❶ 污水处理设备有机玻璃模型价格
※ 城市污水处理实验系列
型号 产品名称 单价 型号 产品名称 单价
WJK01 A2/O工艺城市污水处理模拟装置 (2~5L/h自动控制) 23800元 WJK02 MBR工艺市政污水处理模拟装置 (10~18L/h自动控制) 39000元
WJK03 接触氧化池 7400元 WJK04 竖流式沉淀池 5800元
WJK05 曝气充氧能力测定装置 2200元 WJK06 多斗形平流式沉淀池 7800元
WJK07 污泥浓缩池 5600元 WJK08 多轴式生物转盘(三轴三级) 16000元
WJK09 幅流式沉淀池 7800元 WJK10 虹吸式矩形生物滤池 5800元
WJK11 电动生物转盘 4700元 WJK12 流化床型接触氧化池 8900元
WJK13 厌氧消化池 7600元 WJK14 气动淹没式生物转盘 4500元
WJK15 推流式曝气池 7200元 WJK16 曝气沉砂池 4800元
WJK17 中心表面曝气型接触氧化池 9800元 WJK18 单侧鼓风曝气型接触氧化池 7200元
WJK19 旋流式沉砂池 8800元 WJK20 折点加氯消毒实验装置 6700元
WJK21 氧传递系数测定实验装置 13500元 WJK22 电絮凝反应实验 15200元
WJK23 混 凝 实 验 7600元 WJK24 膜分离实验装置 13500元
※ 排水工程实验系列
型号 产品名称 单价 型号 产品名称 单价
PJK01 SBR法间歇式设备(2~6L/h自动控制) 11500元 PJK02 污泥比阻的测定 4600元
PJK03 UASB厌氧发酵柱(2~5L/h自动控制) 14000元 PJK04 UASB厌氧发酵柱(无附件) 2000元
PJK05 计算机SBR法间歇式实验设备 37000元 PJK06 工业污水可生化实验6组实验 2500元
PJK07 平板式膜生物反应器(60L/h自动控制) 43000元 PJK08 膜生物反应器 8800元
PJK09 帘式膜生物反应器(60L/h自动控制) 38000元 PJK10 氧化沟(电动转刷冲氧) 6600元
PJK11 双向流斜板沉淀池 6600元 PJK12 卡鲁塞尔氧化沟(6~18L/h自动控制) 23000元
PJK13 生物塔式滤池 5600元 PJK14 混合液微生物耗氧速率测定实验 18000元
PJK15 活性炭吸附设备(双柱) 7800元 PJK16 三沟式氧化沟6~18L/h自动控制 23600元
PJK17 污泥沉降(4组实验) 5500元 PJK18 活性污泥法动力学系数的测定实验 23800元
PJK19 完全混合式曝气池 15600元 PJK20 圆型曝气池(表曝) 5600元
PJK21 活性炭吸附实验ф35×1000mm 6根 7200元 PJK22 曝气沉淀池 7500元
PJK23 射流充氧实验设备 5500元 PJK24 废水好氧可生物降解性实验 17200元
PJK25 SBR法五池连续式污水处理装置 19500元 PJK26 废水厌氧可生物降解性实验 16200元
PJK27 圆型生物滤池 5900元 PJK28 矩形表曝沉淀池(分格式) 6700元
PJK29 接触氧化(圆塔) 3500元 PJK30 浓缩池(中心传动耙子式) 5600元
PJK31 斜板隔油池 9900元 PJK32 厌氧折流板反应池(2~5L/h自动控制) 1500元
PJK33 幅流式斜板沉淀池 7500元 PJK34 好氧稳定塘实验 8500元
PJK35 机械搅拌混合池 6600元 PJK36 酸性废水中和塔 7900元
PJK37 机械搅拌絮凝池 6900元 PJK38 酸性废水中和实验4组实验 7600元
PJK39 厌氧接触消化池 8600元 PJK40 涡流式反应池 6500元
PJK41 连续进料生物反应器实验系统 25000元 PJK42 活性污泥性质的测定实验 16000元
PSJK01 UNITANK生物反应器 24600元 PSJK02 三相生物流化床实验装置 13500元
PSJK03 矩型气浮浓缩池 16500元 PSJK04 圆型气浮浓缩池 18600元
PSJK05 恒温恒流污泥消化实验装置 9800元 PSJK06 矩型合建式曝气沉淀池 15000元
PSJK07 ABF活性生物滤池(10~20L/h) 22500元 PSJK08 厌氧推流式电动生物转盘 20200元
PSJK09 EGSB厌氧反应器 15500元 PSJK10 UBF厌氧复合床反应器 17500元
PSJK11 一体化两相厌氧生物处理反应器 28600元 PSJK12 平流式隔油池 17000元
※ 给水工程实验系列
型号 产品名称 单价 型号 产品名称 单价
GJK01 竖流式圆形溶气加压气浮设备 16600元 GJK02 离子交换设备 6700元
GJK03 电渗析100L/H 12000元 GJK04 紫外线杀菌、消毒装置 4600元
GJK05 电解设备 9200元 GJK06 臭氧消毒脱色实验装置 9200元
GJK07 过滤反冲洗实验设备 6200元 GJK08 无阀滤池 7900元
GJK09 臭氧杀菌分点测定UV+O3系统 7500元 GJK10 平流式溶气加压气浮设备 15600元
GJK11 超滤设备100L/H 16800元 GJK12 水力循环澄清池 6600元
GJK13 微型板框式压滤机 9200元 GJK14 机械加速澄清池 5600元
GJK15 脉冲澄清池 8200元 GJK16 静置沉淀设备 3600元
GJK17 普通快滤池 8200元 GJK18 同向流斜板沉淀池 8500元
GJK19 移动罩滤池 26000元 GJK20 一体化净水器 20000元
GJK21 虹吸滤池 8200元 GJK22 双阀滤池 7600元
GJK23 平流式沉淀池(机械刮泥) 8600元 GJK24 自来水厂加药混合床 15800元
GJK25 机械反应同向流斜板斜管沉淀池 9300元 GJK26 机械反应斜板沉淀池 7000元
GJK27 自由沉降(4组) 5500元 GJK28 絮凝沉降设备(4组) 6600元
GJK29 自由沉降(6组) 7300元 GJK30 絮凝沉降设备(6组) 8200元
GJK31 高纯水反渗透实验设备50L/H 38000元 GJK32 给水厂处理工艺模拟实验装置 62000元
GJK33 离子交换软化与除盐实验设备 6800元 GJK34 V型滤池 11800元
GJK35 多层滤料滤池 16000元 GJK36 电凝聚气浮设备 15000元
❷ 污水处理中pAC投加到氧化池会不会破坏菌群
污水处理的过程是怎样的
步骤:
1、废水首先经过格栅、筛网后流至絮凝沉淀池,为了使处理效果好,在絮凝沉淀池中加入混凝剂,使废水中悬浮物治理效果更好,混凝加药也起到调节废水的作用.絮凝沉淀后的废水流入预曝气调节池中。
2、曝气调节池中通入空气,起到预曝气调节的作用.调节均匀的废水用泵提升到一级浮动填料生化池中。
3、生化池中安装充氧效率很高的曝气头,并装入浮动填料,实践证明该项技术对COD和BOD有较高的去除效率.一级浮动填料生化池中废水自流入二级浮动填料生化池,二池采用方法相同。
4、二级浮动填料生化池水自流入斜板沉淀池中.池中加入聚丙烯蜂窝斜管,可大大提高沉降效率,另外水力负荷高,停留时间短,占地面积小。
5、混凝沉淀池与斜板沉淀池沉淀污泥排入污泥浓缩池中,然后经污泥脱水机械脱水。
6、斜板沉淀池排出的水流入清水池中,经检测后外排。
(2)绘制unitank装置实验原理扩展阅读:
处理方法:
1、按作用分:污水处理按照其作用可分为物理法、生物法和化学法三种。
(1)物理法:主要利用物理作用分离污水中的非溶解性物质,在处理过程中不改变化学性质。常用的有重力分离、离心分离、反渗透、气浮等。物理法处理构筑物较简单、经济,用于村镇水体容量大、自净能力强、污水处理程度要求不高的情况。
(2)生物法:利用微生物的新陈代谢功能,将污水中呈溶解或胶体状态的有机物分解氧化为稳定的无机物质,使污水得到净化。常用的有活性污泥法和生物膜法。生物法处理程度比物理法要高。
(3)化学法:是利用化学反应作用来处理或回收污水的溶解物质或胶体物质的方法,多用于工业废水。常用的有混凝法、中和法、氧化还原法、离子交换法等。化学处理法处理效果好、费用高,多用作生化处理后的出水,作进一步的处理,提高出水水质。
2、按处理程度分:污水处理按照处理程度来分可分为一级处理、二级处理和三级处理。
(1)一级处理主要是去除污水中呈悬浮状态的固体物质,常用物理法。
(2)二级处理的主要任务是大幅度去除污水中呈胶体和溶解状态的有机物,BOD去除率为80%~90%。
(3)三级处理的目的是进一步去除某种特殊的污染物质,如除氟、除磷等,属于深度处理,常用化学法。
❸ 急求推流式曝气池的课程设计说明书参考
1 绪 论
课程设计是课程环节的主要内容,是最大可能地面向社会、面向生产实际,已有于培养和调动学生主动性、积极性增强学生对国家建设的责任感,激发学生创新精神提高学生严禁作风,树立正确设计思想和努力贯彻国家有关方针政策观念。课程设计是综合运用所学的知识的全面训练,以便培养和提高学生调查研究,查阅文献,收集运用资料的能力,为即将开始的实际工作打下坚实的基础。
水资源短缺时人类必须面对的问题,而合理的利用现有资源是解决这一问题的有效办法。工业生产要耗费大量的水资源,并且产生大量废水,这些废水有巨大的回收利用价值,这部分废水若未经处理直接排入水体,不但不能使该部分得不到回收利用而且会对其他水体造成污染,从而形成更大的水资源浪费。所以,现在许多工厂及科研单位在研究废水的回收利用技术。本设计根据所需处理水的水质特征采用的是厌氧、缺氧和好氧相结合的处理工艺,污水处理中产生的污泥进行浓缩,消化和脱水等处理。
1.1 当前水污染处理现状
据国家环保总局发布的《2008年中国环境状况公报》显示,目前我国水污染形势仍然严峻。江、河、湖泊水污染负荷早已超过其水环境容量。但是污水排放量仍在增长,七大江河水质继续在恶化,Ⅴ类和劣于Ⅴ类水所占比例仍很高。水污染严重的河流依次为:海河、辽河、淮河、黄河、松花江、长江、珠江。其中海河劣于Ⅴ类水质河段高达50.8%,辽河达32.5%,黄河达20.5%。现在工业水污染仍旧突出,仍是江河水污染的主要来源。
湖泊、水库富营养化是导致水污染的重要因素。由于湖泊、水库的水体流动性差,自净能力低,所以富营养化比较严重,即天然水体由于过量营养物质(主要是指氮、磷等)的排入,藻类及其他浮游生物迅速繁殖,造成水质恶化。这些营养物质主要来自农田施肥、城市生活污水和工业废水。2007年太湖、巢湖、滇池等重要湖泊的“蓝藻事件”就是富营养化问题而引起的。同时,地下水污染使饮用水安全存在隐患。地下水污染主要来自地表或土壤水的下渗、农用氮肥及垃圾中的油、酚类物质。2006年,我国125个受监控城市中,浅层地下水水质呈恶化的有21个,呈好转的只有9个。全国有3亿多农村人口存在引用水不安全问题。农村饮用水符合引用卫生标准的比例约为六成六,有三成四的农村人口饮用水存在水质污染或者污染隐患。其中约有1.9亿人饮用水有害物质含量超标,有6300万人饮用高氟水,200多万人饮用高砷水,3800多万人饮用苦咸水。全国113个环保重点城市的222个地表水水源地平均水质达标率只有72%。
尽管国家加大了水环境治理力度,但总体看,水环境恶化趋势尚未得到根本扭转。其中,在我国有61.5%的城市没有建成污水处理厂,相当多的没有建成污水处理收费制度,污水收采管网建设滞后,污水处理收费普遍过低。及建成的城市污水处理厂中,能正常运行的只占13%,其他开开停停,还有13%不运行。因此除特大城市外,许多城镇污水没有得到有效的处理。
因此,面对水污染的严峻形势,确保人们安全饮水依然任重道远。
1.2 城市污水处理现状及规划
1.2.1 城市污水处理设施的建设与发展
我国解决城市污水的净化问题始于二十世纪七十年代。一些城市利用郊区的坑塘洼地、废河道、沼泽地等稍加整修或围堤筑坝,建成稳定塘,对城市污水进行净化处理。据调查,这个时期在全国已建成各种类型的稳定塘有38座,日处理城市污水约173万立方米。其中生活污水量占一半,其余包括石油、化工、造纸、印染等多种工业废水。此阶段开始重视引进国外先进技术和设备,开展与国外的技术交流,逐步探索适合我国国情的工程技术和设计,为以后的建设奠定了基础。
80年代,随着城市化进程的加快和城市水污染问题日益受到重视,城市排水设施建设有较快发展。国家适时调整政策,规定在城市政府担保还贷的条件下,准许适用国际金融组织、外国政府和设备供应商的优惠贷款,由此推动了一大批城市污水处理设施的兴建。“八五”期间,随着城市综合环境治理的深化以及各流域水污染治理力度的加大,城市污水处理设施的建设经历了一个发展高潮时期。到1995年,我国城市排水系统排水管道长度约为110062km,按服务面积计算,城市污水管网普及率为64.8%。“九五”期间,我国正式启动对“三河”(淮河、海河和辽河)、“三湖”(太湖、巢湖和滇池)流域和“环渤海”地区的水污染治理,国家给予相应资金和技术上的支持。1996~1999年竣工投入运行的城市污水处理项目有22个,投资59.58亿元,日处理规模371.7万立方米;在建项目109个,计划投资161.83亿元,日处理规模832.0万立方米。
据统计,到2000年底,全国以建设城市污水处理厂427座,其中二级处理厂282座,二级处理率约为15%。2000年用于城市污水处理工程曾建设的总投资约为150亿元。但目前大多数小城镇尚未建污水处理设施。
