A. 实验一 偏光显微镜
一、预习内容
1.显微镜的基本部件及功能;
2.显微镜的调试与校正。
二、实验要求
1.熟悉偏光显微镜的结构;
2.掌握偏光显微镜的使用方法。
三、实验内容和步骤
偏光显微镜是学习岩石学和矿物学必不可少的仪器设备,如图1-1所示。
(一)装卸目镜和物镜
将目镜(10倍或5倍)对准目镜孔,轻轻插入镜筒上端,调整目镜间的距离使之与自己双眼间的距离相当。此时通过目镜看向视域,轻轻旋转以调整目镜中的十字丝方向,使之呈东西、南北方向。
物镜分为两种类型———弹性夹型和转盘型,本实验室所使用的偏光显微镜之物镜为转盘型。安装时从镜头盒取出物镜放置在转换器上旋紧。将物镜装好后,打开锁光圈,目视镜筒内,转动反光镜使之对准光源,直至视域最明亮为止。
装卸物镜需将物台下降(或将镜筒提升)到一定高度,以免碰坏镜头。在整个装卸过程中,目镜或物镜都应轻拿轻放,切忌用手触摸镜头。
(二)调节照明(对光)
检查电源连接情况,将电压调节至最低,打开电源开关,并去掉上偏光镜,调节电压旋钮使电压升高,直至亮度合适为止。
图1-1 XP-213型透射偏光显微镜
光线强度太大或太小都易使眼睛疲劳,故应根据薄片(如透明度)和偏光系统等适当调节照明亮度。调节装置主要有两个:光源开关和锁光圈,前者控制光强,后者控制进光量。
(三)调节焦距(准焦)
调节焦距是为了使薄片中的物像清晰可见。“调节焦距”或“准焦”是一种习惯性的说法,实际上是调节物距,即调节物镜与薄片中矿物之间的距离,使物镜成的矿物实像位于目镜一倍焦距之内的合适位置上,以便通过目镜可以看到清晰的、放大的矿物虚像。准焦的步骤如下:
1.放置薄片
完成装卸镜头及调节照明之后,将欲测矿片置于物台中心,并用物台上的一对弹簧夹把矿片固定好,使薄片的盖玻璃朝上,否则不能准焦,特别是使用高倍物镜时应尤其注意。
2.低倍物镜的准焦
将低倍物镜旋至工作范围,从镜头侧面观察(视线基本与物镜同一高度),转动粗动调焦螺旋,使镜筒下端的物镜与物台上的薄片比较靠近为止。从目镜中观察,转动粗动调焦螺旋,使镜筒下降或使物台上升至视域内物像基本清楚,再转动微动调焦螺旋,直至视域内物像完全清晰为止。
准焦以后,物镜前端与薄片平面之间的距离称工作距离。工作距离的长短与物镜的放大倍率有关。一般说来,物镜的放大倍率愈小,工作距离愈长,物镜的放大倍率愈大,工作距离愈短。在显微镜的说明书中可以查到不同放大倍率物镜的工作距离。
3.中倍物镜的准焦
从低倍物镜的准焦位旋上中倍物镜,一般应在准焦位附近,调节物台或镜筒升降螺旋(一般只要调节微动螺旋),直到物像完全清晰为止。
4.高倍物镜的准焦
在中倍物镜的准焦位上旋上高倍物镜(旋上前要检查盖玻片是否朝上),一般应在准焦位附近。调节微动螺旋,直到物像完全清晰为止。
使用高倍物镜调节焦距时,绝不能眼睛看着镜筒内而下降镜筒或上升物台。因为这样很容易使物镜与薄片相碰,不仅压碎薄片而且易损坏物镜。因为高倍物镜的工作距离很短,准焦后物镜几乎与薄片平面接触。如果薄片上的盖玻璃向下放时,根本不能准焦,而且最容易压碎薄片及损坏物镜。初学者最好先使用低倍或中倍物镜准焦后,再换用高倍物镜准焦。
(四)校正中心
在偏光显微镜的光学系统中,物台的旋转轴、物镜中轴及目镜中轴应当严格在一条直线上。此时,转动物台,视域中心(即目镜十字丝交点)的物像不动(图1-2A),其余物像绕视域中心做圆周运动。如果它们不在一条直线上,当转动物台时,视域中心的物像将离开原来的位置,连同其他部分的物像绕另一中心旋转(图1-2B,1-3B)。这个中心点(o)代表物台的旋转轴出露点位置。在这种情况下,不仅可能把视域内的某些物像转出视域之外(图1-2C,1-3C)妨碍观察,而且影响某些光学数据的测定精度。特别是使用高倍物镜时,根本无法观察。因此,必须进行校正,使目镜中轴、物镜中轴与物台旋转轴一致。
当焦距对好之后,常出现以下三种情况:
a.目镜中轴、物台旋转轴和物镜中轴在一条直线上(图1-2A);
b.三者不在一条直线上,但在视域范围内可看到旋转中心(图1-2B);
c.三者不在一条直线上,且在视域范围内看不到旋转中心(图1-2C)。
当出现b,c两种情形时,需要进行中心校正。在偏光显微镜的光学系统中,目镜中轴是固定的,部分显微镜的物台也是固定的,只能校正物镜中轴,有些显微镜的物台也能校正。校正物镜中轴是借助于安装在物镜上或物镜旋转盘上的两个定心校正螺丝来进行的。
