① 碳氢装置加氢的作用是什么
所谓加氢,就是在临氢环境下,通过高温高压和催化剂作用,减小油品中碳氢比使油品轻质化,进一步降低产品中的硫、氮、提高产品质量的加工手段。按加氢程度的高低可以分为加氢处理HT(一般加氢程度在10%以内)和加氢裂化HC(一般加氢程度高于10%)。
② 可用加氢法生产的产品有哪些
加氢苯是一种广泛使用的,市场销量茄厅伏好的产品。具体如下:
苯加氢项目包括生产设施和生产辅助设施,主要为:制氢、加氢、预蒸馏、萃取、油库、装卸台等。生产高纯苯、硝化级甲苯、二甲苯、非芳烃、溶剂油等。
苯、甲苯、二甲苯(简称BTX)等同属于芳香烃,是重要的基本有机化工原料,由芳烃衍生的下游产品,广泛用于三大合成材料(合成塑料、合成纤维和合成橡胶)和有机原料及各种中间体的制造。纯苯大量用于生产精细化工中间体和有机原料,甲苯除用于歧化生产苯和二甲苯外,其化工利用主要是生产甲苯二异氰酸脂、有机原料和少量中间体,此外作为溶剂还用于涂料、粘合剂、油墨和农药等方面。二甲苯在化工方面的应用主要是生产对苯二甲酸和苯酐,作为溶剂的消费量也很大。间二甲苯主要用于生产对苯二甲酸和间苯二腈。焦化粗苯主要含苯、甲苯、二甲苯等芳香烃,另外还有一些不饱和化合物、含硫化合物、含氧化合物及氮化合物等杂质。粗苯精制就是以粗苯为原料,经化学和物理等方法将上述杂质去除,以便得到可作原料使用的高纯度苯。近年来,国内许多钢铁企业的焦化项目纷纷上马,焦化粗苯的产量迅速增加,为粗苯加氢精制提供了丰富的原料。
目前,国内焦化粗苯的加伏神工仍存在两种工艺,一种是古老的酸洗净化法,另一种是先进的加氢精制法。采用加氢精制法工艺目前装置只用石焦集团和宝钢集团两个厂家,其他厂家使用的仍然是落后的、污染严重的酸洗净化法工艺,目前已有多家焦化企业都提出了建设加氢精制工艺的想法。宝钢集团有两种工艺,一种是Lintel法,于1985年投产,设计加工量6万吨/年,另一种是Krupp
Koppers加氢/Morphylane萃取蒸馏法,于1998年投产,设计加工量5万吨/年。石家庄焦化集团苯加氢装置是采用Krupp
Koppers加氢/Morphylane萃取蒸馏法,于1997年投产,设计加工量5万吨/年。该工艺属国际先进水平,三废少,污染少,催化剂、萃取剂均可再生,开工几年来,装置运行良好,主产品高纯苯及高纯甲苯的质量均达到了设计要求,高纯苯纯度在99.9%以上,高纯甲苯纯度在99.0%以上,产品质量甚至优于石油苯。随着国内外新一轮的经济高速增长,各地以己内酰胺等项目为龙头的一大批用苯装置即将动工兴建。相对于颤携其他企业,建滔公司有着较强的技术力量和稳定的原料来源,利用其优势建设具有经济规模的5万吨/年焦化粗苯加氢精制装置,生产高附加值的苯类产品,无疑会提升企业的市场竞争能力和抗风险能力。
③ 格罗夫开启商用车氢能"中极时代" 两款产品上海车展首发
易车讯 4月19日,格罗夫氢能汽车重磅亮相2021上海国际车展,格罗夫迎来了一个新的发展里程碑。格罗夫氢能商用车“中极汽车”品牌与产品面向全球发布,首款量产49吨氢燃料电池6X4半挂牵引车中极-天枢、4.5T氢能高端城市物流车中极-天玑,两款氢能商用车全球首发。