1.2.2 目前存在的问题
⑴污水处理厂建设资金的短缺
我国虽然已建成污水处理厂一百多座,但在某一个城市本身的处理率不高,也就是污水处理的量不够。
目前大城市已着手进行污水处理厂建设的规划工作。但在中小城市,特别是在西北部中小城市还没有将污水处理的规划建设纳入城市发展的议程。其主要原因之一就是没有专门建设资金,地方政府没有多方筹措资金,加快水环境污染治理,为子孙后代留下一个优美的生活环境。
⑵污水处理厂运行经费不能到位
全国目前已经建成投产的污水处理厂中,满负荷运行的不到1/3。没有满负荷运行的原因:大多数均是由于运行经费不能到位,有的省市没有收取污水处理费,有的是只收工厂、企业的,没收居民的,有的是工厂、企业、居民的都收了,但收费标准定的很低,远不能满足污水处理厂正常运行所需的最低费用。
⑶进口设备的维修及设备备件的开发
大批的进口设备经过几年的运转后,已出现不同程度损坏,特别是索赔期后的维修和正常的大修。若请国外的专家来修,维修成本将会大幅度增加实在难以接受,若使进口设备能够维持正常运转,必须培养对进口设备维修保养的国内专业人员,使其掌握维修技能达到进口设备的维修标准。还得有充足的备品配件,特别是一些将要淘汰的设备被引进中国,备品配件国外也不会再生产了,就需要国内自行测绘、加工制造,只有这样才能使进口设备发挥出它的作用,否则设备的损坏、配件的缺乏会影响污水处理厂的正常运行。
⑷污水处理工艺选择有一阵风的现象,不结合本地区的实际情况选热门工艺
选择热门工艺是在选择污水处理工艺时出现的单纯追求工艺新,追求时髦工艺,不考虑本地区的进水水质、处理水量以及出水用途的问题,以致造成设施设备闲置,增大了建设投资,也提高了日常运转成本。
⑸污水处理后的再生水得不到充分利用
⑹污泥没有真正达到无害化,没有最终处置的途径
污水经过各种不同工艺处理后,出水达到了过家规定的排放标准,但是在污水处理过程中产生的污泥却未能得到妥善的处置,还会给环境造成二次污染。污泥进行干燥用作化肥要符合国家环保部门有关规定。污泥作为绿地用肥要有园林部门认可,有检测部门跟踪分析方能使用。总之,污泥若没有最终处置的途径,是给环境带来再次污染的隐患。
⑺污水处理厂没有除臭装置
污水处理厂的进水池、格栅间、沉砂池、初沉池及污泥处理系统的储泥池,脱水机房(除离心机外)都会产生严重的臭气,即影响操作运行人员的身体健康,也给周围居民的生活环境带来污染,应该多渠道解决除臭装置,消除污泥,保护环境。
1.2.3 城市污水处理工艺技术现状与发展
⑴技术现状
我国现有城市污水处理厂80%以上采用的是活性污泥法,其余采用一级处理、强化一级处理、稳定塘法及土地处理法等。
“七五”、“八五”、“九五”国家科技攻关课题的建立与完成,使我国在污水处理新技术、污水再生利用新技术、污水处理新技术等方面都取得了可喜的科研成果,某些研究成果达到国际先进水平。同时,借助于外贷城市污水处理工程项目的建设,国外许多新技术、新工艺、新设备被引进到我国,AB法、氧化沟法、A/O工艺、A/A/O工艺、SBR法在我国城市污水处理厂中均得到应用。污水处理工艺技术有过去只注重去除有机物发展为具有除磷脱氮功能。国外一些先进、高效的污水处理专用设备也进入了我国污水处理行业市场,如格栅机、潜水泵、除砂装置、刮泥机、曝气器、鼓风机、污泥泵、脱水机、沼气发电机、沼气锅炉、污泥消化搅拌系统等大型设备与装置。
我国80年代以前建设的城市污水处理厂大部分采用普通曝气法活性污泥处理工艺,由于该工艺主要以去除BOD和SS为主要目标,对氮磷的去除率非常低。为了适应水环境及排放要求,一些污水处理厂正在进行改造,增加或强化脱氮和除磷功能。
AB法污水处理工艺于80年代初开始在我国应用于工程实践。由于其抗冲击负荷能力强,对pH值变化和有毒物质具有明显缓冲作用的特点,故主要应用于污水浓度高、水质水量变化较大,特别是工业污水所占比例较高的城市污水处理厂。
目前氧化沟工艺是我国采用较多的污水处理工艺技术之一。应用较多的有奥贝尔氧化沟工艺,由我国自行设计、全套设备国产化,已有成功实例。DE型氧化沟和三沟式氧化沟在中高浓度的中小型城市污水处理中也有应用。采用卡罗塞尔氧化沟工艺的城市污水处理厂大部分为外贷项目。
多种类型的SBR工艺在我国均有应用,如属第二代SBR工艺的ICEAS工艺,属第三代的CAST工艺、UNITANK工艺等。
目前我国新建及在建的城市污水处理厂所采用的工艺中,各种类型的活性污泥法仍为主流,占90%以上,其余则为一级处理、强化一级处理、生物膜法及其他处理工艺相结合的自然生态净化法等污水处理工艺技术。
⑵从国情出发,我国城市污水处理发展趋势:
① 氮、磷营养物质的去除仍为重点也是难点;
② 工业废水治理开始转向全过程控制;
③ 单独分散处理转为城市污水集中处理;
④ 水质控制指标越来越严;
⑤ 由单纯工艺技术研究转向工艺、设备、工程的综合集成与产业
及经济、政策、标准的综合性研究;
⑥ 污水再生利用提上日程;
⑦ 中小城镇污水污染与治理问题开始受到重视。
1.3 城市污水的水质及危害
1.3.1 城市污水的组成
污水即受到物理性、化学性或生物性侵害后,其外观性状或质量成分对使用或环境产生危害与风险的污染水(“病态”水)。例如,进行生活或生产使用后所排出的水等。
城市污水是排入城市排水系统中各类废水的总称,泛指生活污水、生产污水(应适当处理后)以及其他排入城市排水管网的混合物水。在合流制排水系统中还包括雨水,在半分流制排水系统中包括初期雨水。
⑴生活污水
生活污水是人们日常生活中使用过并为生活废料所污染的水。例如居民区、宾馆、饭店等服务行业,以及一些娱乐场所产生的污水。
⑵工业废水
工业废水是工矿企业生活中使用过的水,是生活污水和生产污水的总称。
①生产污水,即在生产过程中所形成的,并被生产原料、半成品或成品废料所污染的水,也包括热污染水(生产过程中产生温度高于60℃的高温水)。生产污水需要进行处理才能排放或再用。
②生产废水,即生产过程中所形成,但未直接参与生产工艺,未被污染或只是温度稍有上升的水。这种废水一般不需要处理或只需要进行简单处理,即可再用或排放。
⑶受污染的降水
主要是指初期雨水和雪融水。由于冲刷了地面上的各种污物,污染程度较高,需要进行处理。
1.3.2 城市污水的水质
⑴影响城市污水水质的因素
城市污水水质,主要受居民生活污水、工业生产污水等的水质成分及其混合比例、城市规模、居民生活习惯、季节和气候条件以及排水系统体制等的影响。
城市污水中污染物质是多种多样的。例如,油脂、粪尿、洗涤剂、染料、溶液、各种有机和无机物,还有细菌、病毒等致病微生物,以及毒性酸碱性、放射性核重金属性类等物质。这些污染物质,按化学成分可分为无几何有机两大类,按物理形态可分为悬浮固体、胶体及溶解性污染物质。
⑵生活污水水质
生活污水包括厨房底细、淋浴、洗衣等废水以及冲洗厕所等污水。其成分及其变化取决于居民的生活状况、水平和习惯。污染物浓度与用水量有关。
生活污水的主要污染物是有机物和氮、磷等营养物质,其水质特征是水质稳定但浑浊、色深且有恶臭,呈微碱性,一般不含有毒物质,含有大量的细菌、病毒和寄生虫卵。
生活污水中,所含固体物质约占总质量的0.1%~0.2%,其中溶解性固体(主要是各种无机盐和可溶性有机物质)约占3/5~2/3,悬浮固体(其中有机成分占4/5)占2/5~1/3。此外,生活污水中还有氮、磷等物质。
⑶工业生产污水水质
工业生产污水的水质情况,因产业门类的生产工艺不同而各有所异。一般来说,工业污水的排放量大、污染含量高、处理难度大,对环境的危害也是比较大的。
1.4 城市污水处理方法
污水处理,就是采用一定的处理方法和流程将污水所含的污染物质减少或分离出去,或将其转化为无害或稳定的物质,以使污水得到净化达到恢复其原来性状或使用功能的过程。现代污水处理技术,按其作用机理可分为三类,即物理处理法、化学处理法和生物处理法。
1.4.1 物理处理法
此法系通过物理作用,分离收回污水中呈悬浮状态的污染物质,在处理过程中不改变污染物的化学物质。
1.4.2 化学处理法
此法系通过化学反应和传质作用,来分离、回收污水中呈溶解、胶状状态的污染物质,或将其转化为无害物质。
1.4.3 生物处理法
⑴常规活性污泥法
常规活性污泥法在国内外污水处理工程中是历史最长,使用范围最广的一种方法。具有运行效果可靠,出水水质稳定,管理经验丰富的优势。不足之处是对氮磷去除能力差,投资及运行费用偏高。
⑵SBR法
SBR法是序批式(或间歇式)活性污泥法德简称,常规SBR工艺的原污水不是顺次流经各个待理单元,而且放流到单一反应池内,按时顺序实现不同的目的的操作。
SBR法的优点:
① 处理效率高,出水水质好,不易产生污泥膨胀;
② 占地面积小,处理构筑物简单;
③ 投资少,运转管理费低;
④ 活性污泥沉降性能好,耐冲击负荷,受进水水量和水质影响小;
⑤ 如果涉及操作得当,可以实现生物脱氮除磷的目的。
⑶氧化沟法
氧化沟是连续循环式曝气池,属于活性污泥法的一种改进工艺主要用于去除污水中的有机物及进行硝化反应。
氧化沟技术由于具有出水水质好,运行稳定,管理方便,以及区别于常规活性污泥法的技术特征,使其发展非常迅速,现已发展形成多种不同形式的氧化沟技术,包括奥贝尔型、卡鲁赛尔型、二沟或三沟交替工作型、一体化氧化沟等。奥贝尔氧化沟、一体化氧化沟等都是新型氧化沟,在节约能耗、减少占地、抗冲击负荷和高胶脱氮等方面显示出优越的性能,正日益引起人们的重视并逐步得到广泛应用。
⑷CASS法
CASS系统以推流方式运行,而各反应区则以完全混合的方式运行以实现同步碳化和硝化-反硝化功能。与常规SBR工艺相比,CASS的特点是系统运行稳定,耐冲击负荷,以及脱氮除磷效果好。
⑸AB法
典型AB法由A段的吸附、沉淀与B段的曝气、沉淀组成,两段串联运行。
AB法德主要优点是:
①有机物去除率高,BOD5去除率可达95%,COD去除率可达90%左右;
②抗冲击负荷能力强,去除难降解物质能力强,出水水质稳定;
③A段停留时间短,但BOD5去除率可达50%以上,且能量消耗少;
④B段产泥量低,泥龄长,有利于脱氮。AB法的缺点在于A段污泥负荷高,污泥产量多,增加了污泥系统的造价,另外AB两段污泥回流系统隔离,增加了一整套污泥回流系统。
⑹AO法
AO法是由厌氧(或缺氧)段和好氧段串联的流程。厌氧、好氧流程除了BOD5和SS去除率与常规活性污泥法相当外,还可以去除污水中的磷。由于厌氧也具有去除有机物的功效,其能耗较小,此外还具有改善污泥沉降性能、克服活性污泥沉降的优点。同时它还可以去除污水中的氮,废水先进入缺氧池,在其中进行有机物的初步降解和硝酸盐的反硝化,然后进入好氧池进行有机物的进一步降解和氨氮的硝化。
⑺A20法
A20工艺即绝氧-厌氧-好氧活性污泥法是80年代在传统活性污泥法基础上发展的先进处理方法。它利用活性污泥在厌氧、缺氧、好氧过程中的生物增殖活动,同时达到降解污水中有机物及除磷脱氮的目的。它具有处理效果稳定,节约能源和运行费用低等优点。缺点是处理过程较复杂、处理构筑物种类多,工程调整不方便。
⑻生物滤池
生物滤池是生物膜法的一种,它是由滤池、布水设备和排水系统等三部分组成。通过污水经过附满微生物的生物滤料而使污水达到净化,生物滤池中常用的有高负荷生物滤池和塔式生物滤池。此法有机负荷较大,占地面积小,它对入流水质水量变化的承受能力较强,脱落的生物膜密室较容易在二沉池中被分离,但BOD5去除率低,投资较大。
⑼生物转盘
其主要组成部分有转动轴、转盘、废水处理槽和驱动装置等。它去除废水中有机污染物的机理与生物滤池基本相同。在我国,生物转盘主要用于处理工业废水。在化学纤维、石油化工、印染、皮革和煤气发生站等行业的工业废水处理方面均得到应用,效果良好,并取得一定的操作运行经验。生物转盘的主要优点是动力消耗低、抗冲击负荷能力强、无需回流污泥、管理运行方便,缺点是占地面积大、散发臭气,在寒冷的地区需作保温处理。
⑽生物接触氧化法
其主要组成部分有池体、填料和布水布气装置。生物接触氧化法是介于活性污泥法和生物膜法之间的一种生物处理方法。此法抗冲击负荷能力强,污泥量少,不需污泥回流,具有脱氮除磷功能,易于维护管理,也是一种采用较多的处理工艺;其缺点是布水布气不易均匀,填料可能堵塞。
⑾生物流化床
该处理技术是借助流体(液体、气体)是表面生长着微生物的固体颗粒呈流态化,同时进行去除和降解有机污染物的生物膜处理法技术。它的主要优点如下:第一,容积负荷高,康冲击负荷能力强;第二,微生物活性强;第三,传质效果好。其缺点是设备的磨损较固定床严重,载体颗粒在流动过程中被磨损的程度较小。此外,设计时还存在着产生放大方面的问题,如防堵塞、曝气方法、进水配水系统的选用和生物颗粒流失等。因此,目前我国废水处理HIA少有工业性应用,上述问题的解决,有可能使生物流化床获得较广泛的工业性应用。
⑿稳定塘
稳定塘是利用天然水体对污水进行生物处理的系统。主要优点是能耗低,主要缺点是占地面积非常大,并且受气候条件影响大,冬季运行效果差,出水不易达标。
1.5设计思路路线
确定工艺流程→收集资料→设计计算→完成设计说明书→绘制图纸
2 设计任务书
2、1课程目标:
污水处理课程设计的目的在于加深理解所学专业知识,培养运用所学专业知识的能力,在设计、计算、绘图方面得到锻炼。
2、2设计内容和深度:
针对一座二级处理的城市污水处理厂,要求对曝气池污水处理构筑物的工艺尺寸进行设计计算,完成设计计算说明书和设计图(曝气池工艺结构图和曝气池高程图)。设计深度一般为初步设计的深度