图1-2 旋转物台时质点绕视域之内的某点做圆周运动示意图
在校正中心之前,必须首先检查物镜是否安装在正确的位置上。如果物镜没有安装在正确位置上,不仅不能校正好中心,而且容易损坏定心校正螺丝。如果发现定心校正螺丝扭动困难或扭不动时,切勿强行扭动,应立即检查原因,并与实验室管理人员或指导老师联系。
物镜出露点在视域之内的校正,如图1-3所示。具体步骤为:①检查物镜是否装好;②选一质点a,并移至视域中心(图1-3A);③使该质点做圆周运动,找出质点做圆周运动的圆心点o(图1-3B);④旋转物台180°,使a点由十字丝交点移至a'处(图1-3C);⑤在物镜上部插入校正螺丝,将十字中心移至圆心o处(图1-3D);⑥移动薄片,使质点a从o点移到十字丝中心(图1-3E,F)。
对于那些质点旋转中心不在视域内的校正,则其步骤为:①当质点旋转中心距视域中心偏离很远时,转动物台,质点将由十字丝交点移至视域之外(图1-4);②根据质点移动情况,估计偏心圆圆心o点在视域外的位置及偏心圆半径长短,将质点转回十字丝交点;③扭动物镜上的定心校正螺丝,使质点由十字丝交点,向偏心圆圆心o点相反方向移动大约相当于偏心圆半径的距离(图1-4);④再移动薄片,使质点回移至十字丝交点处,转动物台,该质点可能在视域内呈小圆圈移动,此时可按上述中心偏离较小的方法进行校正;⑤如果中心仍偏离较大,质点仍移出视域之外,再按偏心大的方法校正;⑥经过3~4次校正之后,中心仍然偏离较大,则应检查原因或报告指导老师。
图1-3 物镜出露点在视域内时物镜中心的校正步骤(据李德惠,1997)
图1-4 质点旋转中心不在视域内时物镜中心的校正
(五)视域直径的测定
1.中、低倍物镜可用透明直尺直接测量
由于在中低倍物镜下观察颗粒的直径大小约在2~4.7mm,利用透明直尺可以直接观察颗粒在视域中的直径(图1-5)。具体方法是下降物台至最低,将透明直尺放置在物台的中心,上升物台至最高,然后从目镜观察并下降物台,直至刻度成像清晰为止。观察视域直径的长度值,记录该数值备以后查用。
2.高倍镜可用物台微尺测量
在利用高倍物镜时视域直径约为0.7mm,利用直尺不能测定,只能利用物台微尺(图1-6)来测定。微尺长1mm,刻有100个小格,每小格0.01mm。测量时将物台微尺置于物台中心,对准焦点,观察视域直径相当于物台微尺的多少小格。若为70格,则视域直径等于70×0.01=0.7mm。
(六)偏光镜的校正
在偏光显微镜的光学系统中,下、上偏光镜振动方向应当正交,下偏光镜振动方向PP应平行于东西方向,上偏光镜振动方向AA应平行于南北方向,且分别与目镜十字丝平行。否则,需进行校正,校正方法如下。
1.确定下偏光的振动方向
使用中倍物镜准焦后,在岩石薄片中找一个具极完全解理缝的黑云母置于视域中心。转动物台,使黑云母的颜色变得最深为止。此时,黑云母解理缝方向代表下偏光镜振动方向(因为光波沿黑云母解理缝方向振动时,吸收最强,颜色最深)。如果黑云母解理缝方向与目镜十字丝的横丝(东西方向)平行,则下偏光镜位置正确,不需要校正。如果不平行(图1-7A),转动物台,使黑云母解理缝方向与目镜十字丝的横丝平行,旋转下偏光镜,至黑云母的颜色变得最深为止。此时下偏光镜振动方向位于东西方向(图1-7B)。
图1-5 中、低倍物镜可用透明直尺直接测量
图1-6 高倍镜测量使用的物台微尺
图1-7 下偏光镜振动方向的校正(据李德惠,1997)
2.检查上、下偏光镜振动方向是否正交
使用中倍物镜,调节照明使视域最亮。推入上偏光镜,如果视域黑暗,证明上、下偏光镜振动方向正交。若视域不黑暗,说明上、下偏光镜振动方向不正交。如果下偏光镜振动方向已经校正至东西方向,则需要校正上偏光镜振动方向。转动上偏光镜至视域黑暗为止(相对黑暗)。如果显微镜中的上偏光镜不能转动,则需要作专门修理。
经过上述校正之后,目镜十字丝应当严格与上、下偏光镜振动方向一致。但有些显微镜的目镜没有定位螺丝,使用过程中或更换目镜时,可能使目镜十字丝位置改变,因此,需要校正目镜十字丝的位置。
3.检查目镜十字丝是否严格与上、下偏光镜振动方向一致
图1-8 目镜十字丝的检查示意图