中极-天玑搭载格罗夫自主开发的60kw氢燃料电池系统,峰值效率最大可达60%,使用寿命最高可达20000小时,可实现-40℃低温存储,以及-30℃低温冷启动。同时,该车还配备了一整套格罗夫自主集成的电驱动系统和辅助能源系统,最大输出功率可达180kw,最大输出扭矩可达1100NM,使得车辆具备极佳的起步、超车和爬坡性能,起步加速5.4秒便可达50km/h的车速,最大爬坡度可达到30%以上。
除了动力之外,续航里程也一直都是新能源汽车的痛点问题。为了彻底消除用户的里程焦虑,中极-天玑搭载了格罗夫自主研发、行业首创的氢瓶组设计,续航里程可达到1000km以上,在行业同级别车型中处于遥遥领先的水平。
在整车设计方面,中极-天玑重新定义氢燃料电池物流车的布置方式,通过利用桁架式车身结构的空间优势,将动力系统完美布置在机舱和车底,节省了大量货箱容积和车身重量,使得最大载货容积达到13m3。而为了追求卓越的氢耗和载重质量,中极-天玑大量采用极致轻量化技术。车身采用了全铝合金承载式的设计方案,在保证结构刚强度性能的前提下,可以减重近20%。此外,格罗夫的工程师们通过双层桁架式结构,可以让用户拉更多更重的货物。
在科技性配置上,中极-天玑增加了屏幕更大的12.3寸大屏,以及极少配备的一键启动系统等功能性配置,全系配备智能网联2.0功能,包括PM2.5远程检测及净化系统,远程升/降车窗,停车场、加氢站查找等功能。标准超越同级配置,大大提高用车便利性,将为用户带来更具科技感与个性化的出行方式。
在车辆安全性方面,中极-天玑标配ABS+EBD系统,具有倒车雷达和可视倒车系统被动安全辅助装置,并配备多项驾驶辅助功能。中极-天玑设计并集成了包括整车碰撞检测装置、高压电自动分离装置、供氢系统自动闭锁装置等多重碰撞安全保护系统,以保证碰撞条件下车载安全系统能够快速准确地探知危险、及时可靠地隔离危险,确保发生碰撞时车内乘员的安全。
当前,“碳达峰、碳中和”目标的提出,正驱动中国氢能事业步入快速发展轨道。随着中极品牌的发布,以及两款量产氢能商用车全球首发,格罗夫致力于构建涵盖氢能汽车研发、制造、销售、氢能智联网、氢能产业生态金融的产业链将趋于完整。作为中国氢能汽车自主研发领先企业,格罗夫将持续以全球领先的产品与技术,提供有竞争力的绿色能源解决方案,致力于成为氢能汽车产业的生态主导型企业,成为国家乃至世界级的品牌。
④ 精细化工都有什么设备装置,比如加氢、制氢装置等等,给个链接图
包括重芳烃加氢装置、天然气制氢、酸性水汽提装置、硫磺回收装置、溶剂回收装置。
⑤ 加氢裂化装置的防范措施
⒈开工时的危险因素及其防范措施
⑴加氢反应系统干燥、烘炉
加氢装置反应系统干燥、烘炉的目的是除去反应系统内的水分,脱除加热炉耐火材料中的自然水和结晶水,烧结耐火材料,增加耐火材料的强度和使用寿命。加热炉煤炉时,装置需引进燃料气,在引燃料气前应认真做好瓦斯的气密及隔离工作,一般要求燃料气中氧含量要小于1.0%。防止瓦斯泄漏及窜至其他系统。加热炉点火要彻底用蒸汽吹扫炉膛,其中不能残余易燃气体。加热炉烘炉时应严格按烘炉曲线升温、降温,避免升温过快,耐火材料中的水分迅速蒸发而导致炉墙倒塌。
⑵加氢反应器催化剂装填
催化剂装填应严格按催化剂装填方案进行,催化剂装填的好坏对加氢装置的运行情况及运行周期有重要影响。催化剂装填前应认真检查反应器及其内构件,检查催化剂的粉尘情况,决定催化剂是否需要过筛。催化剂装填最好选择在干燥晴朗的天气进行,保证催化剂装填均匀,否则在开工时反应器内会出现偏流或“热点”,影响装置正常运行。催化剂装填时工作人员须要进入反应器工作,因此,要特别注意工作人员劳动保护及安全问题,需要穿劳动保护服装,带能供氧气或空气的呼吸面罩,进反应器工作人员不能带其他杂物,以防止异物落入反应器内(一般催化剂装填由专业公司专业人员进行)。