2、3设计题目
某城市污水处理厂曝气池工艺设计
2、4 基本资料
污水处理水量:5万m3/d
污水水质:CODcr500mg/l,BOD5280mg/l,SS 240mg/l。
2、4、1处理要求
污水经二级处理后应符合以下具体要求:
COD≤120 mg/L,BOD5≤30 mg,/L,SS≤30mg/L。
2、4、2处理工艺流程
污水拟采用传统活性污泥法工艺处理,具体流程如下:
污水一分流闸井一格栅间一泵房一出水井一计量槽一沉砂池一初沉池一曝气池一二沉池一消毒池一出水
2、4、3气象与水文资料
风向:多年主导风向为东北东风;
气温:最冷月平均为-10℃;
最热月平均为32.5℃;
极端气温,最高为41.9℃,最低为-23.6℃,最大冻土深度为0.8m;
水文:降水量多年平均为每年528mm;
蒸发量多年平均为每年1000mm;
地下水水位,地面下6—7m。(也可以天津为例,自己查阅资料)
2、4、4厂区地形
污水厂选址区域海拔标高在64—66m之间,平均地面标高为64.5m。地势为西北高,东南低。厂区征地面积为东西长380m,南北长280m(也可不受具体限制)。
2、5课程设计的目的、要求
通过污水厂课程设计,巩固学习成果,加深对《水污染控制工程》课程内容的学习和理解,使学生应用规范、手册和文献资料,进一步掌握设计原则、方法等步骤,达到巩固、消化课程的主要内容,锻炼独立工作的能力,对污染水的主题构筑物、辅助设施、计量设备及水厂总体规划,管道系统做到一般的技术设计深度,绘制规范的施工及大样图,掌握水污染设计的方法,培养和提高计算能力,设计和绘图水平。在教室指导下,基本能独立完成一个中小型污水处理厂工艺设计,锻炼和提高学生分析及解决工程问题的能力。
2、6设计的原则
考虑城市经济发展及当地现有条件,确定方案时考虑以下原则:
⑴要符合使用的要求。首先确保污水厂处理后达到排放标准。考虑现实的技术和经济条件,以及当地的具体情况(如施工条件),在可能的基础上选择的处理工艺流程、构(建)筑物形式、主要设备、设计标准和数据等,应最大限度的满足污水厂功能的实现,使处理后的污水符合水质要求。
⑵污水厂曝气池设计采用的各项设计参数必须可靠。
⑶污水处理厂曝气池设计必须符合经济的要求。设计完成后,总体布置、单体设计及药剂选用等要尽可能采取合理措施降低工程造价和运行管理费用。
⑷污水处理厂曝气池设计应当力求技术合理。在经济合理的原则下,必须根据需要尽可能采取先进的工艺、机械和自控技术,但要确保安全可靠。
⑸污水厂曝气池设计必须注意近远期的结合,不宜分期建设的部分,如配水井、泵房及加药间等,其土建部分应一次建成,在无远期规划的情况下,设计时应为以后的发展留有挖潜和扩建的条件。
⑹污水厂曝气池设计必须考虑安全性的条件,如适当设置分流设施、超越管线等。
3 污水处理工程课程设计指导书
3、1总体要求
①在设计过程中,要发挥独立思考独立工作的能力;
②本课程设计的重点训练,是曝气池工艺设计计算和布置。
③课程设计不要求对设计方案作比较。处理构筑物选型说明,按其技术特征加以说明。
④设计计算说明书,应内容完整(包括计算草图),简明扼要,文句通顺,字迹端正。设计图纸应按标准绘制(手绘),内容完整,主次分明
3、2设计要点
3、2、1 污水处理设施设计一般规定
①该市排水系统为合流制,污水流量总变化系统数取1.2,截流雨季污水经初沉可直接排入水体。
②处理构筑物流量:曝气池之前,各种构筑物按最大日最大时流量设计;曝气池之后(包括曝气池),构筑物按平均日平均时流量设计。
③处理设备设计流量:各种设备选型计算时,按最大日最大时流量设计。
④管渠设计流量;按最大日、最大时流量设计。
⑤各处理构筑物不应小于2组(个或格),且按并开设计。
3、2、2 曝气池
①型式:传统活性污泥法采用推流式鼓风曝气。
②曝气池进水配水点除起端外,沿流长方向距池起点1/2~3/4池长以内可增加2—3个配水点。
③曝气池污泥负荷宜选0.5kgBOD5/(kgMLVSS.d),再按计算法校核。
④污泥回流比R=30%~80%,在计算污泥回流设施及二沉池贮泥量时,R取大值。
⑤SVI值选120~150ml/g,污泥浓度可计算确定,但不宜大于3000mg/L。
⑥曝气池深度应结合总体高程、选用的曝气扩散器及鼓风机、地质条件确定。多点进水时可稍长些,一般控制L》10B。
⑦曝气池应布置并计算空气管,并确定所需供风的风量和风压。
3、2、3高程布置
①高程布置原则。
②构筑物水头损失参考
③水头损失计算及高程布置参见《排水工程》(下)。
④高程布置图横向和纵向比例一般不相等,横向比例可选1:1000左右,纵向1:500左右。
4 污水处理工艺流程说明
4、1活性污泥法(Activated Sludge Process)
活性污泥法利用悬浮生长的微生物絮体处理有机废水的一类好氧生物处理方法。
活性污泥,是指由好气性微生物(包括细菌、真菌、原生动物和后生动物)及其代谢和吸附的有机物、无机物所共同组成的微生物絮体。活性污泥法中,进行污染物降解过程的主体是活性污泥中的微生物。可溶性有机物能被细菌、真菌等作为营养物质直接利用分解,而不能作为微型动物的直接营养源。细菌等腐生性微生物起着主要作用。此外,还存在原生动物、微型后生动物等完全动物营养性的微生物。
4、1、1 活性污泥法概念
活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。
4、1、2 活性污泥法简介
activated sludge process是污水生物处理的一种方法。该法是在人工充氧条件下,对污水和各种微生物群体进行连续混合培养,形成活性污泥。利用活性污泥的生物凝聚、吸附和氧化作用,以分解去除污水中的有机污染物。然后使污泥与水分离,大部分污泥再回流到曝气池,多余部分则排出活性污泥系统。
影响活性污泥过程工作效率(处理效率和经济效益)的主要因素是处理方法的选择与曝气池和沉淀池的设计及运行。
❹ 水污染问题开题报告
水污染问题开题报告
水污染问题已经波及到全世界了,下面是我整理的水污染开题报告,欢迎大家认真阅读。
一、选题的目的及研究意义
伴随着经济发展、人口增加、城镇化进程的步伐加快,我国取得了举世瞩目的骄人成绩,然而随之而来的是各种污染现象、污染事故的发生,大气、水体、噪声等污染严重影响着人们的生活,制约着社会的进步。在各类污染中,水污染和人们的关系最为密切,我们的水资源严重短缺并遭受着各类污染的侵袭,降低了水体的使用功能,严重破坏了生态环境,影响了人们的生活,社会的发展,因此,解决水污染问题成为一项十分重要的课题。近年来各种类型、各种规模的污水处理厂的建立,能够有效地减少水污染的发生,有利于进行污水的集中处理。城市的生活污水能够有序的排进处理厂处理,减少受纳河流的自净负荷。
一些工厂、公司的生产污水有路可去,减少了工厂的运行负担,使一些小工厂在新的环境要求下能够继续运行下去,有利于城市工业可持续发展。综合各方面的因素考虑,污水处理厂的建立是解决水污染问题的一种最为有效的`方法。
对城市污水进行处理,通过工艺流程的设计和各环节的处理,使污水达到排放标准,保护环境,保障人们健康生活。该市人口较多,污水处理量较大,水中含氮磷及有机物较多,因此需建设污水处理厂对该市的污水进行处理,并且所选择的工艺必须能够有效解决水中有机物的处理。据此在设计中,应提出污水处理厂的处理工艺流程以及处理过程中各构筑物的类型与数量,进行处理设备及构筑物的工艺设计计算并绘制污水处理厂平面图、高程图及主要构筑物单体平、剖图。
二、国内外相关领域的研究现状、发展趋势等
1 活性污泥法
国内外城市污水处理厂目前普遍采用的工艺有:SBR间歇式活性污泥法、循环式活性污泥法(CAST或CASS)、AB法、A/O生物脱氮活性污泥法、A2/O生物脱氮除磷工艺、氧化沟法(循环混合式活性污泥法)等工艺。
⑴ SBR法(Sequencing Batch Reactor)
序批式反应池(SBR)属于“注水—反应—排水”类型的反应器,其操作流程由进水、反应、沉淀、出水和闲置五个基本过程组成,所有处理过程都是在同一个设有曝气或者搅拌装置的反应器内依次进行,混合液始终留在池中,从而不需另设沉淀池。曝气池兼具沉淀的作用,厌氧、好氧也在同一池进行。通过调节每个工序的时间,可达到除磷脱氮的效果。其工艺系统组成简单;耐冲击负荷;反应推动力大,运行操作灵活;可通过计算机自动控制,易于维护管理。
⑵ 循环活性污泥工艺(cyclic activated sludge technology)
CAST工艺是SBR工艺的一种变形,池体内用隔墙隔出生物选择区、兼性区和主反应区三个区域,整个工艺的曝气、沉淀、排水等过程在同一池内周期循环运行,省去了常规污泥处理工艺中的二沉池和污泥回流系统。其建设费用、运转费用低;有机物去除率高;污泥产量低、性质稳定;运行管理简单,不易发生污泥膨胀。
⑶ AB法(Adsorption—Biooxidation Process)
吸附—生物降解工者铅艺,简称AB法,整个污水处理系统共分为预处理段、A段、B段三段,在预处理段只设格栅、沉砂等处理设备,A段由吸附池和中间沉淀池组成,B级由曝气池和二沉池组成,A、B级各自拥有独立的污泥回流系统。该工艺处理效果稳定,具有抗腊烂冲击负荷能力。
⑷ A2/O法
A2/O法同步除磷脱氮机制由两部分组成:一是除磷, 污水中的磷在厌氧轮嫌漏状态下释放出聚磷菌,在好氧状况下又将其更多吸收,以剩余污泥的形式排出系统。二是脱氮,缺氧段由于兼性脱氮菌的作用,利用水中BOD 作为氢供给体将来自好氧池混合液中的硝酸盐及亚硝酸盐还原成氮气逸入大气,达到脱氮的目的。其总的水力停留时间少于其他同类工艺;在厌氧(缺氧)、好氧交替运行条件下,丝状菌不能大量增殖,无污泥膨胀之虑,SVI值一般均小于100;污泥中含磷浓度高,具有很高的肥效;运行中勿需投药,运行费用低。若降低污泥浓度、压缩污泥龄、控制硝化,以去除磷、BOD5和COD为主,则可用A/O 工艺。
⑸ 氧化沟法
氧化沟是延时曝气法的一种特殊形式,一般采用圆形或椭圆形廊道,池体狭长,深度较浅,在沟槽中设有机械曝气和推进装置,池体的布置和曝气、搅拌装置都有利于廊道内的混合液单向流动。多数情况下,氧化沟系统需设二沉池。在流态上介于完全混合和推流之间,有利于活性污泥的生物凝聚作用,而且可以将其区分为富氧区、缺氧区,有以进行硝化和反硝化,取得脱氮的效果;可考虑不设置初沉池,原污水经过格栅和沉砂池预处理,已经有效防止污水中无机沉渣沉积,有机性悬浮物在氧化沟内能够达到好氧稳定的程度;BOD负荷低,因此对水温、水质、水量的变动有较强的适应性,污泥产率低,具有较大的脱氮潜力,运行费用较低。
2 生物膜法
生物膜法包括生物滤池、生物转盘、生物接触氧化池、曝气生物滤池及生物流化床等工艺形式。通过微生物附着生长在滤料或填料表面上,形成生物膜,污水与生物膜接触后,污染物被微生物吸附转化,污水得到净化。目前所采用的生物膜法多数是好氧工艺,其对水质、水量变化的适应性强,处理效果好,同其他方法组合应用可实现更高效率的处理效果。
3 UNITANK法
UNITANK工艺是一种三沟式氧化沟的变形,它是由三个矩形组成的,其中两侧的矩形池即可做曝气池,又可做沉淀池,中间一个矩形池只做曝气池。污水可以进入三个池中的任意一个,采用连续进水、周期交替运行。在自动控制下使各池处在好氧、缺氧及厌氧的交替状态下,实现有机物及氮磷的去除。但它的容积利用率低,设备闲置率高,除磷功能差,并且不适用于大型的城市污水处理厂。
4 生物处理法新进展
无论是好氧处理技术还是厌氧处理技术,生物法都可以利用微生物的新陈代谢,以污染物质为营养,实现对污染物质的降解。它的二次污染小,对生活污水的处理有着自己独特的优势。随着工艺生产技术的发展,污水中成分更加复杂,有机物质更难降解,这就必然要求进行处理工艺的改革。
⑴ 活性污泥法的新发展
通过长期的研究实践,活性污泥法已成为一种比较完善的工艺,目前对活性污泥法的改进主要是在曝气方式上的改进,或是朝多功能方向发展,将活性污泥法与其他工艺相结合,提高处理效果。用常规手段很难再生物学上有较大的发展,目前对活性污泥法的重点研究方向主要是膜分离技术和分子生物学技术的应用。
⑵ 生物膜处理法的新进展
目前在普通生物膜法的基础上,出现了高负荷生物滤池、塔式生物滤池、生物转盘和生物接触氧化等。近几年来,又出现了一些新型的生物膜法处理技术,如生物流化床,活性生物滤池,另外还有空气驱动的生物转盘、生物转盘和曝气池相结合、藻类转盘等。由于生物膜法的生态系统中可以生长藻类、后生动物等,甚至可以生长硝化菌及反硝化菌等,因此可以用来脱氮等。
⑶ 厌氧生物处理法的新发展
厌氧生物处理法是利用厌氧微生物在无氧的条件下对有机物进行降解的技术。由于处理效率低、处理速度慢,且厌氧菌对环境要求严格不易控制等缺点,厌氧生物处理法一直处于污泥处理阶段。近年来,由于能源危机及严重的环境污染,厌氧生物处理由于其产物具有能源物质而得到人们的重视,一大批新的厌氧生物处理技术相继诞生,如厌氧生物滤池、厌氧转盘、厌氧流化床法,以及上流式厌氧污泥反应器(UASB)等,厌氧生物处理法正朝着能处理低浓度有机污水,能够脱氮除磷,运行维护简单费用低的方向发展。
三、对本课题将要解决的主要问题及解决问题的思路与方法、拟采用的研究方法(技术路线)或设计(实验)方案进行说明
(一)、原始资料
(1)污水水质
CODmg/L BOD5 mg/L SS mg/L 总磷 mg/L pH 色度
处理前 420 220 200 8 6~9 ≤ 30倍