在偏光显微镜的光学系统中,上、下偏光镜振动方向应当正交,而且是东西、南北方向(图1-8)分别与目镜十字丝横、纵丝平行。如果十字丝不正交,则选择具有直边的矿物薄片进行检查,具体步骤如下:
a.选择具有直边的矿物颗粒置于视域中心,转动物台使矿物的直边平行于目镜十字丝的纵丝,记录物台读数m;
b.转动物台,使矿物直边与目镜十字丝横丝平行,记录物台读数n;
c.计算m-n的数值,如果结果为90°,则十字丝正交,否则斜交,需作专门修理。
(七)偏光显微镜的使用和保养
偏光显微镜是精密而贵重的仪器,又是教学和科研工作中必不可少的常用仪器,如有损坏,将会直接影响到教学和科研工作。因此,应经常对偏光显微镜进行保养和维护,使用过程中应自觉的遵守以下的操作规程。
(1)使用前应进行仔细地检查。
(2)要对座固定位置使用偏光显微镜,最好不要随意搬动显微镜设备,如确实需要改动或搬动显微镜时,动作一定要轻,严防震动,以免损坏光学系统。在移动显微镜的过程中,应以右手握镜臂,左手托住偏光显微镜底座。
(3)显微镜所有镜头一般均经过校验,不得随意自行拆开;镜头必须随时保持清洁,如有尘土,需用笔刷或者镜头纸轻轻将灰尘清除,切勿用手或者其他物品擦拭,以防止损坏显微镜镜头。
(4)显微镜镜头及其他附件,均需放置于原附件盒中,并将各自在指定位置放好,严防坠地,附件盒用完后放回原处。
(5)切勿随便自行拆卸显微镜,或将附件任意调换使用。
(6)薄片置于物台上时,其盖玻片必须向上,而且用弹簧夹夹紧。
(7)用高倍物镜调焦时,需用眼睛在旁一边留意观察,切忌薄片被压碎或者损坏镜头。
(8)更换物镜时,一定要用手握住转盘转动,切忌用手直接握住物镜转动,以免物镜发生松动。
(9)使用上偏光镜及勃氏镜,在推送时切忌用力过猛,以免震坏。
(10)仪器损坏或者调节失灵时,应及时与管理人员联系,切勿强力扭动或者擅自处理。
(11)偏光显微镜操作使用完毕,需将上偏光镜及勃氏镜推入,转动粗动手轮将物镜提起,镜筒上留一个目镜,关闭电源并罩上仪器罩。
(八)岩石薄片的磨制
在偏光显微镜下研究岩石和矿物,需要将其磨制成薄片进行观察。用切面机从岩石标本上切下一小岩块(定向或不定向)。先把一面磨平,用加拿大树胶把这一平面粘在载玻璃片上(其大小为25mm×50mm,厚约1mm)。再磨另一面,磨至厚度0.03mm为止。用加拿大树胶把盖玻片粘在它的表面(盖玻片大小为15mm×15mm~20mm×20mm,厚度0.1~0.2mm)。
图1-9 薄片磨制示意图
因此,岩石薄片是由薄的矿片、载玻片和盖玻片组成的(图1-9)。矿片的顶、底部都涂有薄的加拿大树胶。为了某种需要,如观察长石的解理缝、薄片染色等,对某些薄片可以不加盖薄片。在磨制疏松岩石标本薄片时,需先浸在加拿大树胶中煮过以后再切制成薄片。要求矿片厚度0.03mm,载玻片厚度为1mm,盖玻片厚度0.1mm。
需要说明的是,在磨制薄片时使用金刚砂,无论金刚砂多细,矿片表面总会因磨划而留下沟痕(显微沟痕)。因此,矿片表面并不是绝对光滑的。
晶体光学实验教程
B. 跪求大学物理演示实验报告——光学
这是以前我们写的 你看看可不可以
用透射光栅测定光波波长
08物理 杨贵宏
云南省红河学院物理系 云南 蒙自 661100
摘 要:这篇文章讲述了怎样利用透射光栅测量光波波长,以及测量时的细节,测量前的实验准备。
关键词:光栅,主极大,次极大,分光计,单色光,复色光
引言:
我们的生活离不开阳光,通常我们认为阳光是一种单色光[1](单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。
广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意[2]。
分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。
分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。
分光计基本结构示意图
表1 分光计各调节装置的名称和作用
代号 名称 作用
1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度
2 狭缝装置
3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。