⑶加氢反应系统置换
加氢反应系统置换分为两个阶段,即空气环境置换为氮气环境、氮气环境置换为氢气环境。在空气环境置换为氮气环境时需要注意,置换完成后系统氧含量应<1%,否则系统引入氢气时易发生危险;在氮气环境置换为氢气环境时应注意,使系统内气体有一个适宜的平均分子量,以保证循环氢压缩机在较适宜的工况下运行,一般氢气纯度为85%较为适宜。
⑷加氢反应系统气密
加氢反应系统气密是加氢装置开工阶段一项非常重要的工作,气密工作的主要目的是查找漏点,消除装置隐患,保证装置安全运行。加氢反应系统的气密工作分为不同压力等级进行,低压气密阶段所用的介质为氮气,氮气气密合格后用氢气作低压气密。由于加氢反应器材质具有冷脆性,一般要求系统压力大于2.0MPa时,反应器器壁温度不小于100℃,所以,氢气2.0MPa气密通过以后,首先开启循环氢压缩机,反应加热炉点火,系统升温,当反应器器壁温度大于100℃后,系统升压,作高压阶段气密。
⑸分馏系统冷油运
分馏系统冷油运的目的是检查分馏系统机泵、仪表等设备情况,分馏系统冷油运应注意工艺流程改动正确,做到不跑油、不窜油。
⑹分馏系统热油运
分馏系统热油运的目的是检查分馏系统设备热态运行状况,为接收反应生成油作好准备。分馏系统升温到100~C左右时应注意系统切水,防止泵抽空。升温到250℃左右时应进行热紧。
⑺加氢反应系统升温、升压
加氢反应系统升温、升压时应按要求的升温、升压速度进行,一般要求系统升温速度为20℃几左右,系统升压速度不大于1.5MPa/h。如升温、升压速度过快易造成系统泄漏。
⑻加氢催化剂的硫化、钝化
加氢反应催化剂在开工前为氧化态,氧化态催化剂没有加氢活性,因此,催化剂需要进行硫化。催化剂硫化的方法有湿法硫化、干法硫化两种方法,常用的硫化剂有二硫化碳、DMDS,催化剂进行硫化时系统的H2S浓度很高,有时高达1%以上,因此,要特别注意硫化氢中毒问题。
新硫化的加氢裂化催化剂具有很高的加氢裂化活性,为抑制这种活性,需要对加氢裂化催化剂进行钝化。钝化剂为无水液氨。加氢裂化催化剂进行钝化时应注意维持系统中硫化氢浓度不小于0.05%。
⑼加氢反应系统逐步切换成原料油
加氢催化剂的硫化、钝化过程完成后,加氢反应系统的低氮油需要逐步切换成原料油,切换步骤应按开工方案要求的步骤进行。切换过程中应密切注意加氢反应器床层温升的变化情况。
⑽装置操作调整
加氢反应系统原料切换步骤完成之后,应进一步调整装置的工艺操作,使产品质量合格,从而完成开工过程。
2.停工时的危险因素及其防范措施
⑴反应系统降温、降量
加氢装置停工首先反应系统降温、降量。在此过程中应遵循先降温后降量的原则。反应系统进料量降低,空速减小,加氢反应器温升增加,易出现反应“飞温”现象。所谓“飞温”就是反应器温度迅速上升,以致不可控制的现象。
⑵用低疑点原料置换整个系统
加氢装置的原料油一般较重,凝点较高,在停工时易凝结在催化剂、管线及设备当中。为避免上述情况出现,在停工前应用低疑点油置换系统,所用的低凝点油一般为常二线油。
⑶停反应原料泵
切断反应进料时,应注意反应器温度应适宜,使裂化反应器无明显温升。
