情况进行综合选择,厂家进行成套设备的安装与检测。无触点静态无功补偿装置功能齐全,性能优越,具有负荷综测、电压综测功能,能对电压、电流、功率因数等数据进行采集与分析,根据功率因数限制进行无功投切设定,功率因数达到设定值时,不投电容器,功率因数超过设定值时,切开电容器,当系统停电时,自动退出电容器,当系统恢复供电时,自动恢复运行。
(3)虽然线路电压的波动主要是由无功量变化引起的,但线路的电压水平却是由系统情况而决定的,当线路电压基准偏高或偏低时,无触点静态无功补偿装置能根据电压限制进行电容投切设定,108%额定值≤电压<过电压。欠补不投,过补切。
3.结语
配电网建设直接关系到城市的经济建设与发展,是城市现代化建设的重要基础设施之一。城市配电网的建设和改造必须综合考虑城市发展规划、现有电网及其技术水平、资金投入、施工和运行管理等几个方面,以利于最终电网的安全、优质、经济、可靠运行。
参考文献
[1]王爱华.浅谈10kV配电无功补偿技术与经济分析[J].科技促进发展(应用版).2010(08)

Ⅸ 滤波补偿装置与无功补偿装置的应用

滤波补偿装置的应用

低压滤波补偿装置自动控制采用先投后切、后投先切的顺序投切方式

实时监测系统的电压、电流、功率因数、补偿状态等参数

有效滤除负荷谐波,分流70%至90%左右的特征次谐波电流

滤波投资成本低,技术成熟,性能稳定,适用于大部分滤波补偿

MSFGD适用于既要求提高功率因数,又要求滤波效果的安全补偿。

典型负荷应用于:退火炉谐波治理,中频炉谐波治理,高频炉谐波治理,陶瓷谐波治理 等


无功补装置MSCGD的应用

低压滤波补偿装置自动控制采用先投后切、后投先切的顺序投切方式

实时监测系统的电压、电流、功率因数、补偿状态等参数

有效避免电容谐振,分流20%至30%左右的特征次谐波电流

投资成本低,技术成熟,性能稳定,适用于大部份低压补偿

低压自动无功补偿兼消谐装置 MSCGD适用于只要求提高功率因数,不要求谐波治理滤波效果的安全补偿,典型适用负荷:电机,住宅小区,造纸、纺织、橡胶行业,地铁,电解行业等

Ⅹ 电力系统自动化技术论文

电力系统自动化技术的日新月异和控制水平的不断提高搜企网版权所有,为电力工业解决能源资源和环境约束的矛盾创造了条件。我为大家整理的电力系统自动化技术论文,希望你们喜欢。
电力系统自动化技术论文篇一
浅析电力系统自动化技术

【摘 要】随着电力电子技术、微电子技术沟迅猛发展,原有的电力传动(电子拖动)控制的概念已经不能充分概抓现代生产自动化系流中承担第一线任务的全部控制设备。而且,电力拖动控制已经走出工厂,在交通、农场、办公室以及家用电器等领域获得了广泛运用。它的研究对象已经发展为运动控制系统,下面仅对有关电气自动化技术的新发展作一些介绍。

【关键词】电力自动化;现场总线;无线通讯技术;变频器

0 引言

现今,创新的自动化系统控制着复杂的工艺流程,并确保过程运行的可靠及安全,为先进的维护策略打造了相应的基础。

电力过程自动化技术的日新月异和控制水平的不断提高搜企网版权所有,为电力工业解决能源资源和环境约束的矛盾创造了条件。随着社会及电力工业的发展,电力自动化的重要性与日剧增。传统的信息、通信和自动化技术之间的障碍正在逐渐消失。最新的技术,包括无线网络、现场总线、变频器及人机界面、控制软件等,大大提升了过程系统的效率和安全性能。

电力系统自动化系统一般是指电工二次系统,即电力系统自动化指采用各种具有自动检测、决策和控制功能的装置并通过信号系统和数据传输系统对电力系统各个元件、局部系统或全系统进行就地或远方自动监视、协调、调节和控制以保证电力系统安全稳定健康地运行和具有合格的电能质量[1]。

1 电力自动化的发展

我国是从20世纪60年代开始研制变电站自动化技术。变电站自动化技术经过数十年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。

2 电力自动化的实现技术

现场总线(Fieldbus)被誉为自动化领域的计算机局域网。信息技术的飞速发展,引起了自动化系统结构的变革,随着工业电网的日益复杂工业自动化网版权所有,人们对电网的安全要求也越来越高,现场总线控制技术作为一门新兴的控制技术必将取代过去的控制方式而应用在电力自动化中。