4 平行光管 产生平行光
5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。
6 夹持待测物簧片 夹持载物台上的光学元件
7 载物台调节螺丝(3只) 调节载物台台面水平
8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动
9 望远镜 观测经光学元件作用后的光线
10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置
11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)
12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰
13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度
14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动
15 望远镜支架
16 游标盘 盘上对称设置两游标
17 游标 分成30小格,每一小格对应角度 1’
18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动
19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数
20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字
21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动
22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动
23 分光计电源插座
24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上
25 平行光管支架
26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动
27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动
28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动
29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角
实验原理:
图1中给出几条不同缝数缝间干涉因子的曲线.为了便于比较,纵坐标缩小了 它们有以下特点:
(1)主极强峰值的大小、位置和数目
当 ( )时, , ,但它们的比值 ,这些地方是缝间干涉因子的主极大(多缝衍射图样中出现一些新的强度极大和极小,其中那些较强的亮线叫主极大,较弱的亮线叫次极大)。 意味着衍射角满足下列条件:
(1)
(1)式说明,凡是在衍射角满足(1)式的方向上出现一个主极大,主极大的强度是单缝在该方向强度的 倍。主极强的位置与缝数N无关。主极强的最大级别|k|<d/λ。
(2)零点的位置、主极强的半角宽度和次极强的数目
当Nβ等于π的整数倍但β不是π整数倍时,sinNβ=0,sinβ≠0,这里是缝间干涉因子的零点。零点在下列位置:
sinθ=(k+m/N)λ/d (2) 其中k=0,±1,±2,…;m=1,…,N-1.
所以每个主极强之间有N-1条暗线(零点),相邻暗线间有一个次极强,故共有N-2个次极强。
半角宽度公式为: △θ=λ/Nd•cosθk。 (3)
主极强的半角宽度△θ与Nd成反比,Nd越大,△θ越小,这意味着主极强的锐度越大。反映在幕上,就是主极强亮纹越细。
上面我们只分析了缝间干涉因子的特征,实际的强度分布还要乘上单缝衍射击因子.在图1中所示 缝间干涉因子上乘以图1所示的单缝衍射因子,就得到图2[(a),(b),(c)]中所示的强度分布.从这里可以看出,乘上单缝衍射因子后得到的实际强度分布中各级说极强的大小不同,特别是刚好遇到单缝衍射因子零点的那几级主极强消失了,这现象叫做缺级.