⑷反应系统循环带油及热氢气提
切断反应进料后,反应加热炉升温,用热循环氢带出催化剂中的存油,热氢气提的温度应根据催化剂的要求确定,一般为枷℃左右,热氢气提的温度不能过高,以避免催化剂被热氢还原。
⑸反应系统降温、降压
加氢反应系统按要求的速度降温、降压。
⑹反应系统N:置换
反应系统用N,置换成N:环境,使系统的氢烃浓度<1%。
⑺卸催化剂
使用过的含碳催化剂在空气中易发生自燃,反应器是在N2气环境下进行卸催化剂作业,必须由专业的卸剂公司人员进反应器进行卸剂,因此,在卸催化剂装桶应使用N:或干冰保护催化剂,避免催化剂自燃。
⑻加氢设备的清洗及防腐
加氢装置高压部分的设备及部件,在停工后应用碱液进行清洗,以避免在接触空气后发生腐蚀,损坏设备。另外,高硫系统的设备主要是后处理部分在打开前应用水进行冲洗,以避免硫化铁在空气中自燃。
⑼装置退油及吹扫
加氢装置停工,应将装置内的存油退出并吹扫干净,保证不留死角。
⑽辅助系统的处理
加氢装置停工后将装置的火炬系统、地下污水系统等辅助系统处理干净,并加盲板使装置与系统防腐以使装置达到检修条件。
⒊正常生产时的危险因素及其防范措施
⑴遵守“先降温后降量”的原则
加氢装置正常操作调整时必须遵守“先降温后降量”、“先提量后提温”的原则,防止“飞温”事故的发生。
⑵反应温度的控制
加氢装置的反应温度是最重要的控制参数,必须严格按工艺技术指标控制加氢反应温度及各床层温升。
⑶高压分离器液位控制
高压分离器液位是加氢装置非常重要的工艺控制参数,如液位过高易循环氢带液,损坏循环氢压缩机;如液位过低易出现高压窜低压事故,造成低压部分设备毁坏,油品和可燃气体泄漏,以至更为严重的后果。因此应严格控制高压分离器液位,经常校验液位仪表的准确性。
⑷反应系统压力控制
加氢装置反应系统压力是重要的工艺控制参数,反应压力影响氢分压,对加氢反应有直接的影响,影响加氢装置反应系统压力的因素很多,应选择经济、合理、方便的控制方案对反应系统的压力进行控制。
⑸循环氢纯度的控制
循环氢纯度影响氢分压,对加氢反应有直接的影响,是加氢装置重要的工艺控制参数,影响循环氢纯度的因素很多,催化剂的性质、原料油的性质、反应温度、压力、新氢纯度、尾氢排放量等因素都影响循环氢纯度,其中可操作条件为尾氢排放量。加大尾氢排放,循环氢纯度增加;减小尾氢排放循环氢纯度降低。
循环氢纯度高,氢分压就会较高,有利于加氢反应进行,但是,高循环氢纯度是以大量排放尾氢、增加物耗为代价的;循环氢纯度低,氢分压就会较低,不利于加氢反应进行,而且,循环氢纯度低时,循环氢平均分子量大,在循环氢压缩机转速不变的情况下,系统压差就会增加,循环氢压缩机的动力消耗也会增加。因此,循环氢纯度要控制适当。
⑹加热炉的控制
加热炉是加氢装置的重要设备,加热炉的使用应引起重视。加热炉各路流量应保持均匀,并且不低于规定的值,防止炉管结焦;保持加热炉各火嘴燃烧均匀,尽量使炉堂内各点温度均匀;控制加热炉各点温度不超温;保持加热炉燃烧状态良好。
⑺闭灯检查
加氢装置系统压力高,而且介质为氢气,容易发生泄漏,高压氢气发生泄漏时容易着火,氢气火焰一般为淡蓝色,白天不易发现,在夜间闭上灯后,很容易发现这种氢气漏点。因此,定期进行这种夜间闭灯检查,对发现漏点,将事故消灭在萌芽状态,保证装置安全稳定运行具有重要意义。
⑻装置防冻凝问题