处理后≤ 60≤ 20≤20≤1.56~9≤30倍
(2) 基本资料
某城镇现有常住人口90000人。该镇规划期为十年(2005-2020),规划期末人口为120000人,生活污水排放定额为250升/人·天,污水处理厂排放标准为中华人民共和国国家标准。 预计规划期末镇区工业污水总量为20000吨/日,同时,要求所有工业废水排放均按照《污水排入城市下水道水质标准》(CJ18-86)执行。现规划建设一城市污水处理厂,设计规模为50000吨/日,污水处理厂排放标准为中华人民共和国国家标准。
气象及水文资料风向:多年主导风向为东南风。水文:降水量多年平均为每年728mm;蒸发量多年平均为每年1200mm;地下水位,地面下6~7m。年平均水温:20℃。厂区地形污水厂选址区域海拔标高在19~21m左右,平均地面标高为20m。平均地面坡度为0.3%~0.5% ,地势为西北高,东南低。
(二)本课题研究方案
本项目污水处理的特点:(1)污水以有机污染物为主,BOD/COD=0.52>0.3,可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标;(2)污水中主要污染物指标BOD、COD、SS值都比较低,属普通城市污水;(3)进水中总磷含量高于污水综合排放标准一级标准,需添加除磷工艺。针对以上特点,以及出水要求,现有城镇污水处理技术的特点,以采用生化处理最为经济。由于总磷超标,处理工艺尚用除磷。根据处理规模(5万吨/天),进出水质﹑出水质要求,污水处理厂既要求有效地去除BOD5,又要求对污水中的COD﹑磷进行适当处理。本课题可供选择的工艺:如A2/O 工艺,A/O 工艺,SBR 及其改良工艺,氧化沟工艺,以及水解好氧工艺,生物滤池工艺等。
四、有关参考文献资料
1.高廷耀,顾国维,周琪主编。水污染控制工程。北京:高等教育出版社,2007
2.张自杰主编。废水处理理论与设计。北京:中国建筑工业出版社,2003
3.李圭白 张杰主编。水质工程学。北京:中国建筑工业出版社,2005
4.金兆丰 余志荣主编。污水处理组合工艺及工程实例。北京:化学工艺出版社,2003
5.组织编写(第二版)。水处理工程典型设计实例。北京:化学工业出版社,2004
6.南国英 张志刚主编。给水排水工程专业工艺设计。北京:化学工业出版社,2004
7.韩洪军主编。污水处理构筑物设计与计算。哈尔滨:哈尔滨工业大学出版社,2002
8.娄金生主编。水污染治理新工艺与设计。北京:海洋出版社,1999
9.王凯军主编。城市污水生物处理新技术开发与应用。北京。化学工业出版社。2001.
10.谢新民,张海庆,尹明万主编。水资源评价及可持续利用规划理论与实践。郑州:黄河水利 出版社,2003
11. 程杰瑢,周琪,蒋文举主编。环境工程设计手册。北京:高等教育出版社,2007
12. 鞠兴华,王社平,彭党聪.城市污水处理厂设计进水水质确定方法探讨[J].中国给水排水,2007,23(14):35一44.
13张波.生物脱氮除磷工艺系统的几个重要问题[J].青岛建筑工程学院学报,1998,21(1):16~19
14张波,高廷耀.倒置A2/0工艺的原理与特点研究.中国给水排水[J],2000,16(7):11~15
15.崔玉川等.城市污水厂处理设施设计计算。北京:化学工业出版社,2003
;❺ 谁能详细的介绍一下AO污水工艺,谢谢啦
详细?还是要正确理解?
AO,A代表厌氧,O代表好氧。
根据不同的用途分为脱氮工艺和除磷工艺。两种都可以叫AO(细分AnO和ApO)。
1.脱氮情况是:O池好氧状态氨氮在硝化菌的作用下转化为硝态氮,O池混合液回流到A池,在A池缺氧状态下,硝态氮在反硝化菌的作用下转念团化为氮气。
2.除磷的情况是:主要搜仔作用菌类为聚磷菌,聚磷菌在厌氧状态下释放P,好氧状态下吸收磷,最后在好氧池排泥时将P排除系统外。
PS:如果说AO是用来处理高浓度有机废水,我就只能呵呵了世高汪。
❻ 水质工程学
十四章
1、生物滤池有多种工艺形式,如普通生物滤池、高负荷生物滤池、塔式生物滤池。举出三种可)
2、生物膜法有多种处理系统,如 生物滤池法、生物转盘法、生物接触氧化法、 生物流化床法 。
3、 生物膜法的实质是使细菌类微生物和原生动物、后生动物类的微型动物附着在滤料或某些载体上生长繁育,并在其上形成膜状生物污泥——生物膜。
4、生物膜的性质:①高度亲水,存在着附着水层;②微生物高度密集:各种细菌以及微型 动物,形成了有机污染物——细菌——原(后)生动物的食物链。
厌氧膜的出现:①生物膜厚度不断增加,氧气不能透入的内部深处将转变为厌氧状态; ②成熟的生物膜由厌氧膜和好氧膜组成;③好氧膜是有机物降解的主要场所,一般厚度 为2mm。
5、生物膜的原理:废水从上向下从滤料空隙间流过,与生物膜充分接触,其中的有机污染 物被微生物吸附并降解。
6、高负荷生物滤池特点:①采用污水回流,增加进水量,稀释进水浓度,冲刷生物膜使其常保活性,且防止滤料堵塞,抑制臭味及滤池蝇的过度滋生;②增加滤料直径,以防止迅速增长的微生物膜堵塞滤料;③水力负荷和BOD负荷大大提高;占底面积小,卫生条件较好。
出水水质水力负荷的关系:由于水力负荷高,大大缩短了污水在滤池中的停留时间,但不发生硝化反应,可是生物膜吸附有机物速度很快,保证了出水水质的要求。
7、生物转盘:又称浸没式生物滤池,由许多平行排列浸没在一个水槽中的塑料圆盘所组成。8、生物转盘的特点:①废水处于半静止状态,而微生物则在转动的盘面上;②转盘40%的面积浸没在废水中,盘面低速转动;③盘面上生物膜的厚度与废水浓度、性质及转速有关,一般0.1~0.5mm。
9、生物接触氧化法:在池内充填一定密度的填料,从池下通入空气进行曝气,污水浸没全部填料并与填料上的生物膜广泛接触,在微生物新陈代谢功能的作用下,污水的有机物得以去除,污水得到净化。
10、基本工艺流程 :原污水—(初沉池——生物接触氧化池——二沉池)排泥——处理水。
11、生物流化床:以砂、活性炭、焦炭一类的较小的惰性颗粒为载体填充在床体内,因载体表面覆盖着生物膜而使其质地变化轻,污水以一定流速从下向上流动,使载体处于流化状态。
12、生物流化床由床体、载体、布水装置和膜脱落装置等组成。
13、生物接触氧化法在工艺、功能及运行方面的主要特征有哪些?
在工艺方面,使用多种型式的填料,填料表面布满生物膜,形成了生物膜的主体结构。在功能方面,生物接触氧化处理技术具有多种净化功能。在运行方面,对冲击负荷有较强的适应能力,在间歇运行条件下,仍能够保持良好的处理效果,对排水不均匀的企业,更具有重要意义,操作简单,运行方便,易于维护管理,勿需污泥回流,不产生污泥膨胀现象,也不产生滤池蝇,污泥生成量少,污泥颗粒较大,易于沉淀。
14、生物膜法污水处理系统,在微生物相方面和处理工艺方面有哪些特征。( 7 分)
①微生物相方面的特征⑴生物膜中的微生物多样化,能够存活世代时间较长的微生物⑵生物的食物链长⑶分段运行与优势菌属② 处理工艺方面的特征⑴耐冲击负荷,对水质,水量变动有较强的适应性⑵微生物量多,处理能力大,净化能力强⑶污泥沉降性能良好,易于沉降分离⑷能够处理低浓度的污水⑸易于运行管理,节能,无污泥膨胀问题
十五章
1、升流式厌氧污泥床系统( UASB )组成:进水配水系统、反应区(悬浮层和污泥层)、三相分离器、出水系统、集气罩。
2、厌氧生物处理的基本原理:
1)水解阶段:固态有机物被细菌的胞外酶水解;
2)第二阶段是酸化:开环、断链,以小分子的有机物作为受氢体,使有机酸增加,pH下降
3)第三阶段是在进入甲烷化阶段之前,代谢中间液态产物都要乙酸化,称乙酸化阶段;
4)第四阶段是甲烷化阶段。(在厌氧消化系统中微生物主要分为两大类:非产甲烷菌和产甲烷细菌。)
3、厌氧生物处理的主要特征
主要优点:(1)能耗低,且还可回收生物能(沼气);(2)污泥产量低;——厌氧微生物的增殖速率低,——产酸菌的产率系数Y为0.15~0.34kgVSS/kgCOD,——产甲烷菌的产率系数Y为0.03kgVSS/kgCOD左右,——好氧微生物的产率系数约为0. 5~0.6kgVSS/kgCOD。(4)厌氧微生物有可能对好氧微生物不能降解的某些有机物进行降解或部分降解;
主要缺点:(1)反应过程较为复杂——厌氧消化是由多种不同性质、不同功能的微生物协同工作的一个连续的微生物过程;(2)对温度、pH等环境因素较敏感;(3)出水水质较差,需进一步利用好氧法进行处理;(4)气味较大;(5)对氨氮的去除效果不好;等
3、影响产酸细菌的因子
主要影响因子:pH值(pH3.5-8之内都可生存,最适pH值为6-7)、ORP(氧化还原电位)(最适ORP为-200~-300mV)、碱度、温度35℃、水力停留时间和有机负荷(有机负荷影响不是很大,正常为5~60kgCOD/(m3*d),水力停留时间过短将影响底物的转化程度)
4、影响产甲烷细菌的因子
主要生态因子:pH6.5~ 7.5、氧化还原电位- 300~ - 500mV、有机负荷率(直接反应了底物与微生物之间的平衡关系)、温度(中温区在30~390C之间,高温区在50~600C之间)、污泥浓度、碱度、接触与搅拌、营养(COD∶N ∶P= 500∶5∶1)、抑制剂和激活剂。
5、UASB(升流式厌氧污泥层)工作原理:当反应器运行时,废水自下部进入反应器,并以一定上升流速通过污泥层向上流动。进水底物与厌氧活性污泥充分接触而得到降解,并产生沼气,使污泥膨胀。随着气量增加,这种搅拌混合作用更强,气体从污泥层内不断逸出,引起污泥层呈沸腾流化状态。气、液、固的混合液上升至三相分离器,气体可被收集,污泥和水则进入上部相对静止的沉淀区,在重力作用下,水与污泥分离,上清液从沉淀区上部排出,污泥被截留在三相分离器下部并通过斜壁返回到反应区内。
特点:在反应器上配有气-液-固三相分离装置。在运行时能形成具有良好沉降性能的颗粒污泥,大大提高了反应器的生物量,使厌氧处理效率显著提高。
6、UASB反应器的工艺特征:(1)在反应器的上部设置了气、固、液三相分离器;(2)在反应器底部设置了均匀布水系统;(3)反应器内的污泥能形成颗粒污泥:(直径为0.1~0.5cm,湿比重为1.04~1.08;具有良好的沉降性能和很高的产甲烷活性;污泥浓度可达50gVSS/l以上,污泥龄一般为30天以上;)(4)水力停留时间大大缩短,具有很高的容积负荷;(5)适于处理高、中浓度有机工业废水,也可以处理低浓度城市污水;(6)将生物反应与沉淀分离集中在一个反应器内,结构紧凑;(7)无需设置填料,节省费用,提高容积利用率。
第十六章 自然生物处理系统
填空题:
1、常见的污水土地处理系统工艺有以下几种:稳定塘;好氧塘;兼性塘;厌氧塘;曝气塘与深度处理塘。
3、在污水的稳定塘自然生物处理中,根据塘水中的微生物的优势群体类型和塘水中的溶解氧情况, 将稳定塘分为好氧塘、兼性塘、厌氧塘、曝气塘。
名词解释:
1、稳定塘 :是人工适当修整或人工修建的设有围堤和防渗层的污水池塘,主要依靠自然生物净化功能。P547
2、污水土地处理 P563污水有节制的投配到土地上,通过土壤-植物系统的物理的、化学的、生物的吸附、过滤与进化作用和自我调控功能,使污水可生物降解的污染物得以降解、净化,氮、磷等营养物质得以再利用,促进绿色植物生长并获得增产。
3、慢速渗滤处理系统 P566 是将污水投配到种有作物的土地表面,污水缓慢地在土地表面流动并向土壤中渗透,一部分污水直接为作物所吸收,一部分则渗入土壤中,从而使污水达到净化目的的一种土地处理工艺。
问答题:
2、稳定塘有哪几种形式?它们的处理效果如何?适用条件如何?P547-548
好氧塘:深度较浅,阳光能透过池底,主要由藻类供氧,全部塘水呈好氧状态,由好氧微生物起有机污染物的降解作用。
兼氧塘:塘水较深,从塘面到一定深度(0.5m)左右,阳光能够透入,其污水净化是由好氧和厌氧微生物协同作用完成的。
厌氧塘:塘水深,有机负荷率高,整个塘水呈厌氧状态。
曝气塘:由表面曝气器供氧,塘水呈好氧状态,污水停留时间短,由于塘水被搅动,藻类的生长与光合作用受到抑制。
4、稳定塘对污水的净化作用有哪些? P550-551
1、稀释作用:污水进入稳定塘后和原塘水进行一定程度的混合,降低了各种污染物的浓度;2、沉淀与絮凝作用:在絮凝作用下,污水中的细小悬浮颗粒聚集成为大颗粒沉淀于塘底;3、微生物的代谢作用 4、浮游生物的作用 5、水生维管束植物的作用。
第十七章污泥处理、处置与利用
填空题:
1、污泥处理的目的是使污泥减量化、稳定化、无害化和资源化。
2、污泥中所含水分大致分为4类:间隙水、毛细水、吸附水、结合水 。
3、污泥 按成分可以分为以下两种:有机污泥和无机污泥 。
4、污泥浓缩的目的在于减容。
5、降低污泥含水率的方法主要有浓缩、自然干化法、机械脱水法、干燥与焚化法。
6、污泥按来源不同可分为沉淀污泥和生物处理污泥;按成分不同可分为有机污泥和无机污泥。
名词解释:
1、消化池的投配率 :是消化池设计的重要参数,是每日投加新鲜污泥体积占消化池污泥总体积的百分数。P591
3、污泥含水率(计算公式)P578污泥中所含水分的重量与污泥总重量之比的百分数。
4、有机物负荷率( S ):指消化池的单位容积在单位时间内能够接受的新鲜污泥中挥发性干污泥量。P592
问答题:
1、污泥稳定的主要目的是什么?P576
答:便于污泥的储存和利用,避免恶臭产生。
3、影响污泥消化的因素有哪些?P519
答:PH值与碱度、温度与消化时间、负荷率、毒性物质、营养与C/N比等。
4、为什么机械脱水前,污泥常须进行预处理?怎样进行预处理?