在给定了缝的间隔d之后,主极强的位置就定下来了,这时单缝衍射因子并不改变主极强的位置和半角宽度,只改变各级主极强的强度.或者说,单缝衍射因子手作用公在影响强度在各级主极强间的分配.
如图3所示,设S为位于透镜L1物方焦面上的细长狭缝光源,G为光栅,光栅上相邻狭缝两对应之间的距离d 称为光栅常量,自L1射出的平行光垂直地照射在光栅G上。透镜L2将与光栅法线成θ角的衍射光会聚于其像方焦面上的Pθ点,由(1)式的光栅分光原理得
(3)
上式称为光栅方程.式中θ是衍射角,λ是光波波长,k是光谱级数(k=0、±1、±2…)。衍射亮条纹实际上是光源加狭缝的衍射像,是一条锐细的亮线。当k=0时,在θ=0的方向上,各种波长的亮线重叠在一起,形成明亮的零级像。对于k的其它数值,不同波长的亮线出现在不同的方向上形成光谱,此时各波长的亮线称为光谱线。而与k 的正、负两组值相对应的两组光谱,则对称地分布在零级像的两侧。因此,若光栅常量d为已知。当测定出某谱线的衍射角θ和光谱级k,则可由(1)式求出该谱线的波长λ;反之,如果波长λ是已知的。则可求出光栅常量d 。
实验进行步骤:
1.实验时分光计调节,
(1)粗调。
A,旋转目镜手轮,尽量使叉丝和绿十字清晰。
B,调节载物台,使下方的三只螺钉的外伸部分等高,使载物台平面大致与主轴垂直(目测)。
C,调整望远镜光轴俯仰调节螺钉,使望远镜光轴尽量调成水平(目测)。
粗调应达到的要求:在载物台上放一个三棱镜。当三棱镜的一个光学面与望远镜光轴接近垂直时,应可以看到反射回来的十字像,十字像一般与分划板上的交点并不重合,至此粗调完成。
(2)细调。
A,使分光计望远镜适应平行光(对无穷远调焦),望远镜、准直管主轴均垂直于仪器主轴,准直管发出平行光。
B,使望远镜对准准直管,从望远镜中观察被照亮的准直管狭缝的像,使其和叉丝的竖直线重合,固定望远镜。参照图3放置光栅,点亮目镜叉丝照明灯(移开或关闭夹缝照明灯),左右转动载物平台,看到反射的“绿十字”,调节b2或b3使“绿十字”和目镜中的调整叉丝重合。这时光栅面已垂直于入射光。
用汞灯照亮准直管的狭缝,转动望远镜观察光谱,如果左右两侧的光谱线相对于目镜中叉丝的水平线高低不等时(如图3),说明光栅的衍射面和观察面不一致,这时可调节平台上的螺钉b1使它们一致。最终使 光栅面衍射面应调节到和观测面度盘平面一致。
2. 测光栅常量d:只要测出第k可级光谱中的波长λ已知的谱线的衍射角 ,就可以根据(3)式求出d值。
(1).调节分光计按(1)步骤
(2).调节光栅位置
(3).用汞灯照亮准直管,转动望远镜到光栅的一侧,使叉丝的竖直线对准已知波长的第k级谱线的中心,记录二游标值。
(4). 将望远镜转向光栅的另一侧,使叉丝的竖直线对准已知波长的第k级谱线的中心,记录二游标值。
(5).重复第4、5步两次,得到3组数据。
3.光谱级数k由自己确定,由于光栅常量d已测出,因此只要未知波长的第k级谱线的衍射角 ,就可以求出其波长值 。
以知波长可以用汞灯光谱中的绿线( nm),也可以用钠灯光谱中二黄线 )之一。
3. 测量未知波长
(1). 用汞灯照亮准直管,转动望远镜到光栅的一侧,使叉丝的竖直线对准已知波长的第k级谱线的中心,记录二游标值。
(2).转动望远镜到光栅的一侧,使叉丝的竖直线对准以知波长的第k级谱线的中心,记录两游标值;将望远镜转向光栅的另一侧,同上测量,同一游标的两次读熟之差是衍射角 的两倍。
(3).重复第1、2步两次,得到3组数据。
实验数据:见实验数据记录表
实验数据记录表
表二 测光栅常量d实验数据
测量次序( )
1
2
3
表三 测量未知波长实验数据