3 无线技术

无线通讯技术因其不必在厂区范围内进行繁杂、昂贵的布线,因而有着诱人的特质。位于现场的巡视和检修维护人员借此可保持和集中控制室等控制管理中心的联系,并实现信息共享。此外,无线技术还具有高度灵活性、易于使用、通过远程链接可实现远方设备或系统的可视化、参数调整和诊断等独特功能。无线技术的出现及快速进步,正在赋予电力工业领域以一种崭新的视角来观察问题,并由此在电力流程工业领域及资产管理领域,开创一个激动人心的新纪元。

尽管目前存在多种无线技术汉阳科技,但仅有几种特别适用于电力流程工业。这是因为无线信号通过空间传播的过程、搭载的数据容量(带宽)、抗RFI(射频干扰)/EMI(电磁干扰)干扰性、对物理屏障的易感性、可伸缩性、可靠性,还有成本,都因无线技术网络的不同而不同。因此,很多用户都倾向于“依据具体的应用场合,来选定合适的无线技术”。控制用的无线技术主要有GSM/GPRS(蜂窝)、9OOMHzRadios、wi-Fi(802.lla/b/g)、WIMAX(802.16)、ZigBee(802.15.4)、自组织网络等,其中尤以Wi-Fi和WIMAX应用增长速度最快,这是因为其在带宽和安全性能方面较优、在数据集中和网络化方面具备卓越的安全框架、具有主机数据集成的高度灵活性、高的鲁棒性及低的成本。

4 信息化技术

电力信息化包括电力生产、调度自动化和管理信息化两部分。厂站自动化历来是电力信息化的重点,大部分水电厂、火力发电厂以及变电站配备了计算机监控系统;相当一部分水电厂在进行改造后还实现了无人值班、少人值守。发电生产自动化监控系统的广泛应用大大提高了生产过程自动化水平。电力调度的自动化水平更是国际领先,目前电力调度自动化的各种系统,如SCADA、AGC以及EMS等已建成,省电力调度机构全部建立了SCADA系统,电网的三级调度100%实现了自动化。华北电力调度局自动化处处长郭子明说,早在20世纪70年代华北电力调度局就用晶体管计算机调度电力,从国产121机到176机,再到176双机,华北电力调度局全用过,到1978年已经基本实现了电网调度自动化。

5 安全技术

电力是社会的命脉之一,当今人类社会对电力系统的依赖已到了难以想象的程度。电力系统发生大灾变对于社会的影响是不可估量的,因此电力系统最重要的是运行的安全性,但这个问题在全世界均未得到很好解决,电力系统发生大灾变的概率小但后果极其严重,我国电力系统也出现过稳定破坏的重大事故。由于我国经济快速发展的需求,电力工业将会继续以空前的速度和规模发展。随着三峡电站、西电东送、南北互供和全国联网等重大工程的实施,我国必将出现世界上最大规模的电力系统。

6 传动技术

实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。变频器作为节能降耗减排的利器之一,在电力设备中的应用已经极为广泛而成熟。对于变频器厂商而言,在未来30年,变频器,尤其是高压变频器在电力节能降耗中的作用极为明显,变频器也成为越来越多电力行业改造技术的首选。

在业内,以ABB为首的电力自动化技术领导厂商,ABB建立了全球最大的变压器生产基地及绝缘体制造中心。自1998年成立以来,公司多次参与国家重点电力建设项目,凭借安全可靠、高效节能的产品性能而获得国内外用户的好评。其公司多种产品,包括:PLC、变流器、仪器仪表、机器人等产品都在电力行业中得到很好的应用。

7 人机界面

发电站、变电站、直流电源屏是十分重要的设备,随着科学技术的不断发展,搜企网,单片机技术的日趋完善,电力行业中对发电站、变电站设备提出了更高精密、更高质量的要求,直流电源屏是发电站、变电站二次设备中非常重要的设备,直流电源屏承担着向发电站、变电站提供直流控制保护电源的作用,同时提供给高压开关及断路器的操作电源,因此直流电源屏的可靠性将直接关系到发电站的安全运行,直流电源屏的发展已经经历了很长的时间,从早期的直流发电机、磁饱和直流充电机到集成电路可控硅控制直流充电机、单片机控制可控硅充电机、高频开关电源充电机等,至目前直流电源屏已很成熟。

直流电源屏整流充电部分仍然采用目前国际最流行的软开关技术,将工频交流经过多级变换,最后形成稳定的直流输出,直流电源屏系统控制的核心部件是V80系列可编程控制器PLC,它将系统采集的输入输出模拟量以及开关量经过运算处理,最终控制高频开关电源模块使其按电池曲线及有人为设置的工作要求更可靠地工作。

8 结束语

电气自动化技术是当今世界最活跃、最充满生机、最富有开发前景的综合性学科与众多高新技术的合成。其应用范围十分广泛,几乎渗透到国民经济各个部门,随着我国科技技术的发展,电气自动化技术也随之提高。

【参考文献】

[1]汪秀丽.中国电力系统自动化综述[J].水利电力科技,2005(02).