原因:污水处理厂初沉污泥、活性污泥、腐殖污泥及消化污泥均由亲水性带负电的胶体颗粒组成,挥发性固体物质含量高、比阻大,脱水较困难,因此机械脱水前必须进行污泥调理。
污泥调理就是破坏污泥的胶态结构,减少泥水间的亲和力,改善污泥的脱水性能。方法有化学调理法、热处理法、冷冻溶解法、淘洗法。
8、试述厌氧消化的影响因素。P591
1、PH值和碱度,最佳PH值为7.0~7.3 碱度为2000mg/L;2、温度与消化时间温度是影响厌氧消化的主要因素,温度的高低不但影响产气量,还决定消化过程的快慢;消化时间是指产气量达到总量所需的时间。 3、负荷率:厌氧消化池的容积决定于厌氧消化的负荷率,负荷率的表达方式包括污泥投配率和有机物负荷率两种; 4、有毒有害物质 5、营养与C/N比。
第十八章 常用给水处理工艺系统
问答题:
1、给水处理系统的选择原则是什么? P619
给水处理系统应该在技术上是可行的,在经济上是合理的,在运行上是安全可靠和便于操作的。(技术可行性可以通过实验验证和参考已建的原水水质相近的水处理工艺系统的运行经验;经济合理性是满足处理水质要求前提下,使建设费用和运行费用最低;水处理工艺系统的抗冲击性是其安全性和可靠性的重要内容之一。)
2、举例说明微污染水的处理系统。P620 图
原水——混合装置——絮凝池——沉淀池——过滤池————清水池——出水
混凝剂 Cl2
第十九章 特种水源水处理工艺系统
1、常用的水的药剂软化法有:石灰软化法、石灰-苏打法、磷酸盐法及掩蔽剂法。
2、列举3种除盐的方法:蒸馏法、电渗析法、反渗透法、离子交换法、电子混合床法。
3、常用的除氟方法有:吸附法、药剂法、电渗析法等。
问答题:
1、地下水除铁除锰的主要方法是什么?P643 P646
氧化法,将水中的二价铁氧化成三价铁,将水中的二价锰氧化成四价锰,由于三价铁、四价锰在水中的溶解度极小,故能从水中析出,再用固液分离的方法将其去除。
2、举例说明游泳池水的处理方法。P657 图
平衡水池上部设补充水管,循环水泵由平衡池抽水,水泵吸水管上设毛发过滤器,截留水中的毛发,将混合剂和中和剂(除藻剂)投加到水泵吸水管中,利用水泵叶轮搅拌混合,最后,处理水进入游泳池前要对水进行消毒
3、举例说明高浊水的处理方法。P641图
高浊度水首先进入辐流式沉淀池沉淀,再向水中投加混凝剂,经混合、絮凝、沉淀、过滤、投氯消毒,即可获得合格的处理水。
第二十章 城市污水处理工艺系统
填空题:
1、污水处理的物理法有:沉淀法、过滤法、气浮法、筛滤法、反渗透法和上浮法 等。
2、污水的化学处理法通常有:中和、混凝、电解、氧化还原、吸附、离子交换等。
3、污水的生物处理通常包括好氧氧化法和厌氧还原法两类。
名词解释:
1、 SV(settling velocity)(污泥沉降比):又称30min沉降率。混合液在量筒内静置30min后所形成沉淀污泥的容积占原混合液容积的百分率,以%表示。
SVI(sludge volume index)(污泥容积指数):本项指标的物理意义是从曝气池出口处取出的混合液,经过30min静沉后,每克干污泥形成的沉淀污泥所占有的容积,以ml计。SVI=SV(mL/L)/MLSS(g/L) 单位:mL/g
SOUR(specific oxygen uptake rate)(活性污泥的比耗氧速率):是衡量活性污泥生物活性的一个指标。是指单位重量的活性污泥在单位时间内所能消耗的溶解氧量,其单位为mgO2/(gMLVSS.h)mgO2/(gMVSS.h)。
8、泥龄(单位d) :在曝气池内,微生物从其生长到排出的平均停留时间,也就是曝气池内的微生物全部更新一次所需要的时间 。从工程上来说,在稳定条件下,污泥龄就是曝气池内活性污泥总量与每日排放的剩余污泥量之比。
9、污泥回流比 :从二沉池返回到曝气池的回流污泥量QR与污水流量Q之比,常用%表示。
10、BOD—容积负荷率 (标明单位):单位曝气池容积(m3),在单位时间(d)内接受的有机物量。Nv=Q*So/V kgBOD/(m3曝气池.d)
11、污泥解体:当活性污泥处理系统出现处理水质混浊,污泥絮凝体微细化,处理效果变坏等时的现象。
12、污泥膨胀 :是一种丝状菌在絮体中大量生长以致影响沉降的现象。
13、污泥上浮 :是由于曝气池内污泥泥龄过长,硝化进程较高,但却没有很好的反硝化,因而污泥在二沉池底部产生反硝化,硝酸盐成为电子受体被还原,产生的氮气附于污泥上,从而使污泥比重降低,整块上浮。
14、同步驯化法 :在培养开始就加入少量工业废水,并在培养过程中逐渐增加比重,使活性污泥在增长的过程中,逐渐适应工业废水并具有处理它的能力。
❼ SBR活性污泥法工艺
如果你在北京,延庆污水处理厂是做SBR的,我去看过。你可以搜搜联系一下。
下面是SBR的一些简单介绍,希望能有帮助。
摘要: 序批式活性污泥法(SBR-Sequencing Batch Reactor)是早在1914年就由英国学者Ardern和Locket发明了的水处理工艺。70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印第安那州的Culwer城改建并投产了世界上第一个SBR法污水处理厂。SBR工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。
关键词: SBR工艺 序批式活性污泥法(SBR—Sequencing Batch Reactor)是早在1914年就由英国学者Ardern和Locket发明了的水处理工艺。70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印第安那州的Culwer城改建并投产了世界上第一个SBR法污水处理厂。SBR工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。
由于SBR在运行过程中,各阶段的运行时间、反应器内混合液体积的变化以及运行状态等都可以根据具体污水的性质、出水水质、出水质量与运行功能要求等灵活变化。对于SBR反应器来说,只是时序控制,无空间控制障碍,所以可以灵活控制。因此,SBR工艺发展速度极快,并衍生出许多种新型SBR处理工艺。
间歇式循环延时曝气活性污泥法(ICEAS—Intermittent Cyclic Extended System)是在1968年由澳大利亚新威尔士大学与美国ABJ公司合作开发的。1976年世界上第一座ICEAS工艺污水厂投产运行。ICEAS与传统SBR相比,最大特点是:在反应器进水端设一个预反应区,整个处理过程连续进水,间歇排水,无明显的反应阶段和闲置阶段,因此处理费用比传统SBR低。由于全过程连续进水,沉淀阶段泥水分离差,限制了进水量。
好氧间歇曝气系统(DAT-IAT—Demand Aeration Tank-Intermittent Tank)是由天津市政工程设计研究院提出的一种SBR新工艺。主体构筑物是由需氧池DAT池和间歇曝气池IAT池组成,DAT池连续进水连续曝气,其出水从中间墙进入IAT池,IAT池连续进水间歇排水。同时,IAT池污泥回流DAT池。它具有抗冲击能力强的特点,并有除磷脱氮功能。
循环式活性污泥法(CASS—Cyclic Activated Sludge System)是Gotonszy教授在ICEAS工艺的基础上开发出来的,是SBR工艺的一种新形式。将ICEAS的预反应区用容积更小,设计更加合理优化的生物选择器代替。通常CASS池分三个反应区:生物选择器、缺氧区和好氧区,容积比一般为1:5:30。整个过程间歇运行,进水同时曝气并污泥回流。该处理系统具有除氮脱磷功能。
UNITANK单元水池活性污泥处理系统是比利时SEGHERS公司提出的,它是SBR工艺的又一种变形。它集合了SBR工艺和氧化沟工艺的特点,一体化设计使整个系统连续进水连续出水,而单个池子相对为间歇进水间歇排水。此系统可以灵活的进行时间和空间控制,适当的增大水力停留时间,可以实现污水的脱氮除磷。
改良式序列间歇反应器(MSBR—Modified Sequencing Batch Reactor)是C,Y.Yang等人根据SBR技术特点结合A2-O工艺,研究开发的一种更为理想的污水处理系统。采用单池多方格方式,在恒定水位下连续运行。通常MSBR池分为主曝气池、序批池1、序批池2、厌氧池A、厌氧池B、缺氧池、泥水分离池。
每个周期分为6个时段,每3个时段为一个半周期。一个半周期的运行状况:污水首先进入厌氧池A脱氮,再进入厌氧池B除磷,进入主曝气池好氧处理,然后进入序批池,两个序批池交替运行(缺氧—好氧/沉淀—出水)。脱氮除磷能力更强。
SBR工艺优点
1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
SBR系统的适用范围
由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。就近期的技术条件,SBR系统更适合以下情况:
1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。
3) 水资源紧缺的地方。SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。
4) 用地紧张的地方。
5) 对已建连续流污水处理厂的改造等。
6) 非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。
SBR设计要点、主要参数
SBR设计要点
1、运行周期(T)的确定
SBR的运行周期由充水时间、反应时间、沉淀时间、排水排泥时间和闲置时间来确定。充水时间(tv)应有一个最优值。如上所述,充水时间应根据具体的水质及运行过程中所采用的曝气方式来确定。当采用限量曝气方式及进水中污染物的浓度较高时,充水时间应适当取长一些;当采用非限量曝气方式及进水中污染物的浓度较低时,充水时间可适当取短一些。充水时间一般取1~4h。反应时间(tR)是确定SBR 反应器容积的一个非常主要的工艺设计参数,其数值的确定同样取决于运行过程中污水的性质、反应器中污泥的浓度及曝气方式等因素。对于生活污水类易处理废水,反应时间可以取短一些,反之对含有难降解物质或有毒物质的废水,反应时间可适当取长一些。一般在2~8h。沉淀排水时间(tS+D)一般按2~4h设计。闲置时间(tE)一般按2h设计。一个周期所需时间tC≥tR+tS+tD ,周期数 n=24/tC
2、反应池容积的计算
假设每个系列的污水量为q,则在每个周期进入各反应池的污水量为q/n·N。各反应池的容积为:
V:各反应池的容量
1/m:排出比
n:周期数(周期/d)
N:每一系列的反应池数量
q:每一系列的污水进水量(设计最大日污水量)(m3/d)
3、曝气系统
序批式活性污泥法中,曝气装置的能力应是在规定的曝气时间内能供给的需氧量,在设计中,高负荷运行时每单位进水BOD为0.5~1.5kgO2/kgBOD,低负荷运行时为1.5~2.5kgO2/kgBOD。
在序批式活性污泥法中,由于在同一反应池内进行活性污泥的曝气和沉淀,曝气装置必须是不易堵塞的,同时考虑反应池的搅拌性能。常用的曝气系统有气液混合喷射式、机械搅拌式、穿孔曝气管、微孔曝气器,一般选射流曝气,因其在不曝气时尚有混合作用,同时避免堵塞。
4、排水系统
⑴上清液排除出装置应能在设定的排水时间内,活性污泥不发生上浮的情况下排出上清液,排出方式有重力排出和水泵排出。
⑵为预防上清液排出装置的故障,应设置事故用排水装置。
⑶在上清液排出装置中,应设有防浮渣流出的机构。
序批式活性污泥的排出装置在沉淀排水期,应排出与活性污泥分离的上清液,并且具备以下的特征:
1) 应能既不扰动沉淀的污泥,又不会使污泥上浮,按规定的流量排出上清液。(定量排水)
2) 为获得分离后清澄的处理水,集水机构应尽量靠近水面,并可随上清液排出后的水位变化而进行排水。(追随水位的性能)
3) 排水及停止排水的动作应平稳进行,动作准确,持久可靠。(可靠性)
排水装置的结构形式,根据升降的方式的不同,有浮子式、机械式和不作升降的固定式。
5、排泥设备