测量次序( )
1
2
3
实验结果:
1.测量光栅常量
根据 ,由表二得到 的平均值
= (1)
由光栅原理 ,
因此有
又因为在此实验中 ,绿光的波线 nm,衍射角的平均值 ,因此得d的平均值
(nm) (2)
2.测量蓝紫光的波长
根据 ,由表三得到 的平均值
= (3)
由于 ,得到
又因为在此实验中 ,光栅常量 nm,衍射角的平均值 ,因此得 的平均值
(nm) (4)
参考文献:
[1],赵凯华.新概念物理教程——光学.高等教育出版社,2004
[2],进清理, 黄晓虹主编. 基础物理实验.浙江大学出版社2006
[3],杨述武主编,王定兴编. 普通物理实验(光学部分).高等教育出版社,1993
C. 光学实验室里面一般需要哪些辅助工具
通用工具:千分尺、内六角扳手、胶带、光学胶等;光纤相关:光纤接头、光纤剪刀、剥离工具、检验镜等;光学元件:擦镜纸、除灰套装、光学元件夹具等;电子用品:SMA或BNC电线、万用表、防静电工具等;螺丝:各种规格、各种型号都得备着;激光防护:激光眼镜、遮光布、不可见光显示屏。上下水,动力电,扫把拖布吸尘器网线电脑日光灯一大堆插线板这些不提基本的光学平台升降台平移台旋转台镜架直尺三角板卷尺记号笔扳手改刀螺钉螺帽螺栓剪刀美工刀这种也不提了示波器、频谱分析仪之类的东西也不提了你需要自然会去搞空调:对某些设备的热稳定性能起到帮助除湿机:没这东西在四川这种地方会哭温度计/湿度计:用于检验上面俩的工作成果很厚的遮光用的窗帘:用于创造黑暗的环境。没有窗户当然更好了纱布:用于擦拭绸布:用于包裹暂时不用的元件那种什么纸:就是包裹镜片的纸……我也没特别买就是用买镜片附送的纸就够用了吹灰球:用于清洁那些不能擦的元件干燥柜:存放元件白纸:用于观察某些几乎不反光的表面上光斑的位置热敏纸:用于观察红外光斑的位置,对室温要求比较高画着同心圆和放射线的白纸:用于观察角锥镜这类元件的质量。另外我也用来观察楔片的方向……透明胶和双面胶:固定以上各种纸很多很多的红色HeNe激光器:用于指示水平仪:我也说不上有啥用但就是经常用……通常我是拿来看一段光是否水平孔阑:通常在合束的时候拿来标记某个光在某点的位置吸波材料:用于挡光,如果你的光不是那种可以简单挡住的光的话防护眼镜:保护眼睛,如果你的光是那种沾到就要出事的光的话CCD光束分析仪:确认红外光斑的形状,比一团糊的热敏纸强多了功率计:用于检测光源输出功率。
D. 基础几何光学实验如何调节光学仪器等高
在基础几何扮饥光学实验中,调节光学仪器等高是非重要的一步,以下是具体步骤:
1. 首先,将光学仪器放置在平稳的桌面上,并调整仪器的水厅碰返平度,使其水平。
2. 然后,使用调节螺丝或旋钮,将仪器的高度调整到与实验台等高,这样可以确保光线垂直于验台面。
3. 接下来,使用调节螺丝或旋钮,将光源的高度调整到与仪器等高,这样可以确保光线垂直于仪器。
4. 在调节光学仪器等高的过程中,可以使用水平仪或平衡仪等工具来帮助调节,确保仪器水平度和高度准确性。
5. 调节完成后,可以进行实验,观察光线的传播和反射等现象。
需要注意的是,在调节光学仪器等高的过程中,需要仔细操吵中作,避免对仪器造成损坏。同时,还需要根据实验的具体要求进行调节,确保实验结果的准确性和可性。
E. 怎样调节光杠杆及望远镜等组成的系统,使在望远镜中看到清晰的像
1.外观对准,将望远镜尺放在离镜面约1.5~2m处,并使两者高度相同,光杠杆镜与平台垂直,望远镜水平与标尺垂直
2.镜外找像,看到镜面中有标尺的像
3.镜内找像,先调望远镜目镜,再调物镜,看清标尺的像
4.细调对零,既能看清标尺像,又能看清叉丝