[2]唐亮.论电力系统自动化中智能技术的应用[J].硅谷,2008(02).

[3]夏永平,唐建春.浅议电力系统自动化[J].硅谷,2010(06).
电力系统自动化技术论文篇二
电力系统自动化技术分析

摘 要:现代社会对电能供应的“安全、可靠、经济、优质”等各项指标的要求越来越高,相应地,电力系统也不断地向自动化提出更高的要求。电力系统自动化技术不断地由低到高、由局部到整体发展,文章对此进行了详细的阐述。

关键词:电力系统;自动化;自动化技术

引言

近几年来,随着计算机和通信技术的不断发展,电力系统已经发展成为融计算机、通信、控制和电力电子装备为一体的系统。电力系统自动化处理的信息量越来越大,观测范围也越来越广,闭环控制的的对象也越来越丰富。为确保电力系统安全、平稳、健康的运行,对电力系统的各个元件、局部、全系统,采用具有自动检测、决策和控制功能的装置,通过信号和数据传输的系统,就地或远距离进行自动监视、调节和控制等,从而达到合格的电能质量。

1 电力系统自动化与智能控制系统

1.1 电力系统自动化

电力系统自动化主要是指通过具有自动控制功能和自动检测功能的设备对电能传输和生产的全过程进行自动化管理和自动化调度。使用自动化技术能够实现对电力系统远程和就地的自动控制、调节和监视,为电力系统稳定、安全、正常的运行提供保障,最大限度的满足电能质量的实际需求。实现电力系统化自动化对提高电力系统运转水平有着极为重要的现实意义,其自动化主要包括变电站自动化、配电网自动化和以及调度电网自动化等方面。实现电力系统自动化能够为电力系统稳定、安全的运行提供保障,提高电力系统供电质量,实现电力企业的经济效益和管理效率。

1.2 智能技术与电力系统自动化的结合

智能技术的发展为电力系统自动化的发展提供了更高的平台。在电力系统自动化中应用智能技术不仅能够发展和完善电力自动化技术,而且通过智能系统的有效应用,可以有效协调电力系统的不稳定性。考虑到当前电力系统的发展还不是很成熟,因此为了尽可能的满足公众对廉价和便利的电力网络需求,将智能技术应用到电力系统当中十分必要。但当前我国电力系统自动化水平还不是很高,各方面发展不太成熟,都不同程度的存在一些问题和不完善的地方。

2 电力系统中的自动化技术

2.1 变电站自动化

目前,我国变电站自动化的发展已经取得一定成效,使得变电站运行成本得到了很大程度的降低,增强了电网调度和输配电的可能性。在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。由于变电自动化具有运行状态稳定、自动化程度高等方面的特点,在各级变电站中得到了广泛运用。利用自动化技术,能够将电话人工操作和人工监视取代,从而使得安全运行水平和工作效率大大提高。

2.2 电网调度自动化

电网调度自动化主要包括核心计算机控制系统以及用于实时分析、计算的软件系统。电网调度自动化技术能够在进行电力生产时,利用对电网系统安全性和运行状态的分析和监控,对电力市场进行自动调度,满足电力市场实际运营需求。在控制手段上日益增多了微机、电力电子器件和远程通信的应用。在发电厂和变电站进行信息收集的部分为远动端,调度端则主要用于对远动端收集来的信息进行调度。

2.3 变电综合自动化

变电综合自动化通过对现代电子技术、信息处理技术以及计算机技术的运用,对变电站设备、仪器进行优化设计和功能组合,实现对变电站主要线路和相关设备的测量、自动控制以及监视等全面管理。追求的目标向最优化、协调化、智能化发展,例如,励磁控制、潮流控制。该技术具有维护调试和操作简便等方面的特点,使得变电站保护性能大幅增强,从根本上实现了变电站远程监控管理手段。

2.4 配电网自动化

配电网自动化技术通过将配电线路和配电变电站结合,共同合成配电网,具有分散、点多、面广等方面的特点。该技术能够对配电网运行状态进行实时监控,从而对配电网运行模式进行改进和优化,当配电网发生故障,出现运行异常现象时,配电网自动化技术能够将故障及时找出,并予以有效的处理措施。