设计污泥干固体量=设计污水量×设计进水SS浓度×污泥产率/1000 ,在高负荷运行(0.1~0.4 kg-BOD/kg-ss·d)时污泥产量以每流入1 kgSS产生1 kg计算,在低负荷运行(0.03~0.1 kg-BOD/kg-ss·d)时以每流入1 kgSS产生0.75 kg计算。
在反应池中设置简易的污泥浓缩槽,能够获得2~3%的浓缩污泥。由于序批式活性污泥法不设初沉池,易流入较多的杂物,污泥泵应采用不易堵塞的泵型。
SBR设计主要参数
序批式活性污泥法的设计参数,必须考虑处理厂的地域特性和设计条件(用地面积、维护管理、处理水质指标等)适当的确定。
用于设施设计的设计参数应以下值为准:
项 目 参 数
BOD-SS负荷(kg-BOD/kg-ss·d) 0.03~0.4
MLSS(mg/l) 1500~5000
排出比(1/m) 1/2~1/6
安全高度ε(cm)(活性污泥界面以上的最小水深) 50以上
序批式活性污泥法是一种根据有机负荷的不同而从低负荷(相当于氧化沟法)到高负荷(相当于标准活性污泥法)的范围内都可以运行的方法。序批式活性污泥法的BOD-SS负荷,由于将曝气时间作为反应时间来考虑,定义公式如下:
QS:污水进水量(m3/d)
CS:进水的平均BOD5(mg/l)
CA:曝气池内混合液平均MLSS浓度(mg/l)
V:曝气池容积
e:曝气时间比 e=n·TA/24
n:周期数 TA:一个周期的曝气时间
序批式活性污泥法的负荷条件是根据每个周期内,反应池容积对污水进水量之比和每日的周期数来决定,此外,在序批式活性污泥法中,因池内容易保持较好的MLSS浓度,所以通过MLSS浓度的变化,也可调节有机物负荷。进一步说,由于曝气时间容易调节,故通过改变曝气时间,也可调节有机物负荷。
在脱氮和脱硫为对象时,除了有机物负荷之外,还必须对排出比、周期数、每日曝气时间等进行研究。
在用地面积受限制的设施中,适宜于高负荷运行,进水流量小负荷变化大的小规模设施中,最好是低负荷运行。因此,有效的方式是在投产初期按低负荷运行,而随着水量的增加,也可按高负荷运行。
不同负荷条件下的特征
有机物负荷条件(进水条件) 高负荷运行 低负荷运行
间歇进水 间歇进水、连续
运行条件BOD-SS负荷(kg-BOD/kg-ss·d)0.1~0.4 0.03~0.1
周期数大(3~4) 小(2~3)
排出比大小
处理特性有机物去除 处理水BOD<20mg/l 去除率比较高
脱氮较低高
脱磷高较低
污泥产量多少
维护管理 抗负荷变化性能比低负荷差 对负荷变化的适应性强,运行的灵活性强
用地面积 反应池容积小,省地 反应池容积较大
适用范围 能有效地处理中等规模以上的污水,适用于处理规模约为2000m3/d以上的设施 适用于小型污水处理厂,处理规模约为2000m3/d以下,适用于不需要脱氮的设施
SBR设计需特别注意的问题
(一)主要设施与设备
1、设施的组成
本法原则上不设初次沉淀池,本法应用于小型污水处理厂的主要原因是设施较简单和维护管理较为集中。为适应流量的变化,反应池的容积应留有余量或采用设定运行周期等方法。但是,对于游览地等流量变化很大的场合,应根据维护管理和经济条件,研究流量调节池的设置。
2、反应池
反应池的形式为完全混合型,反应池十分紧凑,占地很少。形状以矩形为准,池宽与池长之比大约为1:1~1:2,水深4~6米。
反应池水深过深,基于以下理由是不经济的:①如果反应池的水深大,排出水的深度相应增大,则固液分离所需的沉淀时间就会增加。②专用的上清液排出装置受到结构上的限制,上清液排出水的深度不能过深。
反应池水深过浅,基于以下理由是不希望的:①在排水期间,由于受到活性污泥界面以上的最小水深限制,上清液排出的深度不能过深。②与其他相同BOD—SS负荷的处理方式相比,其优点是用地面积较少。
反应池的数量,考虑清洗和检修等情况,原则上设2个以上。在规模较小或投产初期污水量较小时,也可建一个池。
3、排水装置
排水系统是SBR处理工艺设计的重要内容,也是其设计中最具特色和关系到系统运行成败的关键部分。目前,国内外报道的SBR排水装置大致可归纳为以下几种:⑴潜水泵单点或多点排水。这种方式电耗大且容易吸出沉淀污泥;⑵池端(侧)多点固定阀门排水,由上自下开启阀门。缺点操作不方便,排水容易带泥;⑶专用设备滗水器。滗水器是是一种能随水位变化而调节的出水堰,排水口淹没在水面下一定深度,可防止浮渣进入。理想的排水装置应满足以下几个条件:①单位时间内出水量大,流速小,不会使沉淀污泥重新翻起;②集水口随水位下降,排水期间始终保持反应当中的静止沉淀状态;③排水设备坚固耐用且排水量可无级调控,自动化程度高。
在设定一个周期的排水时间时,必须注意以下项目:
①上清液排出装置的溢流负荷——确定需要的设备数量;
②活性污泥界面上的最小水深——主要是为了防止污泥上浮,由上清液排出装置和溢流负荷确定,性能方面,水深要尽可能小;
③随着上清液排出装置的溢流负荷的增加,单位时间的处理水排出量增大,可缩短排水时间,相应的后续处理构筑物容量须扩大;
④ 在排水期,沉淀的活性污泥上浮是发生在排水即将结束的时候,从沉淀工序的中期就开始排水符合SBR法的运行原理。
SBR工艺的需氧与供氧
SBR工艺有机物的降解规律与推流式曝气池类似,推流式曝气池是空间(长度)上的推流,而SBR反应池是时间意义上的推流。由于SBR工艺有机物浓度是逐渐变化的,在反应初期,池内有机物浓度较高,如果供氧速率小于耗氧速率,则混合液中的溶解氧为零,对单一的微生物而言,氧气的得到可能是间断的,供氧速率决定了有机物的降解速率。随着好氧进程的深入,有机物浓度降低,供氧速率开始大于耗氧速率,溶解氧开始出现,微生物开始可以得到充足的氧气供应,有机物浓度的高低成为影响有机物降解速率的一个重要因素。从耗氧与供氧的关系来看,在反应初期SBR反应池保持充足的供氧,可以提高有机物的降解速度,随着溶解氧的出现,逐渐减少供氧量,可以节约运行费用,缩短反应时间。SBR反应池通过曝气系统的设计,采用渐减曝气更经济、合理一些。
SBR工艺排出比(1/m)的选择
SBR工艺排出比(1/m)的大小决定了SBR工艺反应初期有机物浓度的高低。排出比小,初始有机物浓度低,反之则高。根据微生物降解有机物的规律,当有机物浓度高时,有机物降解速率大,曝气时间可以减少。但是,当有机物浓度高时,耗氧速率也大,供氧与耗氧的矛盾可能更大。此外,不同的废水活性污泥的沉降性能也不同。污泥沉降性能好,沉淀后上清液就多,宜选用较小的排出比,反之则宜采用较大的排出比。排出比的选择还与设计选用的污泥负荷率、混合液污泥浓度等有关。
SBR反应池混合液污泥浓度
根据活性污泥法的基本原理,混合液污泥浓度的大小决定了生化反应器容积的大小。SBR工艺也同样如此,当混合液污泥浓度高时,所需曝气反应时间就短,SBR反应池池容就小,反之SBR反应池池容则大。但是,当混合液污泥浓度高时,生化反应初期耗氧速率增大,供氧与耗氧的矛盾更大。此外,池内混合液污泥浓度的大小还决定了沉淀时间。污泥浓度高需要的沉淀时间长,反之则短。当污泥的沉降性能好,排出比小,有机物浓度低,供氧速率高,可以选用较大的数值,反之则宜选用较小的数值。SBR工艺混合液污泥浓度的选择应综合多方面的因素来考虑。
关于污泥负荷率的选择
污泥负荷率是影响曝气反应时间的主要参数,污泥负荷率的大小关系到SBR反应池最终出水有机物浓度的高低。当要求的出水有机物浓度低时,污泥负荷率宜选用低值;当废水易于生物降解时,污泥负荷率随着增大。污泥负荷率的选择应根据废水的可生化性以及要求的出水水质来确定。
SBR工艺与调节、水解酸化工艺的结合
SBR工艺采用间歇进水、间歇排水,SBR反应池有一定的调节功能,可以在一定程度上起到均衡水质、水量的作用。通过供气系统、搅拌系统的设计,自动控制方式的设计,闲置期时间的选择,可以将SBR工艺与调节、水解酸化工艺结合起来,使三者合建在一起,从而节约投资与运行管理费用。
在进水期采用水下搅拌器进行搅拌,进水电动阀的关闭采用液位控制,根据水解酸化需要的时间确定开始曝气时刻,将调节、水解酸化工艺与SBR工艺有机的结合在一起。反应池进水开始作为闲置期的结束则可以使整个系统能正常运行。具体操作方式如下所述:
进水开始既为闲置结束,通过上一组SBR池进水结束时间来控制;
进水结束通过液位控制,整个进水时间可能是变化的。
水解酸化时间由进水开始至曝气反应开始,包括进水期,这段时间可以根据水量的变化情况与需要的水解酸化时间来确定,不小于在最小流量下充满SBR反应池所需的时间。
曝气反应开始既为水解酸化搅拌结束,曝气反应时间可根据计算得出。
沉淀时间根据污泥沉降性能及混合液污泥浓度决定,它的开始即为曝气反应的结束。
排水时间由滗水器的性能决定,滗水结束可以通过液位控制。
闲置期的时间选择是调节、水解酸化及SBR工艺结合好坏的关键。闲置时间的长短应根据废水的变化情况来确定,实际运行中,闲置时间经常变动。通过闲置期间的调整,将SBR反应池的进水合理安排,使整个系统能正常运转,避免整个运行过程的紊乱。
SBR调试程序及注意事项
(一) 活性污泥的培养驯化
SBR反应池去除有机物的机理与普通活性污泥法基本相同,主要大量繁殖的微生物群体降解污水中的有机物。
活性污泥处理系统在正式投产之前的首要工作是培养和驯化活性污泥。活性污泥的培养驯化可归纳为异步培驯法、同步培驯法和接种培驯法,异步法为先培养后驯化,同步法则培养和驯化同时进行或交替进行,接种法系利用其他污水处理厂的剩余污泥,再进行适当的培驯。
培养活性污泥需要有菌种和菌种所需要的营养物。对于城市污水,其中的菌种和营养都具备,可以直接进行培养。对于工业废水,由于其中缺乏专性菌种和足够的营养,因此在投产时除用一般的菌种和所需要营养培养足够的活性污泥外,还应对所培养的活性污泥进行驯化,使活性污泥微生物群体逐渐形成具有代谢特定工业废水的酶系统,具有某种专性。
(二) 试运行
活性污泥培养驯化成熟后,就开始试运行。试运行的目的使确定最佳的运行条件。
在活性污泥系统的运行中,影响因素很多,混合液污泥浓度、空气量、污水量、污水的营养情况等。活性污泥法要求在曝气池内保持适宜的营养物与微生物的比值,供给所需要的氧,使微生物很好的和有机物相接触,全体均匀的保持适当的接触时间。
对SBR处理工艺而言,运行周期的确定还与沉淀、排水排泥时间及闲置时间有关,还和处理工艺中所设计的SBR反应器数量有关。运行周期的确定除了要保证处理过程中运行的稳定性和处理效果外,还要保证每个池充水的顺序连续性,即合理的运行周期应满足运行过程中避免两个或两个以上的池子同时进水或第一个池子和最后一个池子进水脱节的现象。同时通过改变曝气时间和排水时间,对污水进行不同的反应测试,确定最佳的运行模式,达到最佳的出水水质、最经济的运行方式。
(三) 污泥沉降性能的控制
活性污泥的良好沉降性能是保证活性污泥处理系统正常运行的前提条件之一。如果污泥的沉降性能不好,在SBR的反应期结束后,污泥难以沉淀,污泥的压密性差,上层清液的排除就受到限制,水泥比下降,导致每个运行周期处理污水量下降。如果污泥的絮凝性能差,则出水中的悬浮固体(SS)含量将升高,COD上升,导致处理出水水质的下降。
导致污泥沉降性能恶化的原因是多方面的,但都表现在污泥容积指数(SVI)的升高。SBR工艺中由于反复出现高浓度基质,在菌胶团菌和丝状菌共存的生态环境中,丝状菌一般是不容易繁殖的,因而发生污泥丝状菌膨胀的可能性是非常低的。SBR较容易出现高粘性膨胀问题。这可能是由于SBR法是一个瞬态过程,混合液内基质逐步降解,液相中基质浓度下降了,但并不完全说明基质已被氧化去除,加之许多污水的污染物容易被活性污泥吸附和吸收,在很短的时间内,混合液中的基质浓度可降至很低的水平,从污水处理的角度看,已经达到了处理效果,但这仅仅是一种相的转移,混合液中基质的浓度的降低仅是一种表面现象。可以认为,在污水处理过程中,菌胶团之所以形成和有所增长,就要求系统中有一定数量的有机基质的积累,在胞外形成多糖聚合物(否则菌胶团不增长甚至出现细菌分散生长现象,出水浑浊)。在实际操作过程中往往会因充水时间或曝气方式选择的不适当或操作不当而使基质的积累过量,致使发生污泥的高粘性膨胀。