加氢装置的原料一般较重,凝点较高,通常在20—30℃,容易发生冻凝。如发生冻凝事故,不但影响装置稳定生产,还容易引发安全生产事故,因此,加氢装置的防冻凝问题应引起足够重视。
⑼循环氢压缩防喘振问题
加氢装置的循环氢压缩机多为离心式压缩机,离心式压缩机存在喘振问题,因此,在操作中应保持压缩机在正常工况下运行,避免压缩机出现喘振。
⑽原料质量的控制
加氢装置的原料性质,对加氢装置的操作有重要影响,必须严格控制。一般控制原料的干点在规定的范围内,Pe不大于1X10(-6,如铁含量高,反应器压差增加过快,装置不能长周期运行。C1不大于1X10(-6,N低于规定的值,原料没有明水。
⑾防硫化氢中毒
加氢装置的原料中含有硫,这些硫在加氢后变为硫化氢,并在脱丁烷塔塔顶及脱硫部分富集,形成高浓度的硫化氢。硫化氢的毒性很强,允许最高浓度为10mg/m3。因此,加氢车间必须注重防硫化氢中毒问题,在高硫区域内进行切液、采样等操作时尤其注意,要求带防毒面具并有人监护。
⑿时刻保持冷氢线畅通
加氢装置的急冷氢是控制加氢反应器床层温度的重要手段,它对抑制反应温升具有重要作用。高凝点油有时倒窜人冷氢线内凝结,堵塞冷氢线,如有这种情况发生将十分危险,因此,操作过程中要时刻保持冷氢线畅通。
⒀密切注意热油泵及轻烃泵的运行状况
加氢装置的一些热油泵运行温度较高,高于油品的自燃点,若有泄漏,易发生火灾事故。因此,在操作时要注意热油泵的运行状态,注意泵体、密封等处有无泄漏,如有泄漏应立即处理。
加氢装置内存有大量的轻烃,如发生泄漏,会引发重大事故。因此,对轻烃泵的运行状况也要引起足够重视。
设备腐蚀
加氢装置高温、高压、临氢、系统内存在U2S、NH3,因此,加氢装置的腐蚀问题也应引起重视,解决加氢装置腐蚀问题的主要方法是合理选材,在使用时加强监视与检测。
1.高温氢腐蚀
氢气在常温下对普通碳钢没有腐蚀,但是在高温、高压下则会产生腐蚀,使材料的机械强度和塑性降低。
高温氢腐蚀的机理为氢气与材料中的碳反应生成甲烷,使材料的机械强度和塑性降低,形成的甲烷在钢材的晶间积聚,使材料产生很大的内应力或产生鼓泡、裂纹。至于在什么条件下产生腐蚀,则根据Nels。n曲线确定。
为避免高温氢腐蚀,加氢装置高温、高压、临氢部分的设备、管线多采用合金钢或不锈钢。
2.氢脆
氢原子渗入钢材后,使钢材晶粒中原子结合力降低,造成材料的延展性、韧性下降,这种现象称为氢脆。这种氢脆是可逆的,当氢气从材料中溢出后,材料的力学性能就能恢复。
氢脆的危害主要出现在加氢装置的停工阶段,装置停工阶段,系统温度、压力下降,氢气在材料中的溶解度下降,由于氢气溢出的速度很慢,这时材料中的氢气处于过饱和状态,当温度冷却到150℃时,大量的过饱和氢气会聚积到材料的缺陷处,如裂纹的前端,引起裂纹扩展。
所以加氢装置停工时降温、降压的速度应进行适当的控制,进行脱氢处理。
3.高温n2S腐蚀
高温U2S腐蚀主要发生在反应系统高温部分,高温H2S腐蚀表现为与H2共同作用,氢气的存在加强了H2S的腐蚀作用,同时,U2S的存在也加强了氢气的腐蚀作用。该种腐蚀的防治方法是选择抗H2S腐蚀材质。
4.湿H2S的腐蚀
湿H2S的腐蚀是指温度较低并且含水部位的U2S腐蚀,包括高压空冷、高压分离器、脱丁烷塔塔顶系统、脱硫系统等部分。
湿H2S的腐蚀形态主要有:电化学腐蚀引起的表面腐蚀;H2S腐蚀过程中,产生氢原子引起的氢脆、氢裂;硫化氢引起的应力腐蚀破裂。