3 电力系统中的智能技术

3.1 模糊控制

模糊控制主要采用的是一种模糊的宏观控制系统,它具有易操作性、非线性、随机性、简单化和不确定性等特点,这些特点使得监理模糊关系模型变得十分简单容易,并且具有非常大的优越性。模糊控制方法的优越性在任何地方都体现出来,包括家用电器中,他使得控制操作变得非常容易掌握并且十分的简单。这种模糊理论的智能技术在电力系统自动化的控制中具有非常实用的价值,因为他能够模拟人的决策过程和模糊推理过程。

3.2 线性最优控制

最优控制是现代控制理论的一个重要组成部分,也是将最优化理论用于控制问题的一种体现。线性最优控制是目前诸多现代控制理论中应用最多,最成熟的一个分支。卢强等人提出了利用最优励磁控制手段提高远距离输电线路输电能力和改善动态品质的问题,取得了一系列重要的研究成果。该研究指出了在大型机组方面应直接利用最优励磁控制方式代替古典励磁方式。电力系统线性最优控制器目前已在电力生产中获得了广泛的应用,发挥着重要的作用。

3.3 专家系统控制

专家系统在电力系统中的应用范围很广,包括对电力系统处于警告状态或紧急状态的辨识,提供紧急处理,系统恢复控制,非常慢的状态转换分析,切负荷,系统规划,电压无功控制,故障点的隔离,配电系统自动化,调度员培训,电力系统的短期负荷预报,静态与动态安全分析,以及先进的人机接口等方面。虽然专家系统在电力系统中得到了广泛的应用。但仍存在一定的局限性。

3.4 神经网络控制

神经网络控制是通过人工神经网络发展而成的,它主要应用在学习方面以及模型结构方面,并且已经得到了广泛的传播和成果。神经网络控制的非线性是目前最受人们关注的,此外它的鲁棒能力、处理能力以及自主学习能力也同样受到人们的关注。神经网络是由大量简单的神经元以一定的方式连接而成的神经网络。根据具体问题的不同,已经有多种神经网络结构及其训练算法在电力系统中得到了应用,主要的神经网络理论研究有神经网络的硬件实现问题研究和神经网络学习算法研究等。

4 智能技术与自动化的发展趋势

目前, 自动化正由单个单元逐步发展为部分区域乃至整个系统,有单一功能逐步发展为一体化、多功能。在控制策略问题上日益向着适应化、最优化、区域化和智能化方向发展。随着我国科技水平不断进步,智能化技术已广泛运用于各个领域,对电力系统而言,其意义尤为重要。虽然在电力电力系统中,智能技术已得到了广泛运用,当就目前的发展趋势来看,以计算机软硬件为基础的智能技术在电力系统中还将得到更为全面的应用。此外,智能技术与自动化技术将会得到更加紧密的结合,在电网系统中得到为好的运用。

5 结束语

随着计算机技术,控制技术及信息技术的发展,电力系统自动化面临着空前的变革。多媒体技术、智能控制将迅速进入电力系统自动化领域,而信息技术的发展,不仅会推动电力系统监测的发展,也会推动电力系统控制向更高水平发展。

参考文献

[1]夏书军,程志武,周晓东.自动化技术在电力系统配电网中的应用[J].中国新技术新产品,2010(2):78-79.

[2]朱淋,徐秀英,肖中图.浅论电力系统及其自动化技术的应用能力[J]科技风,2010(4):36-37.

[3]曾琳,金涛.探讨电力系统自动化智能技术在电力系统中的运用研究[J].北京电力高等专科学校学报(自然科学版),2011(10):94-97.

看了“电力系统自动化技术论文”的人还看:

1. 电力系统自动化论文范文

2. 电力系统自动化建设论文

3. 电力工程自动化专业论文范文

4. 电力系统及其自动化职称论文

5. 电气自动化论文精选范文

阅读全文

与最新电力系统各种无功补偿滤波器装置选型设计制造新工艺标准手册相关的资料

热点内容
支付宝拉新怎么破解设备限制 浏览:89
轴承怎么炒 浏览:969
凌渡前轮轴承总成怎么样更换 浏览:95
什么设备会用到钣金 浏览:310
小区里自来水阀门坏了怎么换 浏览:76
植保设备是什么 浏览:938
钢板中间怎么安装轴承 浏览:898
做钢筋钩的轴承是什么轴承 浏览:817
下图装置可以完成多个实验 浏览:656
空气搅拌装置的作用 浏览:790
工程设备是做什么的 浏览:544
供暖管网需要什么型号的阀门 浏览:345
别克君威怎么调节仪表盘 浏览:520
海龙工具箱功能 浏览:799
化工厂用什么阀门多些 浏览:363
什么阀门带铅 浏览:825
郑州德伟电动工具 浏览:738
超声波能被什么干扰 浏览:40
留够设备如何报关 浏览:820
电机及电气技术实验装置三相功率表 浏览:526