污染物在混合液内的积累是逐步的,在一个周期内一般难以马上表现出来,需通过观察各运行周期间的污泥沉降性能的变化才能体现出来。为使污泥具有良好的沉降性能,应注意每个运行周期内污泥的SVI变化趋势,及时调整运行方式以确保良好的处理效果。
❽ 如何去处污水中的磷
铝盐有硫酸铝、铝酸钠和聚合铝等,其中硫酸铝较常用来除磷。铁盐有三氯化铁、氯化亚铁、硫酸铁和硫酸亚铁等,其中三氯化铁最常用。
采用铝盐或铁盐除磷时,主要生成难溶性的磷酸铝或磷酸铁,其投加量与污水中总磷量成正比。可用于生坦唤物反应池的前置、后置和同步投加。采用亚铁盐需先氧化成铁盐后才能取得最大除磷效果,因此其一般不作为后置投加的混凝剂,在前置投加时,一般投加在曝气沉砂池中,以使亚铁盐迅速氧化亩信春成铁盐。
常规普通采用石灰除磷,生成Ca5(PO4)3OH沉淀,其迅耐溶解度与pH有关,因而所需石灰量取决于污水的碱度,而不是含磷量,即需要片碱调整PH值。
❾ 怎么选择生活污水处理工艺都需要哪些数据
目前城市生活污水的生化处理技术已是十分成熟,可供选择的工艺有普通活性污泥法、氧化沟法和间歇式活性污泥法(SBR)等以及一些演变工艺。这些工艺花样繁多,人们在不断探索和改进,力图使工艺更加高效和节能。
普通活性污泥法具有运行稳定、管理方便的优点,前人在设计和运行方面积累了大量的贺世工程经验,但普通活性污泥法也存在着在运行不当时或进水水质异常时易发生污泥膨胀导致出水恶化的问题,同时由于污泥泥龄较短和没有缺氧工况;对氮、磷的去除率不理想,随着社会经济发展,进入水体的污染负荷已严重超过水体自然净化能力,特别是氮、磷在自然水体中积累,造成水体的富营养化已成为人们普遍关注的问题。所以城市生活污水的脱氮除磷显得越来越重要。
正是在这种背景下,氧化沟、SBR工艺近年来在处理城市污水中得到了广泛的应用,对控制水体氮、磷积累起到了良好效果。
下面就若干主要生物除磷脱氮工艺叙述如下:
1. 按空间分割的连续流活性污泥法
1.A2/O法及UCT法
A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称,A2/O工艺于70年代由美国专家在厌氧—好氧除磷工艺(A/O工艺)的基袭猜础上开发出来的,该工艺在厌氧—好氧除磷工艺(A/O工艺)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,以达到硝化脱氮的目的。
A2/O工艺它可以完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NH3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能,厌氧池和好氧池联合完成除磷功能。
其流程简图见图3-1
进水 出水
厌氧池缺氧池好氧池 二沉池
混合液回流
活性污泥回流
图1A2/O法流程简图
首段厌氧池,流入原污水与同步进入的从二沉池回流的含磷污泥混合。本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中BOD浓度下降;另外,NH3--N因细胞的合成而被去除一部分,使污水中NH-3-N浓度下降,但NO-3-N含量没有变化。
在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入的大量NO-3-N和NH-2-N还原为N2释放至空气,因此BOD5浓度大幅度下降,而磷的变化很小。
在好氧池中,有机物被微生物生化降解,而继续下降;有机氮首先被氨化继而被硝化,使NH-3-N浓度显著下降,但随着消化过程使NO-3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。所以,A2/O工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NH-3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。厌氧池和好氧池联合完成除禅禅肢磷功能。
本工艺在系统上是最简单地同步除磷脱氮工艺,总水力停留时间小于同类工艺,在厌氧、缺氧、好氧交替运行的条件下可处理抑制丝状繁殖,克服污泥膨胀、SVI值一般小于100,有利于处理后污水与污泥的分离,运行中在厌氧和缺氧段内只需轻缓搅拌,运行费用低。由于厌氧、缺氧和好氧三区严格分开,有利于不同微生物菌群的繁殖生长,因此脱氮除磷效果较好。目前,该法在国内外使用较为广泛。为解决回流污泥中硝酸盐对厌氧放磷的影响,工程上可将回流污泥分两点厌氧池回流,大部分污泥回流至缺氧池,少部分污泥回流至厌氧池。
为了解决A2/O法回流污泥中过多的硝酸盐对厌氧放磷的影响,产生了UCT工艺,流程简图见图3-2。
缺氧回流 混合液回流
100%~200% 100%~300%
进水 出水
厌氧池 缺氧池 好氧池 二沉池
污泥回流 50%~100% 剩余污泥
图2UCT除磷脱氮工艺
与A2O法相比,UCT工艺为同之处在于污泥先回流至缺氧池,而不是厌氧池,再将缺氧池部分混合液回流厌氧池,从而减少回流污泥中硝酸盐对厌氧放磷的影响。但UCT工艺增加了一次回流,多一次提升,运行费用将有所增加。
2.氧化沟法
氧化沟又称“循环曝气池”,污水和活性污泥的混合液在环状曝气渠道中循环流动。氧化沟是50年代由荷兰的巴斯维尔(Pasveer)开发,它属于活性污泥法的一种变形,由于它运行成本低,构造简单,易维护管理,出水水质好、运行稳定、并可以进行脱氮除磷,因此日益受到人们重视并逐步得到广泛应用。
氧化沟处理系统的基本特征是曝气池呈封闭式沟渠型,它使用一种方向控制的曝气和搅动装置。一方面向混合液中充氧,另一方面向反应池中的物质传递水平速度,使污水和活性污泥的混合液在沟内作不停的循环流动。从反应器的观点看,氧化沟属于一种独具特色的连续环式反应器(CLR)。
氧化沟除本身的沟体外,最重要的组成部分就是曝气机。氧化沟的曝气设备起着向水中供氧,推动水循环流动,以及混合和保证沟中的活性污泥呈悬浮状态等作用。氧化沟的曝气设备不是沿池长均分布,而是分区定位排列,一般位于氧化沟的进水一端。由于氧化沟巧妙地结合了连续式反应器和曝气设备特定的定位布置,使氧化沟具有若干与众不同特性。
1)氧化沟结合推动和完全混合的特点,有利于克服短流和提高缓冲击能力。
一般氧化沟的入流设置在曝气区上游,而出流安排在入流口的上游。这样的安排,从短期内(循环一周)看,氧化沟具有推动系统的特点;若从长期内(循环多周)看,氧化沟又具有完全系统的特点。两者的结合,一方面是入流必须至少循环一周才能流出,这就是基本上杜绝了短流,另一方面,循环的混合液又可提供很大的稀释倍数对入流进行稀释,提高了对冲击负荷的缓冲动力。因而氧化沟是一个有效和可靠的处理系统。
2)氧化沟具有明显的溶解氧浓度梯度,特别适用于硝化反硝生物处理工艺。
氧化沟由于结合了完全混合的推流式反应器的特征,同时曝气器又是定位分区布置的,很明显,沿水流方向存在溶解氧的浓度梯度。在氧化沟中存在曝气区、需氧区的氧含量则很有限。因此,氧化沟特别适合于硝化和反硝化。这样,一方面可利用反硝化过程所释放的氧来满足10-20%的需氧量,另一方面可利用反硝化过程恢复部分碱度。
3)氧化沟功率密度的不均匀分配,有利于氧的传递、液体混合和污泥絮凝。
由于氧化沟上曝气设备的不均匀设置,使氧化沟内的功率密度呈不均匀分布。氧化沟内存在两个能量内,一个是设备曝气装置的高能量区,一个是环流的低能量区,这二者之间可以认为是能量由高到低的弥散过程。
4)氧化沟的整体体积功率密度低,可节省能量。
氧化沟遵守着动量守恒原则,一旦池内混合液被加速到所需流速时,维护循环所需要的水力动力只要克服摩阻和弯道损失即可。与弥散作用不同,循环或对流混合能够增强其自身的搅动作用。结果,为了保持使用固体悬浮的速度,所需要的单位容积动力就大大低于其它系统。
氧化沟包括很多类型如卡鲁塞尔、三沟式、澳巴勒、D型氧化沟、组合式氧化沟等,氧化沟的水流特征介于推流式和完全混合之间,也可以认为是完全混合池,抗冲击负荷强,通过控制曝气转刷的开停和转速来控制氧化沟内某池段溶解氧的浓度,形成厌氧、缺氧和好氧区,因此也具有除磷脱氮的功能。
D型氧化沟为双沟交替工作式氧化沟,由池容完全相同的两个氧化沟组成,两沟串联运行,交替地作为曝气池和沉淀池,不单设二沉池。D型氧化沟的缺点主要是曝气设备利用率低、池容积利用率低。为了达到脱氮目的,在D型氧化沟的基础上又发展了半交替工作式的DE型氧化沟,该沟设独立的二沉池和回流污泥系统,两沟交替进行硝化和反硝化。
T型三沟式氧化沟集缺氧、好氧和沉淀于一体,两条边沟交替进行反应和沉淀,无需单独的二沉池和污泥回流,流程简洁,具有生物脱氮功能。由于无专门的厌氧区,因此,生物除磷效果差,而且,由于交替运行,总的容积利用率低(约55%),设备总数量多,设备空置率高。为了达到除磷脱氮目的,提高设备利用率,结合T型、DE型氧化沟的特点,可以组合成半交替工作式的DT型氧化沟,该沟同样具有独立的二沉池和回流污泥系统,三条沟根据进水水质、水量的变化,交替进行硝化和反硝化。
组合式氧化沟是随着各种氧化沟的广泛应用而发展起来的一种新型氧化沟污水处理技术。组合式氧化沟就是不单独设二次沉淀及污泥回流设备的氧化沟。近几年在我国四川、山东等地均有组合式氧化沟污水处理工艺的污水厂建成投用,运行效果较好。组合式氧化沟技术既有氧化沟处理工艺的基本特征,又由于曝气净化与固液分离的一体化而独具特色:
A.工艺流程短,构筑物和设备少,不设初沉池、二沉池、污泥消化池,故投资省,占地少。
B.污泥自动回流,不设污泥回流泵站,因此能耗低,管理简便容易。
C.处理效果优于我国国家二级排放标准,工作稳定可靠。
D.产生的剩余污泥量少,污泥不需消化,且达到稳定状态,易税水,不会带来二次污染。
E.一体化氧化沟造价低、建造快、设备事故率低、运行管理方便。
F.一体化氧化沟固液分离效果优于普通的二沉池,能承受较大的冲击负荷,使整个系统能够在较大的流量范围内稳定运行。
G.污泥回流及时,减少了污泥膨胀及反消化浮泥的可能。
3.AB法
AB法处理工艺,系吸附生物降解工艺的简称,是把德国亚琛大学宾克(Bohnke)教授于70年代中期开创的。由于它在处理效率、运行稳定性、工程投资和运行费用等方面与传统活性污泥法相比均有明显优势,80年代开始为生产实践所采用。目前国内已有很多用于处理城市污水的实例,如青岛海泊河废水处理厂,泰安废水处理厂、深圳滨河污水处理厂,山东淄博污水处理厂、杭州大关污水处理厂以及广州猎德污水处理厂等。
A段的效应
1)A段中存活大量的细菌,而且还不断地进行繁殖、适应、淘汰、优选等过程,从而能够培育出适应性和活性都很强的微生物群体,本工艺不设初沉池,使原污水中的微生物全部进入系统,使A段成为一个开放式的生物动力学系统。
2)A段负荷较高,有利于增殖速度快的微生物增长繁殖,而且在这里成活的只能是抗冲击能力强的原核细菌,其它微生物都不能存活。
3)污水经A段处理后,BOD去除60~70%;可生化性大大提高,有利于B段工作。
4)A段污泥产率较高,吸附能力强,重金属、难降解物质以及氮、磷等植物性营养物质等,都可以通过污泥的吸附作用,而得到部分的去除。
5)A段对有机物的去除,主要是靠污泥絮体的吸附作用,生物降解只占三分之一左右,由于物理化学作用占主导作用,因此,A段对毒物、 pH值、负荷以及温度的变化都有一定的适应性。
B段的效应
1)B段所接受的污水来自A段,水质、水量都比较稳定,冲击负荷不再影响本段,净化功能得以充分发挥。
2)B段承受的负荷率为总负荷率的40~50%,曝气池的容积较传统法减少。
3)B段的污泥龄较长,氮在A段得到了部分去除,BOD/N比值有所降低,这样,B段具有进行硝化反应的工艺条件。
AB法工艺是由超高负荷性污泥系统(A段)和中低负荷活性污泥系统(B段)串联组成,A段的主体为吸附池及中间沉淀池,B段的主体为曝气池及二次沉淀池,AB两段各自拥有独立污泥回流系统。两段完全分开,各自有独特的生物群体,有利于功能稳定。A段属高负荷低供氧,可去除BOD5约50%,曝气时间仅为0.5hr左右,污泥负荷在3kg/kg.d以上。B段为低负荷,要满足脱氮除磷要求,还必须在B段采用A2/O法或其他能脱氮除磷的工艺,如深圳滨河污水处理厂B级就是采用三槽式氧化沟工艺。因此本方法只适用于高浓度污水,一般认为BOD5在250~300mg/l以上才合理。从国内污水处理厂的调查情况来看,AB工艺的投资指标是居高位的。