该种腐蚀的防止方法为:H2S浓度不高时,使用普通碳素钢,适当加大腐蚀裕度,在设备制造及施工中进行消除应力处理;当H2S浓度较高时,选用抗H2S腐蚀材料,或对设备内壁进行内喷涂处理。
加氢装置的安全设施
1.设备平面布置
加氢装置火灾危险性属于甲类,设备平面布置按《石油化工企业设计防火规范》(GB 50160---92)中的要求进行布置。同类设备集中布置。
2.消防设施
加氢装置内设有环行消防道路,以利于发生事故时消防车进出。装置内设有环行消防水管网,装置内设有多处消防蒸汽服务站,装置内设置有一定数量的干粉式灭火器。
3.防火、防爆
加氢装置内的介质多为易燃、易爆介质,加氢装置内的电器、仪表设备均选用防爆型设备,管道、设备上安装防静电接地设施,要求接地电阻不大于412。
4.加热炉安全设施
加热炉周围设有蒸汽消防汽幕,加热炉炉堂内设有灭火蒸汽人口。
5.可燃气体报警器
在可能发生可燃性气体泄漏的位置,安装可燃气体报警器。
6.气防用品
由于加氢装置内有H2S等有毒气体,所以车间配备有防毒面具、正压式呼吸器等气防用品。
7.安全阀
按设计要求,凡需要安装安全阀的部位均安装有安全阀,而且按有关安全要求为双安全阀。
紧急放空联锁系统
加氢装置的危险性较大,加氢反应为强放热反应,如控制不好,反应温度会迅速上升,反应温度升高后,会进一步加剧加氢裂化反应,使反应器温度在很短时间内上升很高,也就是发生“飞温”,以至烧毁催化剂和反应器。为避免“飞温”事故发生,加氢装置设有紧急放空联锁系统,系统降压速度为0.7MPa/min或2.1MPa/min。
1.紧急放空系统的联锁条件
①循环氢压缩机停运联锁。②循环氢压机人口分液罐高液位联锁。③由于系统较大泄漏、反应温度失控等原因,手动联锁。
2.紧急放空系统的联锁动作
①紧急放空阀打开,反应系统泄压。②反应进料泵停机。③新氢压缩机停机。④反应加热炉灭火。
⑥ 根据中国石化销售企业综合加能站运营手册加氢服务分为几个步骤
中国石化销售企业综合加能站运营手册中提到的加氢服务一般包括指森以下几个步骤:1、收取氢气;2、检查氢气质镇逗余量;3、加氢;4、御滚检查加氢后的液体质量;5、收取加氢后的液体;6、收取加氢后的液体样品;7、清洗加氢装置;8、记录加氢过程。
⑦ 氢能源核心技术有哪些
可再生,用途广。
氢能是公认的清洁能源,作为低碳和零碳能源正在脱颖而出。21世纪,我国和美国、日本、加拿大、欧盟等都制定了氢能发展规划。
并且我国已在氢能领域取得了多方面的进展,在不久的将来有望成为氢能技术和应用领先的国家之一,也被国际公认为最有可能率先实现氢燃料电池和氢能汽车产业化的国家。
当今世界开发新能源迫在眉睫,原因是所用的能源如石油、天然气、煤,石油气均属不可再生资源,地球上存量有限,而人类生存又时刻离不开能源,所以必祥含轿须寻找新的能源。
随着化石燃料耗量的日益增加,其储量日益减少,终有一天这些资源、能源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。
氢正是这样的二次能源。 氢位于元素周期表之首,原子谨肆序数为1,常温常压下为气态,超低温高压下老肢为液态。作为一种理想的新的含能体能源
以上内容参考:网络-氢能源
⑧ 海马汽车制氢加氢站是干什么用的
零碳引领,氢启未来。12月10日,海口光伏制氢及高压加氢一体站正式落成,海马汽车氢能布局与落地迈出坚实步伐,开启“氢”时态厅代。海马汽车将结合自主研发的帆唤隐氢燃料电池汽车以及即将投入运营的光伏发电项目,打造全球首个“光伏发电—电解水制氢—氢燃料电池汽车运营”的全产业链零碳排放新能源汽车试运营项目。
海南省政协副主席李国梁,海口市市长丁晖,海南省发改委副主任吕先志,航天101研究所所长王成刚,海南发控总工程师李峰,海马汽车董事长景柱等共同为海口光伏制氢高压加氢一体站剪彩,李国梁、景柱为该站第一台车加氢。中国长江三峡集团海南分公司党委书记马晨光、中国华能集团海南分公司副总经理宋文贵、隆基氢能大中华区总裁寇建锋等嘉宾参加了落成仪式。
致力减碳 海马将打造全产业链零碳排放运营模型
海口光伏制氢高压链斗加氢一体站由海马汽车与中国航天科技集团合作建设,全站占地面积2500平方米,主要由水电解制氢装置、多级增压机、高/中/低压储氢罐、70Mpa/35Mpa加氢机、冷却系统和控制系统等组成。该站严格按照GB50516《加氢站技术规范》建设,制氢和加氢实现自动化控制。
⑨ 加氢裂化装置的装置简介
(一)装置的发展
加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。
1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术,其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得到了迅速发展。
早在20世纪50年代,中国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966年中国建成了第一套4000kt/a的加氢裂化装置。
进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。
(二)装置的主要类型
加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢处理等类型,这里主要介绍加氢裂化装置。
加氢裂化按操作压力可分为:高压加氢裂化和中压加氢裂化,高压加氢裂化分离器的操作压力一般为16MPa左右,中压加氢裂化分离器的操作压力一般为9.OMPa左右。
加氢裂化按工艺流程可分为:一段加氢裂化流程、二段加氢裂化流程、串联加氢裂化流程。
一段加氢裂化流程是指只有一个加氢反应器,原料的加氢精制和加氢裂化在一个反应器内进行。该流程的特点是:工艺流程简单,但对原料的适应性及产品的分布有一定限制。
二段加氢裂化流程是指有两个加氢反应器,第一个加氢反应器装加氢精制催化剂,第二个加氢反应器装加氢裂化催化剂,两段加氢形成两个独立的加氢体系,该流程的特点是:对原料的适应性强,操作灵活性较大,产品分布可调节性较大,但是,该工艺的流程复杂,投资及操作费用较高。
串联加氢裂化流程也是分为加氢精制和加氢裂化两个反应器,但两个反应器串联连接,为一套加氢系统。串联加氢裂化流程既具有二段加氢裂化流程比较灵活的特点,又具有一段加氢裂化流程比较简单的特点,该流程具有明显优势,如今新建的加氢裂化装置多为此种流程,本节所述的流程即为此种流程。
⑩ 我国首个甲醇制氢加氢一体站投用 能耗低/制氢成本大幅下降
上易车App搜索“超级评测”,看专业、硬核、全面的汽车评测内容。