A-B法的工艺特点
AB法工艺的特点:A段负荷高,曝气时间短,仅0.5h左右,污泥负荷高达2~6kgBOD5/(kgMLSS.d)。B段污泥负荷较低,为0.15~0.30kgBOD5/(kgMLSS.d)。该法对毒物、pH值、负荷以及温度的变化都有一定的适应性;运行稳定性较好;运行费用相对较低;工艺复杂,工程构筑物较多,设备较多;污泥量较大;该法对有机物、氮和磷都有一定的去除率,适用于处理浓度较高、水质水量变化较大的污水,通常要求进水BOD5≥250mg/l,AB法才有明显的优势。本工程设计进水BOD5为100mg/l,采用AB法显然不太合适。
3.2.1按时间分割的间歇式活性污泥法
序批式活性污泥法,又称间歇式活性污泥法,近几年来,已发展成多种改良型,主要有:传统SBR法、CASS法、ICEAS法、Unitank法和MSBR法。
1.传统SBR法
间歇式活性污水法(SequencingBatch Activated Sludge Reactor缩写为SBR活性污泥法),又称序批式活性污泥法,其污水处理机理与普通活性污泥法完全相同。SBR法于70年代由美国开发,并很快得到了广泛应用。
由于SBR运行操作的高度灵活性,在大多数场合都能代表连续活性污泥法,实现与之相同或相近的功能。改变SBR的操作模式,就可以模拟完全混合式和推流式的运行模式。在反应阶段,随着时间的推移,反应池的有机物被微生物降解,废水浓度越来越低,非常类似稳态推流式,只不过这是一种时间意义上的推流。如果进水期很长,反应池中废水的有机物在这个时期累积程度非常小,那么这种情况就接近于完全混合式。
与连续流相比,SBR有许多优点,具体如下:
(1)运行管理简单 系统控制硬件如电动阀、气动阀、电磁阀、液位传感器、流量计、时间控制器及微电脑已产品化,能够为SBR系统提供可靠的自动化控制,大大缩短了管理人员的操作时间,甚至实现无人化管理。
(2)降低造价,减少占地 由于SBR将曝气与沉淀两个过程全并在一个构筑物中进行,不需要二次沉淀池和污泥回流系统,甚至在大多数情况下可以不设初次沉淀池,所以占地面积可缩小1/3-1/2,基建投资节省20%-40%。
(3)耐冲击负荷 SBR充水时可作为均化池,对水质、水量的变化具有调节作用。在采用长时间进水和每周期换水体积很小的运行模式时,SBR可以模拟完全混合式流态,对进水有稀释作用,这也是SBR耐冲击负荷的一个原因。
(4)出水水质好 主要原因是:第一,SBR系统可随时调整运行周期和反应曝气时间等的长短,使处理水达标后排放;第二,沉淀是静止条件下进行的,没有进出水的干扰,泥水分离效果好,可避免短路、异重流的影响;第三,可根据泥水分离情况的好坏控制沉淀时间,使出水SS最少;第四,SBR不仅可以处理一般有机物,还可以去除氮、磷等营养物,某些难降解物也可得到降解。
(5)可抑制活性污泥丝状菌膨胀:废水进入反应池后,浓度随反应时间而逐渐降低。因此,存在有机物的浓度梯度。这一浓度梯度的存在对于抑制丝状菌膨胀,保持良好污泥性状,具有重要作用。从另一方面看,缺氧、好氧状态并存,能够抑制专性好氧丝状菌的繁殖。研究和工程应用表明,SBR污泥的SVI值多在100左右,能有效地抑制丝状菌污泥膨胀。
(6)脱氮除磷 适当控制运行条件,SBR系统可在不投加任何化学药剂的情况下,同时去除氮、磷等营养物,十分简便。
与A2/O工艺、氧化沟工艺不同的是其脱氮除磷的厌氧、缺氧和好氧不是由空间来划分的,而是用时间来控制的。在同一池体中形成厌氧、缺氧和好氧,完成脱氮除磷过程,而后开始沉淀并通过撇水器出水,完成一个周期。该工艺不需要回流污泥和回流混合液,也不设置专门的二沉池,处理构筑物少,但总的容积利用率较低,一般小于50%,因此一般适用于较小规模的污水处理厂。
SBR由于是变水位静置排水,沉淀效果虽好,但需专门的撇水设备,自控要求高,另外,由于是变水位排水和运行,一方面造成水头的浪费;另一方面如采用微孔曝气方式,水位变化易对曝气器构成损害。
2.CASS法ICEAS法
CASS、ICEAS工艺即连续进水、间歇操作运行转的活性污泥法。与传统SBR法不同之处在于设置了多座池子,尽管单座池子间歇操作运行,但使整过程达到连续进水、连续出水。其进水、反应、沉淀、出水和待机在一座池中完成,常用四座池子组成一组,轮流运转,一池一池的间歇处理。这种工艺,每座池子都需安装曝气设备、用于沉淀的滗水器及控制系统,间歇排水,水头损失大,设备的闲置率较高、利用率低,投资大,要求自动化程度相当高。
目前,国内昆明第三污水处理厂采用了ICEAS工艺,设计规模为15万m3/d,已建成投入运行。
CASS工艺是Goronszy教授在ICEAS的基础上开发出来的,是SBR工艺的一种新的形式。通常CASS一般分为三个反应区:一区为生物选择器,二区为缺氧区,三区为好氧区。生物选择区是设置在CASS前端的小容积区,通常在厌氧或兼氧条件下运行。生物选择器的最基本功能是防止产生污泥膨胀。同时还具有促进磷的进一步释放和强化反硝化的作用。在这个区内难降解大分子物质易发生水解作用,对提高有机物的去除率是有一定的促进作用。主反应区则是去除有机物的主场所。运行过程中,通常将主反应区的曝气强度加以控制,以使反应区内主体溶液中处于好氧状态,主要完成降解有机物过程。
在池的末端设有潜水泵,污泥通过此潜水泵不断地从主曝气区抽送至生物选择器中。CASS生物选择器和缺氧芪的设置和污泥回流的措施,保证了活性污泥不断地在选择器中经历一个高絮体负荷(So/Xo)阶段,从而有利于系统中絮凝性细菌的生长,进一步有效地抑制丝状菌的生长和繁殖。CASS工艺沉淀阶段不进水,保证了污泥沉降无水力干扰,在静止环境中进行,可以进一步保证系统有良好的分离作用。
◆CASS工艺运行工艺
CASS反应池内分为选择区和反应区,CASS反应池的运行操作由进水、反应、沉淀、滗水和待机五个阶段组成。
进水期:污水连续流入反应池内前部的选择区,与从反应池后部的凡庸区不断循环至此的污泥混合,使污泥吸收易溶性基质,并促使絮凝性微生物产生。污水在选择区厌氧状态下停留1小时后,从选择区与反应区隔墙下部的入口以低速流入反应区。连续进水可简化对进水的控制,这样的的分池系统也避免了水力短路。
反应期:污水进入反应区池中发生生化反应,在此阶段可以只混合不曝气,或既混合有曝气,使污水处于是反复的好氧—缺氧状态,反应期的长短一般由进水水质及所要求的处理程度而定。
沉降期:在此阶段反应器内混合液进行固液分离,因该阶段在完全静止情况下进行,表面水力和固体负荷低,沉淀效率高于一般沉淀池的沉淀效率。
排水期:当池水位升到最高水位时,沉淀阶段结束,设置的反应池末端的滗水器开动,将上清液缓缓滗出池外,当池水位降到低水位时停止滗水。
待机期:本处理系统为多池联合运行,在每池滗水后完成了一个运行周期,在实际操作中,滗手所需时间往往小于理论最大时间,故滗水完成后两周期闲置时间就是待机期,该阶段可视污水的水质、水量和处理要求决定其长短甚至取消。在此阶段可以从反应池排除剩余活性污泥。反池池排出的剩余污泥由于泥龄长,已基本稳定。
◆CASS生化反应池
在进水期、反应期达到硝化阶段时,可减少或停止供氧,沉淀期或排水阶段都可以发生反硝化。CASS系统进水初期、高浓度的有机物首先消耗池内溶解氧,反硝化以刚进入的污水中有机物作为电子供体,将池内NO3-N还原为N2逸出水面。在反应后期,达到硝化阶段,污水中含有有机物浓度已大为减少,这时可减少或停止曝气,可以利用内碳源进行反硝化。在沉降期和排水期所发生的反硝化也是利用内碳源作电子供体。
在选择区活性污泥也会吸附污水中有机物并以多聚物形式贮存起来。当反应达到部分硝化后,减少或停止向混合液中供氧,则贮存碳源释放。反硝化菌可以利用释放的贮存碳源进行SBR系统所特有的利用贮存碳源进行反硝化。
反应池曝气时聚磷菌利用有机物氧化放出的能量,大量吸收混合液中的磷,以聚磷酸盐的形式储存于体内,水中的磷转移到污泥里,沉淀时处于缺氧状态,部分聚磷菌尚未将吸收的磷大量释放,即以剩余污泥形式排出系统,从而达到去除水中磷的目的。至滗水是污泥层呈厌氧状,DO和NOx-N的接近零,聚磷菌将体内的聚磷酸盐水解,释放出正磷酸盐和能量,有利于下一阶段充分吸收磷。即微生物在反应池中不断地处于厌氧和好氧交替运行状态,从而实现生物除磷。
CASS处理工艺的特点:
不设二沉池,曝气池兼具二沉池功能所需的机械和工艺设备较少,自控运行管理简单;曝气池容积小于连续式,建设费用和运行费用都较低;SVI值较低,污泥易于沉淀,在一般情况下,不产生污泥膨胀现象;易于维护管理,工艺调整灵活,处理水水质优于连续式;对水质、水量变化的适应性强,运行稳定;处理效果好,BOD5去除效率高,除磷脱氮效果优于传统活性污泥法、氧化沟法和AB法,产泥量少;占地面积少,基建费用低;设备闲置率较高;要求自动控制程度较高。
3.MSBR法
MSBR是80年代后期发展起来的技术,MSBR是连续进水、连续出水的反应器,其实质是AA/O系统后接SBR,因此具有AA/O生物除磷脱氮功能和SBR的一体化控制灵活等优点。
污水进入厌氧池,回流活性污泥在这里进行充分放磷,然后污水进入缺氧池进行反硝化。反硝化后的污水进入好氧池,有机物在这里被好氧菌降解、活性污泥充分吸磷后再进入起沉淀作用的SBR池,澄清后的污水被排放,此时另一边的SBR在1.5Q回流量的条件下进行起反硝化、硝化,或起静置预沉的作用。回流污泥首先进入浓缩区进行浓缩,上清液直接进入好氧池,而浓缩污泥则进入缺氧池,一方面可以进行反硝化,另一方面可消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后的厌氧放磷提供更为有利的条件,在好氧池和缺氧池之间有1.5Q的回流量,以便进行充分的反硝化。
4.UNITANK法
UNITANK工艺又称单池活性污泥法,是比利时西格斯水处理工程公司于80年代末开发的专利(SEGHERS ENGINEERING WATER NV)技术。UNITANK生物处理池是由三个矩形池组成,三个池水力相连通,每个池中均设有供氧设备,可采用鼓风曝气或采用表面曝气,在外边两侧矩形池,设有固定出水堰及剩余污泥排放泵,该池既可作曝气池,又可作沉淀池,中间一只矩形池只作曝气池。进入系统的污水,通过进水闸门控制可分时序分别进入三只矩形池中任意一只池。当左池进水,此时左池与中间池曝气,右池为沉淀池,水从左向右流过,从右池上部的固定堰溢出,经过一定时间后,进水从右池进,左池出,则左池变为沉淀,右池与中间池曝气,这样形成一个周期,与SBR原理接近,它是在同一容器中通过搅拌、曝气完成厌氧、缺氧、好氧过程,因而同样具有除磷脱氮功能。
UNITANK由于基本是定水位运行,连续进水、出水避免了SBR工艺中水位变化带来的不利因素。
UNITANK工艺的特点如下:
(1)结构紧凑,模块化设计;
(2)运行模式灵活,可自控运行;
(3)不需刮泥设备和污泥回流,工艺流程简便;
(4)占地面积少;
(5)投资节省。
但由于UNITANK缺专门的厌氧区,实际操作中很难达到释磷所需求的绝氧状态(无分子态氧和无硝态氧),影响到厌氧段磷的释放,而只有厌氧段磷释放得彻底,好氧段磷的吸附量才越大,进入剩余污泥中的磷也越多,从而达到较高的除磷效果。
日前,澳门凼仔污水厂采用了该工艺,设计规模为7万m3/d,处理效果良好,但该厂不要求脱氮除磷。
5.往复式生化处理法
本工艺借鉴了Unitank、MSBR的成果,兼有Unitank一体化工艺和A2/O工艺的优点,是一种取长补短的组合技术。
该工艺具有如下优点:
(1)池中设有专门的厌氧池,完善了除磷效果,具有A2/O的优点。
(2)本工艺视BOD5负荷的大小,可以A2/O法运行,也可以A2/O法运行,比传统A2/O法更具灵活性。
(3)每一组池中的每一格池体积较大,且为完全混合型,因而耐冲击负荷较强。
(4)具有一体化工艺的优点,占地面积小。
(5)由于占地面积小,相应的征地费、地基处理费用小,又由于矩形壁可以共用,土建费用小,因此投资相对较低。
(6)本工艺流程简洁,不需单独设二沉池,曝气、沉淀合用一池,交替运行。